SMALL DEVIATION PROBABILITIES OF WEIGHTED SUMS WITH FAST DECREASING WEIGHTS*

В

LEONID V. ROZOVSKY (SAINT-PETERSBURG)

Abstract. We examine small deviation probabilities of weighted sums of i.i.d. positive random variables whose distribution function is regularly varying at zero provided that weights are decreasing fast enough.

2000 AMS Mathematics Subject Classification: Primary: 60G50; Secondary: 60F99.

Key words and phrases: Small deviation probabilities, i.i.d. positive random variables, weighted sums, slowly varying functions, regularly varying functions.

1. INTRODUCTION

Let $\{X_n\}_{n\geqslant 1}$ be independent copies of a positive random variable X with distribution function $F(x) = \mathbf{P}(X < x)$ and let $a(\cdot)$ be a continuous and *non-increasing* positive function on $[1, \infty]$ such that

(1.1)
$$\sum_{n\geqslant 1} \mathbf{E} \min (1, a(n)X) < \infty.$$

It is well known (see [9] or [2]) that (1.1) is the necessary and sufficient condition under which the series $S = \sum_{n \geqslant 1} a(n) \, X_n$ converges almost surely.

Our basic aim is to get asymptotics in an *explicit* form for $\log \mathbf{P}(S < r)$ as $r \to 0$, somewhat sharper than earlier known, assuming that

(1.2)
$$b(u) = a^{-1}(1/u) \in \mathbf{R}_0,$$

the class of slowly varying functions (here we assume that $u \ge u_0 \ge 1/a(1)$ and $a^{-1}(x) = \sup\{y : a(y) \ge x\}$ denotes the inverse function of a), and

$$(1.3) F(1/\cdot) \in \mathbf{R}_{-\alpha},$$

^{*} This work was supported by the Russian Foundation for Basic Research (project no. 13-01-00256A).

the class of regularly varying functions with index $-\alpha < 0$ (or, in other words, $F(r) \sim r^{\alpha} h(1/r)$ as $r \to 0^+$ and $h(1/\cdot) \in \mathbf{R}_0$).

Note that if (1.2) holds, then the weights a(n) have to decrease fast enough, faster than any power of n, at least, and that (see [11]) (1.1) is equivalent to

$$(1.4) \mathbf{E}b(X)I[X>u_0]<\infty.$$

Let us recall a few earlier known results, the most close to the subject of the note (a complete bibliography on the theme can be found in [6]; see also [5]).

Set $f(u) = \mathbf{E}e^{-uX}$, $u \ge 0$, and formulate one result following from Theorem 4 of [14].

THEOREM 1.1. Let $a(\cdot)$ be a twice differentiable function on $[1, \infty]$ such that $\int_1^\infty \left|\left(\log a(t)\right)''\right| dt < \infty$ and

(1.5)
$$\limsup_{n \to \infty} \sum_{l \ge 1} \mathbf{E} \min \left(1, \frac{a(l \, n)}{a(n)} \, X \right) < \infty.$$

Assume that the distribution F satisfies (1.3) and

(1.6) the function $(s(\log f)'(s))'$ is absolutely integrable at infinity.

Then, as $r \to 0^+$.

$$\log \mathbf{P}(S < r) = I(u) - u I'(u) + (\log F(1/u) - \log a^{-1}(1/u))/2 + O(1),$$

where $I(u) = \int_1^\infty \log f \left(ua(t)\right) dt$, and u = u(r) is the unique solution of the equation I'(u) + r = 0.

Observe that (1.5) is appreciably milder than moment conditions in [4], where the *exact* asymptotics for $\mathbf{P}(S < r)$ was examined. For instance, (1.5) and (1.1) are equivalent if $\log \left(1/a(n)\right) = g(\log n) + O(1)$, where the function g(y)/y does not decrease for all y large enough.

Let us note that several conditions under which (1.6) holds can be found in [4] and [12]. For instance, it is sufficient to assume that $u\left(\log F(u)\right)'$ tends monotonically to $-\alpha$ as $u \setminus 0$ (and therefore (1.3) holds).

The next result follows from Theorem 6 of [13] (see also [2], Theorem 4.1, and [7], Theorem 2, for the case $X = \xi^2$ with $\xi \sim \mathbf{N}(0,1)$).

THEOREM 1.2. Let a constant $\alpha > 0$ and

(1.7)
$$\log F(r) \sim \alpha \log r \quad \text{as } r \to 0.$$

If (1.2) holds and

$$(1.8) \mathbf{E}g(X)I[X>1] < \infty$$

for

(1.9)
$$g(t) = \sup_{u \geqslant u_0} \frac{b(tu)}{b(u)},$$

then

$$-\log \mathbf{P}(S < r) \sim \alpha l(s)$$
 as $r \to 0^+$,

where $l(s)=\int_{u_0}^s b(u)\,du/u$ and $s=s(r)>u_0$ satisfies the condition $l(s)\sim s\,r.$ In particular, if

(1.10)
$$a(n) = e^{-(n-1)/c}, \quad n \ge 1, c > 0,$$

then $u_0 = 1$, $b(u) = g(u) = 1 + c \log u$ and

$$-\log \mathbf{P}(S < r) \sim \frac{\alpha c}{2} \log^2 r$$
 as $r \to 0^+$.

Observe that if $\{\lambda_n\}$ is a positive sequence such that $\log (\lambda_n/a(n)) = O(1)$ then, under the conditions of Theorem 1.2,

$$\log \mathbf{P} \Big(\sum_{n \ge 1} \lambda_n X_n < r \Big) \sim \log \mathbf{P}(S < r)$$
 as $r \to 0^+$.

Note also that (1.7) is weaker than (1.3). Moreover (see [11], Remark 2, or [13], Lemma 1), if

$$(1.11) \qquad \log \left(b(u)/\tilde{b}(u) \right) = O(1) \quad \text{ and } \quad u \left(\log \tilde{b}(u) \right)' \searrow 0 \quad \text{ as } u \to \infty$$

then

$$(1.12) g(u) = O(b(u)) as u \to \infty,$$

and therefore (1.8) is equivalent to the necessary condition (1.4). Let us note that if $-u(\log a(u))' \nearrow \infty$ as $u \to \infty$, then (1.11) holds.

Remark that (1.5) follows from (1.8). To verify this fact one can take into account that (1.5) is equivalent to

$$\limsup_{n\to\infty}\frac{1}{n}\sum_{l\geqslant n}\mathbf{E}\min\bigg(1,\frac{a(l)}{a(n)}\,X\bigg)<\infty,$$

and evaluate the sum above by using (1.2), (1.9) and the reasoning from [11], (18)–(20).

The following assertion takes an intermediate position between Theorems 1.1 and 1.2 (the case (1.10)).

THEOREM 1.3. Let $\mathbf{E} \log (1+X) < \infty$ and, for some rational $\alpha > 0$,

$$F(r) \sim b r^{\alpha}$$
 as $r \to 0^+$, $b > 0$.

If (1.10) holds, then

(1.13)
$$-\log \mathbf{P}(S < r) = \frac{\alpha c}{2} s^2 + \alpha c s \log s + (\kappa + o(1)) s \quad \text{as } r \to 0^+,$$

where
$$s = |\log r|$$
 and $\kappa = \alpha/2 - c \log b + \alpha c \log (\alpha c) - c \log \Gamma(1 + \alpha) - \alpha c$.

Theorem 1.3 was proved in [3] by means of the reasoning using results on asymptotic analysis of the delayed differential equations. Such a rather subtle method led, in particular, to the redundant requirement of rationality of α .

Note also that (1.13) for *all* $\alpha > 0$ under the additional assumption (1.6) follows from Theorem 1.1 (see the details in [14], Corollary 2).

The general aim of the present note is to obtain asymptotics for $\log \mathbf{P}(S < r)$, lying between ones of Theorems 1.1 and 1.2, more general and refined in comparison with Theorem1.3.

Our results are arranged in Section 2. Sections 3 and 4 contain some auxiliary results and the proofs of Theorems 2.1–2.3, respectively. In Section 5 we prove Corollaries 1.1–1.3.

2. RESULTS

In what follows, besides conditions (1.1)–(1.3) we assume that a positive non-increasing sequence $\{\lambda_n\}$ satisfies the condition

$$(2.1) \lambda_n \sim a_n = a(n),$$

and

(2.2)
$$F(r) \sim r^{\alpha} F_0(r) \quad \text{as } r \to 0^+,$$

assuming without loss of generality that a positive function $F_0(\cdot)$, defined on the interval (0,1], is continuous and slowly varying at zero (one can take, say, $F_0(r)=r^{-\alpha}\,f(1/r)/\Gamma(1+\alpha)$). For instance, if $X=|\xi|^p$ with p>0 and $\xi\sim \mathbf{N}(0,1)$, then $\alpha=1/p$ and $F_0(\cdot)=\sqrt{2/\pi}$.

Denote, for simplicity, $\mathbf{P}(\sum_{n \ge 1} \lambda_n X_n < r)$ by V(r). Notice that the condition $V(\infty) = 1$ is equivalent to (1.1) (or (1.4)).

Further we present some new asymptotics for $\log V(r)$ whose forms somewhat differ, depending on properties of $a(\cdot)$.

The first result is formulated under the assumption

(2.3)
$$|\log a(u)| = o(u)$$
 (that is, $b(u)/\log u \to \infty$) as $u \to \infty$.

Thus, $a(\cdot)$ decreases faster than a power and slower than an exponent, as in the case

(2.4)
$$a(u) = e^{-c \log^{\delta} u} \text{ (or } b(t) = e^{(c^{-1} \log t)^{1/\delta}})$$

with some $\delta > 1$ and c > 0.

Let, as in Theorem 1.2,
$$l(s) = \int_{u_0}^s b(u) du/u$$
, $s > u_0$.

THEOREM 2.1. If (2.3) and (1.8) hold, then for any $u_0 \ge 1/a(1)$

(2.5)

$$-\log V(r) = \alpha \, l(h) + \int_{u_0}^{h} -\log F_0(u/h) \, db(u) + \left(C_\alpha + o(1)\right) b(h) \quad \text{as } r \to 0,$$

where $C_{\alpha} = \alpha \log \alpha - \alpha - \log \Gamma(1+\alpha)$ and $h = h(r) > u_0$ is any function such that

(2.6)
$$h/b(h) \sim 1/r \quad as \ r \to 0.$$

Let us consider a consequence of Theorem 2.1 for the case (2.4), under which (1.8) is equivalent to the necessary condition (1.4) (see (1.11) and (1.12)).

We shall also assume that

$$(2.7) F_0(e^{-u}) \in \mathbf{R}_{\gamma}$$

for some γ or, equivalently, $F_0(1/t) \sim (\log t)^{\gamma} H(t)$ as $t \to \infty$, where a positive function H(t) is slowly varying at infinity.

COROLLARY 2.1. Let (2.4), (1.4) and (2.7) hold. Then we have as $r \to 0$: in the case $\delta > 2$,

$$(2.8) - \log V(r) = e^{\tilde{s}} \left(\alpha c \delta \tilde{s}^{\delta - 1} \left(e^{\tilde{s}^{2 - \delta}/(c \delta)} + \sum_{l=1}^{[\delta - 1]} \nu_l \, \tilde{s}^{-l} \right) + C(r) + o(1) \right),$$

where

$$\tilde{s} = (s/c)^{1/\delta}, \quad s = |\log r|, \quad \nu_l = (-1)^l \prod_{k=1}^l (\delta - k),$$

[x] denotes the integer part of x, $C(r) = C_{\alpha} - \gamma \log c\delta + \gamma \mathcal{E} - \log F_0(e^{-\tilde{s}^{\delta-1}})$ and $\mathcal{E} = -\int_0^{\infty} e^{-y} \log y \, dy$ is the Euler constant; in the case $\delta = 2$,

(2.9)
$$-\log V(r) = e^{\tilde{s}+1/(2c)} \left(2 \alpha c \, \tilde{s} + C(r) - 2 \alpha c + \alpha + \alpha/(4c) + o(1) \right);$$
 in the case $1 < \delta < 2$,

(2.10)
$$-\log V(r) = e^{Y_M} \left(\alpha \, c \, \delta \, \tilde{s}^{\delta-1} + C(r) + \alpha \, (\delta-1) + o \, (1) \right)$$

provided that $Y_M = \tilde{s} \left(1 + \sum_{\nu=1}^M \alpha_{\nu+1} \tau^{\nu}\right)$, $M = [\delta/(\delta-1)]$, $\tau = \tilde{s}^{1-\delta}/c$ and the coefficients α_{ν} are defined by the relation

(2.11)
$$\alpha_1 = 1, \quad \alpha_{\nu+1} = \sum_{l=0}^{s-1} (1/\delta - l) \prod_{m=1}^{\nu} \frac{\alpha_m^{k_m}}{k_m!}, \ \nu \geqslant 1,$$

where the summation is taken over all integers $k_m \ge 0$ with $1 \cdot k_1 + \ldots + \nu \cdot k_{\nu} = \nu$, and $s = k_1 + \ldots + k_{\nu}$ (in particular, $a_2 = 1/\delta$, $a_3 = (3 - \delta)/(2\delta^2)$).

The next our result is valid if

$$(2.12) - (\log a(u))' \to 1/c > 0 as u \to \infty,$$

which, in turn, is equivalent to $u\,b'(u)\to c$, and implies $\log\big(1/a(u)\big)\sim 1/c\,u$ and $b(u)/\log u\to c$.

THEOREM 2.2. Let (2.12) hold and $\mathbf{E} \log (1+X) < \infty$. Then we have for any $u_0 \geqslant 1/a(1)$ as $r \to 0$

$$(2.13) - \log V(r)$$

$$= \alpha l(h) + \int_{u_0}^{h} -\log F_0(u/h) db(u) + (c C_{\alpha} + \alpha/2 + \alpha c \log c + o(1)) \log (1/r),$$

where $h = |\log r|/r$ (see also the notation in Theorem 2.1).

Note that the moment assumptions in Corollary 2.1 and in Theorem 2.2 are necessary and sufficient for $V(\infty)=1$.

COROLLARY 2.2. Let $\mathbf{E} \log (1+X) < \infty$ and $\lambda_n \sim e^{d-n/c}$ with some constants d and c > 0. Moreover, let (2.7) hold true. Then, as $r \to 0$,

$$(2.14) -\log V(r) = c s \left(\frac{\alpha}{2} s + \alpha \log s - \log F_0(r) + \kappa + o(1)\right),$$

where $\kappa = \alpha \log(\alpha c) + \alpha (d-1) + \alpha/(2c) - \log \Gamma(1+\alpha) + \gamma$ and $s = \log(1/r)$.

Putting $F_0(\cdot) = b > 0$ (or $\gamma = 0$) and d = 1/c in (2.14), we get (1.13) for any α . The relations (2.3) and (2.6) presuppose that λ_j (or a(j)) tends to zero not too fast, for instance, $-\log a(j) = j^\delta$, $0 < \delta \leqslant 1$. The following approach allows us to consider a more general (in comparison with Theorem 1.1) situation, including the case $1 < \delta < 2$.

Assume, in addition to (2.1) and (2.2), that the functions a(t) and $F_0(1/t)$ (see (2.2)) are twice differentiable for all $t > t_0 > 1$.

Put $\mu(t) = t \left(\log F_0(1/t) \right)', t \ge t_0$, and introduce the conditions

$$(2.15) \qquad \qquad \int\limits_{t_0}^{\infty} |\mu'(t)| \, dt < \infty$$

and

(2.16)
$$\frac{1}{T} \int_{t_0}^{T} \left| \left(\log a(t) \right)'' \right| dt \to 0 \quad \text{ as } T \to \infty.$$

Note that (2.15) is a mild version of condition (1.6), and it obviously holds if $\mu(\cdot)$ is monotone at infinity (since $\mu(t) \to 0$ as $t \to \infty$) as in the case $F_0(1/t) = c \log^{\delta} t$ in which $t \mu'(t) = -\delta/\log^2 t$.

THEOREM 2.3. Let (2.15), (2.16) and (1.8) hold true. Then we have for any $u_0 \ge 1/a(1)$ (see the notation in Theorem 2.1)

(2.17)
$$-\log V(r) = \alpha l(h) + \int_{u_0}^{h} -\log F_0(u/h) db(u) - (\alpha/2) \log (1/r)$$
$$- (b(u_0) - 1/2) \log F_0(r) + (C_\alpha + o(1)) b(h) \quad \text{as } r \to 0.$$

Now consider the example which follows from Theorem 2.3.

COROLLARY 2.3. Let $\lambda_n \sim e^{d-(n/c)^{\delta}}$ with some constants d, c > 0 and $0 < \delta < 2$. If $\mathbf{E} \log^{1/\delta} (1+X) < \infty$ and (2.7) holds, then, as $r \to 0$, (2.18)

$$-\log V(r) = c s^{1/\delta} \left(\frac{\alpha \delta}{1+\delta} s + \frac{\alpha}{\delta} \log s - \log F_0(r) + \kappa + o(1) \right) - \frac{\alpha}{2} s$$

with $s = \log(1/r)$, $\kappa = \alpha(d-1) + \alpha\log(\alpha c) - \log\Gamma(1+\alpha) - \gamma \nu$, where

$$\nu = \int_{0}^{1} \frac{1 - (1 - u)^{1/\delta}}{u} \, du.$$

Note that Theorem 1.1 does not work in the case $a(n) = e^{d-(n/c)^{\delta}}$, $1 < \delta < 2$.

3. AUXILIARY RESULTS

We start with several auxiliary results.

Let $\{\lambda_n\}$ be a positive non-increasing sequence, $Z=\sum_{n\geqslant 1}\lambda_n\,X_n$, and $V(r)=\mathbf{P}(Z< r)$. Assuming that $V(\infty)=1$, put for u>0

(3.1)
$$\lambda(u) = \mathbf{E}e^{-uZ}, \quad L(u) = \log \lambda(u),$$

$$m(u) = -L'(u), \quad \sigma^2(u) = L''(u), \quad Q(u) = uL'(u) - L(u), \quad \tau(u) = u \, \sigma(u).$$

LEMMA 3.1. Let (1.3), (1.5) and (2.1) hold true. Then

(3.2)
$$-\log V(r) = Q(h) + \log \tau(h) + O(1) \quad \text{as } r \to 0,$$

where h = h(r) is the unique solution of the equation

$$(3.3) m(h) = r.$$

Lemma 3.1 follows from Theorem 3 and the Lemma of [14] (recall that (1.8) implies (1.5)).

Let us continue. At first we show that if (1.8) (along with (1.2), (2.2) and (2.1)) holds, then (see the notation in (3.1)), as $h \to \infty$,

$$-L(h) = \sum_{1 \le j \le N} \left(-\log f(a_j h) \right) + o(b(h)),$$

(3.5)
$$h m(h) \sim \tau^2(h) = h^2 \sigma^2(h) \sim \alpha b(h)$$

provided that the integer N=N(h) satisfies the condition $h\,a_{N+1}<1\leqslant h\,a_N,$ and hence $N\leqslant b(h)\leqslant N+1.$

Let $\epsilon = \epsilon(h) > 0$ tend to zero slowly enough together with h and let parameters M = M(h) and R = R(h) be such that

$$(3.6) h a_{R+1} < 1/\epsilon \leqslant h a_R, h a_{M+1} \leqslant \epsilon < h a_M,$$

which (see (1.2)), in particular, implies that $R \leq b(h \epsilon) \leq R+1$, $M \leq b(h/\epsilon) \leq M+1$, and, by standard properties of slowly varying functions, we get $R \sim N \sim M \sim b(h)$ as $h \to \infty$.

We have (recall that $f(u) = \mathbf{E}e^{-uX}$)

$$-L(h) = \left(\sum_{1 \le j \le R} + \sum_{R < j \le N} + \sum_{N < j \le M} + \sum_{j > M}\right) \left(-\log f(\lambda_j h)\right) = I_1 + \ldots + I_4$$

(if R = N or/and N = M, the reasoning is only simplified).

Now, by (1.8), arguing as in [11] ((27), etc.), again, one gets

$$(3.8) I_4 = o(b(h)) as h \to \infty.$$

It is well known that (2.2) implies, as $t \to \infty$,

(3.9)
$$f(t) \sim l_{\alpha}(t) = \Gamma(1+\alpha) t^{-\alpha} F_0(1/t),$$

(3.10)
$$t \left(\log f(t)\right)' \to -\alpha, \quad t^2 \left(\log f(t)\right)'' \to \alpha.$$

Taking into account (3.9) and (2.1), we obtain

$$I_1 = \sum_{1 \leqslant j \leqslant R} \left(-\log f(a_j h) \right) + o\left(b(h)\right) \quad \text{ as } h \to \infty.$$

Moreover, as $h \to \infty$,

$$I_2 + I_3 \le (M - R) \left(-\log f(h \lambda_{R+1}) \right) = o\left(b(h) |\log f(1/\epsilon)| \right) = o\left(b(h)\right).$$

Combining these estimates, (3.7) and (3.8), we obtain (3.4).

By using (3.10), the condition (3.5) can be verified similarly. Let a function $h_* = h_*(r)$ tend to infinity and satisfy the condition

(3.11)
$$h_*/b(h_*) \sim \alpha/r \text{ as } r \to 0.$$

We infer by (3.5) and (3.11) that the solution h of the equation (3.3) satisfies the condition

$$(3.12) h \sim h_*, \quad h \, r \sim \alpha \, b(h_*) \quad \text{as } r \to 0.$$

Now we show that (see (3.1))

(3.13)
$$Q(h) = -h_* r - L(h_*) + o(b(h_*)) \quad \text{as } r \to 0.$$

Indeed, Q(h) = -h r - L(h). Since, by (3.5) and (3.12),

$$-h_* r - L(h_*) - Q(h) = -\frac{(h_* - h)^2}{2} \sigma^2(\tilde{h}) \Big|_{\tilde{h} \in (h, h_*)} = o\left(b(h_*)\right) \quad \text{as } r \to 0,$$

and (3.13) follows.

Using (3.13), (3.11) and (3.4) one easily gets

(3.14)
$$Q(h) = -\sum_{1 \le j \le N_*} \log f(a_j h_*) - (\alpha + o(1)) b(h_*) \quad \text{as } r \to 0,$$

where $N_* = [b(h_*)]$, and therefore (see (1.2)) $h_* a_{N_*+1} \le 1 \le h_* a_{N_*}$.

Next we change the sum in (3.14) by the appropriate integral. The Euler–MacLaurin summation formula of first order gives

$$\sum_{j=1}^{N_*} \log f(h_* a_j) = \int_{1}^{N_*} \log f(h_* a(u)) du + \frac{1}{2} \left(\log f(h_* a_1) + \log f(h_* a_{N_*}) \right) + \Sigma_1,$$

where

$$\Sigma_1 = \sum_{j=1}^{N_*-1} \int_0^1 \frac{2t-1}{2} \left(\log f(h_* a(t+j)) \right)' dt.$$

Obviously,

$$(3.16) |\Sigma_1| \leqslant \frac{1}{2} \int_{1}^{N_*} \left(\log f(h_* a(u)) \right)' du = \frac{1}{2} \log \left(f(h_* a_{N_*}) / f(h_* a_1) \right).$$

4. PROOFS OF THEOREMS 2.1-2.3

Proof of Theorem 2.1. Let the assumption (2.3) hold true. Then from (3.16), by (2.2) and (3.9), it follows that

(4.1)
$$\Sigma_1 = o(1) b(h_*) \text{ as } r \to 0.$$

and, moreover, $-\log f(h_* a_1) \sim \alpha \log h_* = o(1) b(h_*)$,

$$(4.2) \quad 0 \leqslant \int_{N_*}^{b(h_*)} -\log f(h_* a(u)) du \leqslant -\log f(h_* a_{N_*}) \leqslant -\log f(a_{N_*}/a_{N_*+1})$$

$$\sim \alpha \left(\log \left(1/a_{N_*+1}\right) - \log \left(1/a_{N_*}\right)\right) = o(1) b(h_*).$$

Thus (2.3) implies

(4.3)
$$Q(h) = \int_{1}^{b(h_{*})} -\log f(h_{*} a(u)) du - (\alpha + o(1)) b(h_{*}) \quad \text{as } r \to 0.$$

We have by (3.9) (irrespective of (2.3)), for any $u_0 \ge 1/a_1$ as $r \to 0$,

(4.4)
$$\int_{1}^{b(h_{*})} \log f(h_{*} a(u)) du$$

$$= (b(u_{0}) - 1) \log f(h_{*}) + \int_{u_{0}}^{h_{*}} \log f(h_{*}/u) db(u) + o(b(h_{*}))$$

$$= (b(u_{0}) - 1) \log f(h_{*}) + \int_{u_{0}}^{h_{*}} \log F_{0}(u/h_{*}) db(u)$$

$$+ \alpha \int_{u_{0}}^{h_{*}} \log (u/h_{*}) db(u) + (\log \Gamma(1 + \alpha) + o(1)) b(h_{*}).$$

Next (see the notation before Theorem 2.1),

(4.5)
$$\int_{u_0}^{h_*} -\log(u/h_*) \, db(u) = l(h_*) - b(u_0) \left(\log h_* - \log u_0\right),$$
$$l(h_*) = l(h_*/\alpha) + \left(\log \alpha + o(1)\right) b(h_*) \quad \text{as } r \to 0.$$

Combining (4.3)–(4.5) and using (3.2), (3.3), (3.9) and (2.3), (2.6), we easily obtain (2.5) (with $h = h_*/\alpha$), and complete the proof of Theorem 2.1.

Proof of Theorem 2.2. Assuming (2.12), we return to (3.14) and (3.15), provided that $h_* = c \alpha |\log r|/r$ (and thus (3.11) is satisfied). Observe that the conditions (4.1) and (4.2) still hold.

Let us verify (4.1). We have, taking R such that $h_*a_R \geqslant 1/\epsilon > h_*a_{R+1}$, where $\epsilon = \epsilon(r)$ tends to zero slowly enough,

$$\Sigma_{1} = \left(\sum_{1 \leq j \leq [\epsilon N_{*}]} + \sum_{[\epsilon N_{*}] < j \leq R} + \sum_{R < j < N_{*}}\right) \int_{0}^{1} \frac{2t - 1}{2} \left(\log f\left(h_{*} a(t + j)\right)\right)' dt$$
$$= I_{1} + I_{2} + I_{3}.$$

Then, as earlier in (3.16),

$$|I_1| \leqslant \frac{1}{2} \log (f(h_* a_{[\epsilon N_*]})/f(h_* a_1)), \quad |I_3| \leqslant \frac{1}{2} \log (f(h_* a_{N_*})/f(h_* a_{R+1}))$$

and, due to (2.12), $I_1+I_3=o\left(1\right)b(h_*)$ as $r\to 0$. Now, if $\epsilon N_*\leqslant j\leqslant R$, then by (3.10) uniformly in $t\in [0,1]$, as $r\to 0$,

$$\left(\left.\log f\left(h_*\,a(t+j)\right)\right)' = \left(s\,\log' f(s)\right)\big|_{s=h_*\,a(t+j)} \left(\left.\log\left(1/a(t+j)\right)\right)' \to -\alpha/c,$$

which, keeping in mind that $\int_0^1 ((2t-1)/2) dt = 0$, leads to $I_2 = o(1) b(h_*)$ as $r \to 0$. Hence, under the condition (2.12) we get, as $r \to 0$,

(4.6)
$$Q(h) = \int_{1}^{b(h_*)} -\log f(h_* a(u)) du + \alpha (1/(2c) - 1 + o(1)) b(h_*).$$

Since

$$(4.7) \log \left(f(h_*)/f(1/r) \right) \sim \alpha \log r \, h_* \sim \alpha \log b(h_*) = o\left(b(h_*) \right) \quad \text{as } r \to 0$$

(see (3.9) and (3.11)), using (4.6) instead of (4.3), one can obtain (2.13) in just the same way as (2.5). Thus, Theorem 2.2 is proved. \blacksquare

Proof of Theorem 2.3. We have (see (3.9), (3.6), etc.), putting $R_* =$ $R(h_*),$

(4.8)
$$\sum_{1 \leq j \leq N_*} \left(-\log f(a_j h_*) \right) = \sum_{1 \leq j \leq R_*} \left(-\log f(a_j h_*) \right) + o(1) b(h_*)$$
$$= \sum_{1 \leq j \leq R_*} \left(-\log l_{\alpha}(a_j h_*) \right) + o(1) b(h_*) \quad \text{as } r \to 0.$$

Applying the Euler-MacLaurin summation formula of second order to estimate the last sum in (4.8), we find

$$(4.9) \sum_{1 \leq j \leq R_{*}} \left(-\log l_{\alpha}(a_{j} h_{*}) \right)$$

$$= \int_{1}^{R_{*}} \left(-\log l_{\alpha}(h_{*} a(u)) \right) du + \frac{1}{2} \left(-\log l_{\alpha}(h_{*} a(1)) - \log l_{\alpha}(h_{*} a(R_{*})) \right) + \Sigma_{2},$$

where

$$\Sigma_2 = \sum_{i=1}^{R_* - 1} \int_0^1 \frac{t - t^2}{2} \left(\log l_{\alpha} (h_* a(t+j)) \right)'' dt.$$

Next,

$$(4.10) |\Sigma_2| \leqslant \frac{1}{8} (A_1 + A_2),$$

where

$$A_1 = \int_{1}^{R_*} \left| \left(\log a(u) \right)'' \right| \left| \mu_{\alpha} \left(h_* a(u) \right) \right| du,$$

$$A_2 = \int_{1}^{R_*} \left| \left(\log a(u) \right)' \right| \left| \left(\mu \left(h_* a(u) \right) \right) \right| du.$$

But
$$A_1 = o\left(R_*\right) = o\left(b(h_*)\right)$$
 as $r \to 0$, by (2.16), and

$$A_2 \le \sup_{1 \le u \le R_*} \left| \left(\log a(u) \right)' \right| \int_{h_* a_{R_*}}^{h_* a_1} |\mu'(s)| \, ds = o\left(b(h_*) \right) \quad \text{as } r \to 0,$$

since due to (2.15) the integral above tends to zero (recall that $h_* a_{R_*} \ge 1/\epsilon$) and, by virtue of (2.16), as $r \to 0$,

(4.11)

$$\sup_{1 \leqslant u \leqslant R_*} \left| \left(\log a(u) \right)' \right| \leqslant \sup_{1 \leqslant u \leqslant R_*} \left(\left| \log a(1) \right| + \int_1^u \left| \left(\log a(t) \right)'' \right| dt \right) = O\left(b(h_*) \right).$$

Moreover, (3.9) and (2.16) imply in (4.9), as $r \rightarrow 0$,

$$-\log l_{\alpha}(h_* a(1)) = -\log l_{\alpha}(h_*) + O(1)$$

and

$$-\log l_{\alpha}(h_* a(R_*)) = O\left(\log 1/\epsilon + \log \left(a(R_*)/a(R_*+1)\right)\right) = o\left(b(h_*)\right)$$

because, similarly to (4.11),

$$\log \left(a(R_*)/a(R_*+1) \right) = \int_{R_*}^{R_*+1} \left| \left(\log a(t) \right)' \right| dt$$

$$\leqslant \sup_{R_* \leqslant u \leqslant R_*+1} \left| \left(\log a(u) \right)' \right| = o \left(b(h_*) \right) \quad \text{as } r \to 0.$$

Therefore, using (3.9), (4.2) and (4.8)–(4.10), one easily obtains

$$\sum_{1 \le j \le N_*} \left(-\log f(a_j h_*) \right) = \int_1^{R_*} \left(-\log l_\alpha (h_* a(u)) \right) du - \frac{1}{2} \log l_\alpha (h_*) + o\left(b(h_*)\right)$$

$$= \int_1^{R_*} \left(-\log f\left(h_* a(u)\right) \right) du - \frac{1}{2} \log f(h_*) + o\left(b(h_*)\right)$$

$$= \int_1^{b(h_*)} \left(-\log f\left(h_* a(u)\right) \right) du - \frac{1}{2} \log f(h_*) + o\left(b(h_*)\right) \quad \text{as } r \to 0.$$

Applying here (4.4), (4.5) and (4.7), we find that the conditions (2.15), (2.16) and (1.8) (see also (3.14), (3.2) and (3.9)) imply (2.17). Thus, Theorem 2.3 is proved.

5. PROOFS OF COROLLARIES 2.1-2.3

Proof of Corollary 2.1. In order to derive the corollary from Theorem 2.1 we have to estimate suitably two first summands on the right-hand side of (2.5).

So, let (2.4) and (2.6) hold, and let
$$I(x) = \int_1^x e^x \, x^{\delta - 1} \, dx$$
. Then (5.1)
$$\int_1^h b(u) \, du/u = \int_1^h e^{(c^{-1} \log u)^{1/\delta}} \, du/u = c \, \delta \, I\big(\log b(h)\big) + O(1) \quad \text{as } r \to 0.$$

Let $M = [\delta/(\delta-1)]$ be the integer part of $\delta/(\delta-1)$, and therefore

$$M = k \geqslant 1 \Leftrightarrow (k+1)/k < \delta \leqslant k/(k-1).$$

Further, we need the following result (see, for instance, [8], (6.5)).

LEMMA 5.1. Let $y(x)=1+\sum_{k\geqslant 1}c_k\,x^k$. Then $y^{1/\delta}(x)=1+\sum_{l\geqslant 1}b_l\,x^l$, where

(5.2)
$$b_{\nu} = \sum_{l=0}^{s-1} (1/\delta - l) \prod_{m=1}^{\nu} \frac{c_m^{k_m}}{k_m!}, \quad s = k_1 + \ldots + k_{\nu},$$

and the summation is taken over all integers $k_m \geqslant 0$ with $1 \cdot k_1 + \ldots + \nu \cdot k_{\nu} = \nu$.

Put
$$s=|\log r|,\ \tilde{s}=(s/c)^{1/\delta}$$
 (that is, $e^{\tilde{s}}=b(1/r)$), $\tau=\tilde{s}/s=\tilde{s}^{1-\delta}/c$.

Next we show that one can define the function h from (2.6) by means of the equality

(5.3)
$$\log h = s \left(1 + \sum_{l=1}^{M} c_l \tau^l \right),$$

where $c_1 = 1$ and c_{l+1} , $1 \le l \le M-1$, satisfy the equation $c_{l+1} = b_l$ (see (5.2)).

In particular, $c_2 = b_1 = c_1/\delta = 1/\delta$, $c_3 = b_2 = c_2/\delta + (1/\delta)(1/\delta - 1)c_1^2/2 =$ $(3-\delta)/(2\delta^2)$.

We have

(5.4)
$$\log b(h) = \tilde{s} \left(1 + \sum_{k=1}^{M} c_k \tau^k \right)^{1/\delta} = \tilde{s} \left(1 + \sum_{l=1}^{M} b_l \tau^l + O(\tau^{M+1}) \right)$$
 as $r \to 0$,

where, by virtue of (5.3) and Lemma 5.1 with $y(x) = 1 + \sum_{k=1}^{M} c_k x^k$, the coefficients b_l satisfy (5.2). Hence,

$$\log h - \log b(h) = s \left(1 + \sum_{k=1}^{M} c_k \tau^k \right) - s \tau \left(1 + \sum_{l=1}^{M-1} b_l \tau^l + O(\tau^M) \right)$$

= $s + O(s \tau^{M+1}) = s + o(1)$ as $r \to 0$,

and (2.6) follows.

Now we examine the asymptotic behavior of $I(\log b(h))$ (see (5.1)).

Put
$$Y_M = \tilde{s} \left(1 + \sum_{l=1}^M b_l \tau^l\right)$$
. Note that due to (5.4) we have as $r \to 0$

(5.5)
$$e^{Y_M} \sim e^{Y_{M-1}} \sim b(h), \\ I(\log b(h)) = I(Y_M) + O\left(\tilde{s}\,\tau^{M+1}\,b(h)\,\tilde{s}^{\delta-1}\right) = I(Y_M) + o\left(b(h)\right).$$

We will study the cases $\delta > 2$, $\delta = 2$ and $1 < \delta < 2$ (i.e., M = 1, M = 2 and M > 2) separately.

In the first case we have $Y_M=Y_1=\tilde{s}+\tilde{s}\,\tau/\delta$. Put $\Delta=\tilde{s}\,\tau/\delta=\tilde{s}^{2-\delta}/(c\,\delta),\;k=2+[1/(\delta-2)].$ Then we have

(5.6)
$$I(Y_1) = I(\tilde{s}) + \sum_{l=1}^{k-1} \frac{\Delta^l}{l!} I^{(l)}(\tilde{s}) + \frac{\Delta^k}{k!} I^{(k)}(\tilde{s} + \theta \Delta), \quad 0 < \theta < 1.$$

But

$$I^{(l)}(t) = e^t t^{\delta - 1} (1 + O(1/t)), \quad l \ge 2, \ t \to \infty,$$

and, in addition, we have $I^{(k)}(\tilde{s} + \theta \Delta) \sim b(1/r) \tilde{s}^{\delta-1}$ and $\Delta^k \tilde{s}^{\delta-1} = o(1)$ as $r \to 0$. Hence,

(5.7)
$$\sum_{l=1}^{k-1} \frac{\Delta^{l}}{l!} I^{(l)}(\tilde{s}) = e^{\tilde{s}} \tilde{s}^{\delta-1} \sum_{l=1}^{k-1} \Delta^{l} / l! + O(\tilde{s}^{\delta-2} \Delta^{2})$$
$$= e^{\tilde{s}} \tilde{s}^{\delta-1} (e^{\Delta} - 1) + o(b(1/r)) \quad \text{as } r \to 0.$$

Taking into account (5.5)–(5.7) and the relation

$$(5.8) \ I(\tilde{s}) = e^{\tilde{s}} \, \tilde{s}^{\delta - 1} \, \left(1 + \sum_{l=1}^{[\delta - 1]} (-1)^l \, \prod_{k=1}^l (\delta - k) \, \tilde{s}^{-l} \right) + o \left(b(1/r) \right) \quad \text{as } r \to 0,$$

one easily gets for $\delta > 2$, as $r \to 0$,

(5.9)

$$I\left(\log b(h)\right) = e^{\tilde{s}} \, \tilde{s}^{\delta-1} \, \left(e^{\tilde{s}^{2-\delta}/(c\,\delta)} + \sum_{l=1}^{[\delta-1]} (-1)^l \, \prod_{k=1}^l (\delta-k) \, \tilde{s}^{-l}\right) + o\left(b(1/r)\right).$$

Now consider the case $\delta = 2$. We have

$$Y_M = Y_2 = \tilde{s} + \tilde{s}\,\tau/2 + \tilde{s}\,\tau^2/8 = \tilde{s} + \frac{1}{2c} + \frac{1}{8\,c^2\,\tilde{s}},$$

$$e^{Y_2} = e^{\tilde{s} + 1/(2c)} \left(1 + \frac{1}{8\,c^2\,\tilde{s}} + O\left(1/\tilde{s}^2\right) \right) \quad \text{as } r \to 0.$$

Thus, as $r \to 0$,

$$I(Y_2) = e^{Y_2} (Y_2 - 1) + O(1) = b(1/r) e^{1/(2c)} \left(\tilde{s} - 1 + \frac{1}{2c} + \frac{1}{8c^2} + O(1/\tilde{s}) \right),$$

and, therefore, for $\delta = 2$ we have

(5.10)
$$I(\log b(h)) = b(1/r) e^{1/(2c)} \left(\tilde{s} - 1 + \frac{1}{2c} + \frac{1}{8c^2} + o(1)\right)$$
 as $r \to 0$.

It remains to examine the case $\delta < 2$. Here (see (5.4)), as $r \to 0$,

$$I(Y_M) = e^{Y_M} Y_M^{\delta - 1} + o(b(h)),$$

$$Y_M^{\delta - 1} = \tilde{s}^{\delta - 1} (1 + \nu \tau) + O(\tau), \ \nu = (\delta - 1)/\delta, \quad \tilde{s}^{\delta - 1} (1 + \nu \tau) = \tilde{s}^{\delta - 1} + \nu/c.$$

Hence, by (5.5), for $1 < \delta < 2$ we have

(5.11)
$$I(\log b(h)) = e^{Y_M} \left(\tilde{s}^{\delta - 1} + \frac{\delta - 1}{c \delta} + o(1) \right).$$

Thus, under the condition (2.4) the required asymptotics for the first summand on the right-hand side of (2.5) follow from (5.1) and (5.9)–(5.11).

Now evaluate the second one. We can assume without loss of generality (see [1]) that under the condition (2.7)

(5.12)
$$-\log F_0(e^{-t}) = g(t) + o(1), \text{ where } t g'(t) \to -\gamma, t \to \infty.$$

Let us put

(5.13)
$$J(h) = \int_{u_0}^{h} -\log F_0(u/h) \, db(u), \quad \mu(t) = b(e^t), \quad k = \log u_0, \quad \tau = \log h.$$

If R = R(h) tends to infinity slowly enough as $r \to 0$, then (see (1.2) and [1])

(5.14)
$$J(h) = \int_{k}^{\tau - R} g(\tau - y) \, d\mu(y) + o\left(b(h)\right).$$

Set $\epsilon = \delta (c/\tau)^{1/\delta}$, $Q = \epsilon \tau$ and

$$J_{1} = \int_{R}^{Q} g(u) d(\mu(\tau) - \mu(\tau - u)), \quad J_{2} = -\int_{Q}^{\tau - k} g(u) d\mu(\tau - u),$$
$$\tilde{J}_{1} = -\int_{R}^{Q} (\mu(\tau) - \mu(\tau - u)) dg(u), \quad \tilde{J}_{2} = \int_{Q}^{\tau - k} \mu(\tau - u) dg(u).$$

We have

(5.15)
$$\int_{k}^{\tau - R} g(\tau - y) \, d\mu(y) = -\int_{R}^{\tau - k} g(u) \, d\mu(\tau - u) = J_1 + J_2,$$

and

$$J_{1} = (\mu(\tau) - \mu(\tau - Q)) g(Q) - (\mu(\tau) - \mu(\tau - R)) g(R) + \tilde{J}_{1},$$

$$J_{2} = \mu(\tau - Q) g(Q) - \mu(R) g(\tau - R) + \tilde{J}_{2},$$

whence

(5.16)
$$J_1 + J_2 = \tilde{J}_1 + \tilde{J}_2 + (g(Q) + o(1))b(h)$$
 as $r \to 0$.

Let us write

(5.17)
$$\omega(u) = \frac{1 - (1 - u)^{1/\delta}}{u}, \quad u \in (0, 1].$$

Then (recall (2.4) and (5.13)) $\mu(\tau - y)/\mu(\tau) = e^{-\omega(y/\tau)y/Q}$, and therefore

$$\tilde{J}_1/\mu(\tau) = -\int_{R/Q}^{1} (1 - e^{-\omega(\epsilon y) \delta y}) \left(Q y g'(Q y) \right) dy/y,
\tilde{J}_2/\mu(\tau) = \int_{1}^{(\tau - k)/Q} e^{-\omega(\epsilon y) \delta y} \left(Q y g'(Q y) \right) dy/y.$$

From (5.12) and the dominated convergence theorem it follows that

$$\tilde{J}_1/\mu(\tau) \to \gamma \int\limits_0^1 (1-e^{-y})\,dy/y, \quad \tilde{J}_2/\mu(\tau) \to -\gamma \int\limits_1^\infty e^{-y}\,dy/y \quad \text{ as } \tau \to \infty.$$

Thus (see (5.13), (5.3) and (5.12)), we have, as $r \to 0$,

(5.18)
$$\tilde{J}_1 + \tilde{J}_2 = \left(\gamma \mathcal{E} + o(1)\right) b(h),$$

and

(5.19)
$$g(Q) = g(\tilde{s}^{\delta-1}) + \int_{\tilde{s}^{\delta-1}}^{Q} tg'(t) dt/t = -\log F_0(\tilde{s}^{\delta-1}) - \gamma \log(c\delta) + o(1).$$

The relations (5.13)–(5.19) imply the relevant asymptotics for the second summand on the right-hand side of (2.5). Thus, the proof of Corollary 2.1 is complete.

Proof of Corollary 2.2. For the proof we use Theorem 2.2 for $a(u)=e^{d-u/c},\ u\geqslant 1$ (that is, $b(t)=c\ (d+\log t),\ t\geqslant 1/a(1)$).

Set
$$s = \log(1/r)$$
, $h = s e^s$, $\tau = \log h = s + \log s$. Then we have

(5.20)
$$l(h) = c \int_{u_0}^{h} (d + \log t) dt/t = c (d s + s \log s + s^2/2) + o(s)$$
 as $r \to 0$.

Further (see (5.12)–(5.14) with $k = R = \log s$), as $r \to 0$,

(5.21)
$$J(h) = c \int_{u_0}^{h} -\log F_0(u/h) \, du/u = c \int_{\log s}^{s} g(\tau - y) \, dy + o(s)$$
$$= c \int_{\log s}^{s} g(t) \, dt + o(s) = c \left(-Rg(R) + sg(s) - \int_{\log s}^{s} tg'(t) \, dt \right) + o(s)$$
$$= c s \left(\gamma + g(s) + o(1) \right) = c s \left(\gamma - \log F_0(r) + o(1) \right).$$

The relation (2.14) follows from (2.13), (5.20) and (5.21), i.e., Corollary 2.2 is established. \blacksquare

Proof of Corollary 2.3. Let us substitute $b(t)=c\,(c+\log t)^{1/\delta}$ and $h=c\,s^{1/\delta}\,e^s$ with $s=\log{(1/r)}$ in (2.17). Then we have, as $r\to 0$,

$$l(h) = c s^{1/\delta} \left(\frac{\delta}{1+\delta} s + \frac{1}{\delta} \log s + d + \log c + o(1) \right)$$

and (see (5.12)–(5.14))

$$J(h) = \left(g(\tau - k) - \int_{R/\tau}^{1 - k/\tau} \left(1 - \frac{\mu(\tau(1 - u))}{\mu(\tau)}\right) dg(\tau u)\right) b(h) + o(s^{1/\delta}),$$

where $g(\tau - k) = g(s) + o(1) = -\log F_0(r) + o(1)$ and the integral tends to $\gamma \nu$. Consequently, (2.18) follows. \blacksquare

REFERENCES

- [1] N. H. Bingham, C. M. Goldie, and J. L. Teugels, *Regular Variation*, Cambridge University Press, Cambridge 1987.
- [2] A. A. Borovkov and P. S. Ruzankin, On small deviations of series of weighted random variables, J. Theoret. Probab. 21 (3) (2008), pp. 628-649.
- [3] A. A. Borovkov and P. S. Ruzankin, Small deviations of series of independent positive random variables with weights close to exponential, Siberian Adv. Math. 18 (3) (2008), pp. 163–175.
- [4] T. Dunker, M. A. Lifshits, and W. Linde, *Small deviation probabilities of sums of independent random variables*, in: *High Dimensional Probability*, Progr. Probab., Vol. 43, Birkhäuser, Basel 1998, pp. 59–74.
- [5] M. A. Lifshits, On the lower tail probabilities of some random series, Ann. Probab. 25 (1) (1997), pp. 424–442.
- [6] M. A. Lifshits, *Bibliography on small deviation probabilities*, Available on http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf (2010).
- [7] A. I. Nazarov, *Log-level comparison principle for small ball probabilities*, Statist. Probab. Lett. 79 (4) (2009), pp. 481–486.
- [8] V. V. Petrov, Limit theorems for sums of independent random variables (in Russian), Nauka, Moscow 1987.
- [9] L. V. Rozovsky, On small deviation probabilities for sums of independent positive random variables, J. Math. Sci. 147 (4) (2007), pp. 6935–6945.
- [10] L. V. Rozovsky, Remarks on a link between Laplace transform and distribution function of a nonnegative random variable, Statist. Probab. Lett. 79 (2009), pp. 1501–1508.
- [11] L. V. Rozovsky, Small deviations of series of weighted i.i.d. non-negative random variables with a positive mass at the origin, Statist. Probab. Lett. 79 (2009), pp. 1495–1500.
- [12] L. V. Rozovsky, Comparison theorems for small deviations of weighted series, Probab. Math. Statist. 32 (1) (2012), pp. 117–130.
- [13] L. V. Rozovsky, Small deviations of series of independent non-negative random variables with smooth weights (in Russian), Teor. Veroyatnost. Primenen. 58 (1) (2013), pp. 133–151.
- [14] L. V. Rozovsky, Small deviation probabilities of weighted sums under minimal moment assumptions, Statist. Probab. Lett. 86 (1) (2014), pp. 1–6.

Leonid V. Rozovsky
St. Petersburg Chemical-Pharmaceutical Academy
Department of Mathematics
Prof. Popova Street, 14
197376, St. Petersburg, Russia
E-mail: L_rozovsky@mail.ru

Received on 4.2.2014; revised version on 13.10.2014