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1. INTRODUCTION

Let {Xn}n­1 be independent copies of a positive random variable X with
distribution function F (x) = P(X < x) and let a(·) be a continuous and non-
increasing positive function on [1,∞] such that

(1.1)
∑
n­1

Emin
(
1, a(n)X

)
<∞.

It is well known (see [9] or [2]) that (1.1) is the necessary and sufficient con-
dition under which the series S =

∑
n­1 a(n)Xn converges almost surely.

Our basic aim is to get asymptotics in an explicit form for logP(S < r) as
r → 0, somewhat sharper than earlier known, assuming that

(1.2) b(u) = a−1(1/u) ∈ R0,

the class of slowly varying functions (here we assume that u ­ u0 ­ 1/a(1) and
a−1(x) = sup {y : a(y) ­ x} denotes the inverse function of a), and

(1.3) F (1/·) ∈ R−α,
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162 L. V. Rozovsky

the class of regularly varying functions with index −α < 0 (or, in other words,
F (r) ∼ rα h(1/r) as r → 0+ and h(1/·) ∈ R0).

Note that if (1.2) holds, then the weights a(n) have to decrease fast enough,
faster than any power of n, at least, and that (see [11]) (1.1) is equivalent to

(1.4) Eb(X) I[X > u0] <∞.

Let us recall a few earlier known results, the most close to the subject of the
note (a complete bibliography on the theme can be found in [6]; see also [5]).

Set f(u) = Ee−uX , u ­ 0, and formulate one result following from Theo-
rem 4 of [14].

THEOREM 1.1. Let a(·) be a twice differentiable function on [1,∞] such that∫∞
1

∣∣( log a(t))′′∣∣ dt <∞ and

(1.5) lim sup
n→∞

∑
l­1

Emin

(
1,

a(l n)

a(n)
X

)
<∞.

Assume that the distribution F satisfies (1.3) and

(1.6) the function
(
s(log f)′(s)

)′ is absolutely integrable at infinity.

Then, as r → 0+,

logP(S < r) = I(u)− u I ′(u) +
(
logF (1/u)− log a−1(1/u)

)
/2 +O (1),

where I(u) =
∫∞
1

log f
(
ua(t)

)
dt, and u = u(r) is the unique solution of the

equation I ′(u) + r = 0.

Observe that (1.5) is appreciably milder than moment conditions in [4], where
the exact asymptotics for P(S < r) was examined. For instance, (1.5) and (1.1) are
equivalent if log

(
1/a(n)

)
= g(log n)+O (1), where the function g(y)/y does not

decrease for all y large enough.
Let us note that several conditions under which (1.6) holds can be found in [4]

and [12]. For instance, it is sufficient to assume that u
(
logF (u)

)′ tends monoton-
ically to −α as u↘ 0 (and therefore (1.3) holds).

The next result follows from Theorem 6 of [13] (see also [2], Theorem 4.1,
and [7], Theorem 2, for the case X = ξ2 with ξ ∼ N(0, 1)).

THEOREM 1.2. Let a constant α > 0 and

(1.7) logF (r) ∼ α log r as r → 0.

If (1.2) holds and

(1.8) Eg(X) I[X > 1] <∞
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for

(1.9) g(t) = sup
u­u0

b(tu)

b(u)
,

then
− logP(S < r) ∼ α l(s) as r → 0+,

where l(s) =
∫ s

u0
b(u) du/u and s = s(r) > u0 satisfies the condition l(s) ∼ s r.

In particular, if

(1.10) a(n) = e−(n−1)/c, n ­ 1, c > 0,

then u0 = 1, b(u) = g(u) = 1 + c log u and

− logP(S < r) ∼ α c

2
log2 r as r → 0+.

Observe that if {λn} is a positive sequence such that log
(
λn/a(n)

)
= O (1)

then, under the conditions of Theorem 1.2,

logP
( ∑
n­1

λnXn < r
)
∼ logP(S < r) as r → 0+.

Note also that (1.7) is weaker than (1.3). Moreover (see [11], Remark 2, or [13],
Lemma 1), if

(1.11) log
(
b(u)/b̃(u)

)
= O(1) and u

(
log b̃(u)

)′ ↘ 0 as u→∞

then

(1.12) g(u) = O
(
b(u)

)
as u→∞,

and therefore (1.8) is equivalent to the necessary condition (1.4). Let us note that
if −u

(
log a(u)

)′ ↗∞ as u→∞, then (1.11) holds.
Remark that (1.5) follows from (1.8). To verify this fact one can take into

account that (1.5) is equivalent to

lim sup
n→∞

1

n

∑
l­n

Emin

(
1,

a(l)

a(n)
X

)
<∞,

and evaluate the sum above by using (1.2), (1.9) and the reasoning from [11],
(18)–(20).

The following assertion takes an intermediate position between Theorems 1.1
and 1.2 (the case (1.10)).
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THEOREM 1.3. Let E log (1 +X) <∞ and, for some rational α > 0,

F (r) ∼ b rα as r → 0+, b > 0.

If (1.10) holds, then

(1.13) − logP(S < r) =
α c

2
s2 + α c s log s+

(
κ+ o (1)

)
s as r → 0+,

where s = |log r| and κ = α/2− c log b+ α c log (α c)− c log Γ(1 + α)− α c.

Theorem 1.3 was proved in [3] by means of the reasoning using results on
asymptotic analysis of the delayed differential equations. Such a rather subtle
method led, in particular, to the redundant requirement of rationality of α.

Note also that (1.13) for all α > 0 under the additional assumption (1.6) fol-
lows from Theorem 1.1 (see the details in [14], Corollary 2).

The general aim of the present note is to obtain asymptotics for logP(S < r),
lying between ones of Theorems 1.1 and 1.2, more general and refined in compa-
rison with Theorem1.3.

Our results are arranged in Section 2. Sections 3 and 4 contain some auxiliary
results and the proofs of Theorems 2.1–2.3, respectively. In Section 5 we prove
Corollaries 1.1–1.3.

2. RESULTS

In what follows, besides conditions (1.1)–(1.3) we assume that a positive non-
increasing sequence {λn} satisfies the condition

(2.1) λn ∼ an = a(n),

and

(2.2) F (r) ∼ rα F0(r) as r → 0+,

assuming without loss of generality that a positive function F0(·), defined on the
interval (0, 1], is continuous and slowly varying at zero (one can take, say, F0(r) =
r−α f(1/r)/Γ(1+α)). For instance, if X = |ξ|p with p > 0 and ξ ∼ N(0, 1), then
α = 1/p and F0(·) =

√
2/π.

Denote, for simplicity, P
(∑

n­1 λnXn < r
)

by V (r). Notice that the condi-
tion V (∞) = 1 is equivalent to (1.1) (or (1.4)).

Further we present some new asymptotics for log V (r) whose forms some-
what differ, depending on properties of a(·).

The first result is formulated under the assumption

(2.3) |log a(u)| = o(u) (that is, b(u)/ log u→∞) as u→∞.
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Thus, a(·) decreases faster than a power and slower than an exponent, as in the
case

(2.4) a(u) = e−c logδ u (or b(t) = e(c
−1 log t)1/δ)

with some δ > 1 and c > 0.
Let, as in Theorem 1.2, l(s) =

∫ s

u0
b(u) du/u, s > u0.

THEOREM 2.1. If (2.3) and (1.8) hold, then for any u0 ­ 1/a(1)

(2.5)

− log V (r) = α l(h) +
h∫
u0

− logF0(u/h) db(u) +
(
Cα + o (1)

)
b(h) as r → 0,

where Cα = α logα− α− log Γ(1 + α) and h = h(r) > u0 is any function such
that

(2.6) h/b(h) ∼ 1/r as r → 0.

Let us consider a consequence of Theorem 2.1 for the case (2.4), under which
(1.8) is equivalent to the necessary condition (1.4) (see (1.11) and (1.12)).

We shall also assume that

(2.7) F0(e
−u) ∈ Rγ

for some γ or, equivalently, F0(1/t) ∼ (log t)γ H(t) as t→∞, where a positive
function H(t) is slowly varying at infinity.

COROLLARY 2.1. Let (2.4), (1.4) and (2.7) hold. Then we have as r → 0:
in the case δ > 2,

(2.8) − log V (r) = es̃
(
α c δ s̃δ−1

(
es̃

2−δ/(c δ) +
[δ−1]∑
l=1

νl s̃
−l)+ C(r) + o (1)

)
,

where

s̃ = (s/c)1/δ, s = |log r|, νl = (−1)l
l∏

k=1

(δ − k),

[x] denotes the integer part of x, C(r)=Cα−γ log cδ+γ E − logF0(e
−s̃δ−1

) and
E = −

∫∞
0

e−y log y dy is the Euler constant;
in the case δ = 2,

(2.9) − log V (r) = es̃+1/(2c)
(
2α c s̃+ C(r)− 2α c+ α+ α/(4 c) + o (1)

)
;

in the case 1 < δ < 2,

(2.10) − log V (r) = eYM
(
α c δ s̃δ−1 + C(r) + α (δ − 1) + o (1)

)
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provided that YM = s̃
(
1 +

∑M
ν=1 αν+1 τ

ν
)
, M = [δ/(δ − 1)], τ = s̃1−δ/c and

the coefficients αν are defined by the relation

(2.11) α1 = 1, αν+1 =
∑ s−1∏

l=0

(1/δ − l)
ν∏

m=1

αm
km

km!
, ν ­ 1,

where the summation is taken over all integers km ­ 0 with 1 · k1 + . . . + ν · kν
= ν, and s = k1 + . . .+ kν (in particular, a2 = 1/δ, a3 = (3− δ)/(2δ2)).

The next our result is valid if

(2.12) −
(
log a(u)

)′ → 1/c > 0 as u→∞,

which, in turn, is equivalent to u b′(u)→ c, and implies log
(
1/a(u)

)
∼ 1/c u and

b(u)/ log u→ c.

THEOREM 2.2. Let (2.12) hold and E log (1 +X) < ∞. Then we have for
any u0 ­ 1/a(1) as r → 0

(2.13) − log V (r)

= α l(h)+
h∫
u0

− logF0(u/h) db(u)+
(
cCα+α/2+α c log c+ o (1)

)
log (1/r),

where h = |log r|/r (see also the notation in Theorem 2.1).

Note that the moment assumptions in Corollary 2.1 and in Theorem 2.2 are
necessary and sufficient for V (∞) = 1.

COROLLARY 2.2. Let E log (1 +X) <∞ and λn ∼ ed−n/c with some con-
stants d and c > 0. Moreover, let (2.7) hold true. Then, as r → 0,

(2.14) − log V (r) = c s

(
α

2
s+ α log s− logF0(r) + κ+ o (1)

)
,

where κ=α log (αc)+α (d− 1)+α/(2 c)− log Γ(1 + α)+ γ and s = log (1/r).

Putting F0(·)=b>0 (or γ=0) and d=1/c in (2.14), we get (1.13) for any α.
The relations (2.3) and (2.6) presuppose that λj (or a(j)) tends to zero not too

fast, for instance, − log a(j) = jδ, 0 < δ ¬ 1. The following approach allows us
to consider a more general (in comparison with Theorem 1.1) situation, including
the case 1 < δ < 2.

Assume, in addition to (2.1) and (2.2), that the functions a(t) and F0(1/t) (see
(2.2)) are twice differentiable for all t > t0 > 1.

Put µ(t) = t
(
logF0(1/t)

)′
, t ­ t0, and introduce the conditions

(2.15)
∞∫
t0

|µ′(t)| dt <∞
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and

(2.16)
1

T

T∫
t0

∣∣( log a(t))′′∣∣ dt→ 0 as T →∞.

Note that (2.15) is a mild version of condition (1.6), and it obviously holds if
µ(·) is monotone at infinity (since µ(t)→ 0 as t→∞) as in the case F0(1/t) =
c logδ t in which t µ′(t) = −δ/ log2 t.

THEOREM 2.3. Let (2.15), (2.16) and (1.8) hold true. Then we have for any
u0 ­ 1/a(1) (see the notation in Theorem 2.1)

(2.17) − log V (r) = α l(h) +
h∫
u0

− logF0(u/h) db(u)− (α/2) log (1/r)

−
(
b(u0)− 1/2

)
logF0(r) +

(
Cα + o (1)

)
b(h) as r → 0.

Now consider the example which follows from Theorem 2.3.

COROLLARY 2.3. Let λn ∼ ed−(n/c)
δ

with some constants d, c > 0 and
0 < δ < 2. If E log1/δ (1 +X) <∞ and (2.7) holds, then, as r → 0,

(2.18)

− log V (r) = c s1/δ
(

αδ

1 + δ
s+

α

δ
log s− logF0(r) + κ+ o (1)

)
− α

2
s

with s = log (1/r), κ = α (d− 1) + α log (α c)− log Γ(1 + α)− γ ν, where

ν =
1∫
0

1− (1− u)1/δ

u
du.

Note that Theorem 1.1 does not work in the case a(n)=ed−(n/c)
δ
, 1 < δ < 2.

3. AUXILIARY RESULTS

We start with several auxiliary results.
Let {λn} be a positive non-increasing sequence, Z =

∑
n­1 λnXn, and V (r) =

P(Z < r). Assuming that V (∞) = 1, put for u > 0

λ(u) = Ee−uZ , L(u) = log λ(u),
(3.1)

m(u) = −L′(u), σ2(u) = L′′(u), Q(u) = uL′(u)− L(u), τ(u) = uσ(u).

LEMMA 3.1. Let (1.3), (1.5) and (2.1) hold true. Then

(3.2) − log V (r) = Q(h) + log τ(h) +O (1) as r → 0,
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where h = h(r) is the unique solution of the equation

(3.3) m(h) = r.

Lemma 3.1 follows from Theorem 3 and the Lemma of [14] (recall that (1.8)
implies (1.5)).

Let us continue. At first we show that if (1.8) (along with (1.2), (2.2) and (2.1))
holds, then (see the notation in (3.1)), as h→∞,

−L(h) =
∑

1¬j¬N

(
− log f(aj h)

)
+ o

(
b(h)

)
,(3.4)

hm(h) ∼ τ2(h) = h2 σ2(h) ∼ α b(h)(3.5)

provided that the integer N = N(h) satisfies the condition h aN+1 < 1 ¬ h aN ,
and hence N ¬ b(h) ¬ N + 1.

Let ϵ = ϵ(h) > 0 tend to zero slowly enough together with h and let parame-
ters M = M(h) and R = R(h) be such that

(3.6) h aR+1 < 1/ϵ ¬ h aR, h aM+1 ¬ ϵ < h aM ,

which (see (1.2)), in particular, implies that R ¬ b(h ϵ) ¬ R + 1, M ¬ b(h/ϵ)
¬ M + 1, and, by standard properties of slowly varying functions, we get R ∼
N ∼M ∼ b(h) as h→∞.

We have (recall that f(u) = Ee−uX )
(3.7)
− L(h) =

( ∑
1¬j¬R

+
∑

R<j¬N
+

∑
N<j¬M

+
∑
j>M

)(
− log f(λj h)

)
= I1 + . . .+ I4

(if R = N or/and N = M , the reasoning is only simplified).
Now, by (1.8), arguing as in [11] ((27), etc.), again, one gets

(3.8) I4 = o
(
b(h)

)
as h→∞.

It is well known that (2.2) implies, as t→∞,

f(t) ∼ lα(t) = Γ(1 + α) t−α F0(1/t),(3.9)

t
(
log f(t)

)′ → −α, t2
(
log f(t)

)′′ → α.(3.10)

Taking into account (3.9) and (2.1), we obtain

I1 =
∑

1¬j¬R

(
− log f(aj h)

)
+ o

(
b(h)

)
as h→∞.

Moreover, as h→∞,

I2 + I3 ¬ (M −R)
(
− log f(hλR+1)

)
= o

(
b(h) |log f(1/ϵ)|

)
= o

(
b(h)

)
.

Combining these estimates, (3.7) and (3.8), we obtain (3.4).
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By using (3.10), the condition (3.5) can be verified similarly.
Let a function h∗ = h∗(r) tend to infinity and satisfy the condition

(3.11) h∗/b(h∗) ∼ α/r as r → 0.

We infer by (3.5) and (3.11) that the solution h of the equation (3.3) satisfies the
condition

(3.12) h ∼ h∗, h r ∼ α b(h∗) as r → 0.

Now we show that (see (3.1))

(3.13) Q(h) = −h∗ r − L(h∗) + o
(
b(h∗)

)
as r → 0.

Indeed, Q(h) = −h r − L(h). Since, by (3.5) and (3.12),

−h∗ r − L(h∗)−Q(h) = −(h∗ − h)2

2
σ2(h̃)

∣∣∣h̃∈(h,h∗) = o
(
b(h∗)

)
as r → 0,

and (3.13) follows.
Using (3.13), (3.11) and (3.4) one easily gets

(3.14) Q(h) = −
∑

1¬j¬N∗
log f(aj h∗)−

(
α+ o (1)

)
b(h∗) as r → 0,

where N∗ = [b(h∗)], and therefore (see (1.2)) h∗ aN∗+1 ¬ 1 ¬ h∗ aN∗ .
Next we change the sum in (3.14) by the appropriate integral. The Euler–

MacLaurin summation formula of first order gives
(3.15)
N∗∑
j=1

log f(h∗ aj)=
N∗∫
1

log f
(
h∗ a(u)

)
du+

1

2

(
log f(h∗ a1) + log f(h∗ aN∗)

)
+Σ1,

where

Σ1 =
N∗−1∑
j=1

1∫
0

2t− 1

2

(
log f

(
h∗ a(t+ j)

))′
dt.

Obviously,

(3.16) |Σ1| ¬
1

2

N∗∫
1

(
log f

(
h∗ a(u)

))′
du =

1

2
log

(
f(h∗ aN∗)/f(h∗ a1)

)
.
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4. PROOFS OF THEOREMS 2.1–2.3

P r o o f o f T h e o r e m 2.1. Let the assumption (2.3) hold true. Then from
(3.16), by (2.2) and (3.9), it follows that

(4.1) Σ1 = o (1) b(h∗) as r → 0,

and, moreover, − log f(h∗ a1) ∼ α log h∗ = o (1) b(h∗),

(4.2) 0 ¬
b(h∗)∫
N∗

− log f
(
h∗ a(u)

)
du ¬ − log f(h∗ aN∗) ¬ − log f(aN∗/aN∗+1)

∼ α
(
log (1/aN∗+1)− log (1/aN∗)

)
= o (1) b(h∗).

Thus (2.3) implies

(4.3) Q(h) =
b(h∗)∫
1

− log f
(
h∗ a(u)

)
du−

(
α+ o (1)

)
b(h∗) as r → 0.

We have by (3.9) (irrespective of (2.3)), for any u0 ­ 1/a1 as r → 0,

(4.4)
b(h∗)∫
1

log f
(
h∗ a(u)

)
du

=
(
b(u0)− 1

)
log f(h∗) +

h∗∫
u0

log f(h∗/u) db(u) + o
(
b(h∗)

)
=

(
b(u0)− 1

)
log f(h∗) +

h∗∫
u0

logF0(u/h∗) db(u)

+ α
h∗∫
u0

log (u/h∗) db(u) +
(
log Γ(1 + α) + o (1)

)
b(h∗).

Next (see the notation before Theorem 2.1),

h∗∫
u0

− log (u/h∗) db(u) = l(h∗)− b(u0) (log h∗ − log u0),(4.5)

l(h∗) = l(h∗/α) +
(
logα+ o (1)

)
b(h∗) as r → 0.

Combining (4.3)–(4.5) and using (3.2), (3.3), (3.9) and (2.3), (2.6), we easily
obtain (2.5) (with h = h∗/α), and complete the proof of Theorem 2.1. �

P r o o f o f T h e o r e m 2.2. Assuming (2.12), we return to (3.14) and
(3.15), provided that h∗ = c α |log r|/r (and thus (3.11) is satisfied). Observe that
the conditions (4.1) and (4.2) still hold.



Small deviation probabilities 171

Let us verify (4.1). We have, taking R such that h∗aR ­ 1/ϵ > h∗aR+1, where
ϵ = ϵ(r) tends to zero slowly enough,

Σ1 =
( ∑
1¬j¬[ϵN∗]

+
∑

[ϵN∗]<j¬R
+

∑
R<j<N∗

) 1∫
0

2t− 1

2

(
log f

(
h∗ a(t+ j)

))′
dt

= I1 + I2 + I3.

Then, as earlier in (3.16),

|I1| ¬
1

2
log

(
f(h∗ a[ϵN∗])/f(h∗ a1)

)
, |I3| ¬

1

2
log

(
f(h∗ aN∗)/f(h∗ aR+1)

)
and, due to (2.12), I1 + I3 = o (1) b(h∗) as r → 0.

Now, if ϵN∗ ¬ j ¬ R, then by (3.10) uniformly in t ∈ [0, 1], as r → 0,(
log f

(
h∗ a(t+ j)

))′
=

(
s log′ f(s)

)∣∣
s=h∗ a(t+j)

(
log

(
1/a(t+ j)

))′
→ −α/c,

which, keeping in mind that
∫ 1

0

(
(2t − 1)/2

)
dt=0, leads to I2= o (1) b(h∗) as

r → 0. Hence, under the condition (2.12) we get, as r → 0,

(4.6) Q(h) =
b(h∗)∫
1

− log f
(
h∗ a(u)

)
du+ α

(
1/(2c)− 1 + o (1)

)
b(h∗).

Since

(4.7) log
(
f(h∗)/f(1/r)

)
∼ α log r h∗ ∼ α log b(h∗) = o

(
b(h∗)

)
as r → 0

(see (3.9) and (3.11)), using (4.6) instead of (4.3), one can obtain (2.13) in just the
same way as (2.5). Thus, Theorem 2.2 is proved. �

P r o o f o f T h e o r e m 2.3. We have (see (3.9), (3.6), etc.), putting R∗ =
R(h∗),

(4.8)
∑

1¬j¬N∗

(
− log f(aj h∗)

)
=

∑
1¬j¬R∗

(
− log f(aj h∗)

)
+ o (1) b(h∗)

=
∑

1¬j¬R∗

(
− log lα(aj h∗)

)
+ o (1) b(h∗) as r → 0.

Applying the Euler–MacLaurin summation formula of second order to estimate the
last sum in (4.8), we find

(4.9)
∑

1¬j¬R∗

(
− log lα(aj h∗)

)
=

R∗∫
1

(
− log lα

(
h∗ a(u)

))
du+

1

2

(
− log lα

(
h∗ a(1)

)
− log lα

(
h∗ a(R∗)

))
+Σ2,



172 L. V. Rozovsky

where

Σ2 =
R∗−1∑
j=1

1∫
0

t− t2

2

(
log lα

(
h∗ a(t+ j)

))′′
dt.

Next,

(4.10) |Σ2| ¬
1

8
(A1 +A2),

where

A1 =
R∗∫
1

∣∣( log a(u))′′∣∣ ∣∣µα

(
h∗ a(u)

)∣∣ du,
A2 =

R∗∫
1

∣∣( log a(u))′∣∣ ∣∣∣(µ(h∗ a(u)))′∣∣∣ du.
But A1 = o (R∗) = o

(
b(h∗)

)
as r → 0, by (2.16), and

A2 ¬ sup
1¬u¬R∗

∣∣( log a(u))′∣∣ h∗ a1∫
h∗ aR∗

|µ′(s)| ds = o
(
b(h∗)

)
as r → 0,

since due to (2.15) the integral above tends to zero (recall that h∗ aR∗ ­ 1/ϵ) and,
by virtue of (2.16), as r → 0,

(4.11)

sup
1¬u¬R∗

∣∣( log a(u))′∣∣ ¬ sup
1¬u¬R∗

(
|log a(1)|+

u∫
1

∣∣( log a(t))′′∣∣ dt) = O
(
b(h∗)

)
.

Moreover, (3.9) and (2.16) imply in (4.9), as r → 0,

− log lα
(
h∗ a(1)

)
= − log lα(h∗) +O (1)

and

− log lα
(
h∗ a(R∗)

)
= O

(
log 1/ϵ+ log

(
a(R∗)/a(R∗ + 1)

))
= o

(
b(h∗)

)
because, similarly to (4.11),

log
(
a(R∗)/a(R∗ + 1)

)
=

R∗+1∫
R∗

∣∣( log a(t))′∣∣ dt
¬ sup

R∗¬u¬R∗+1

∣∣( log a(u))′∣∣ = o
(
b(h∗)

)
as r → 0.
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Therefore, using (3.9), (4.2) and (4.8)–(4.10), one easily obtains

∑
1¬j¬N∗

(
− log f(aj h∗)

)
=

R∗∫
1

(
− log lα

(
h∗ a(u)

))
du−1

2
log lα(h∗)+o

(
b(h∗)

)
=

R∗∫
1

(
− log f

(
h∗ a(u)

))
du− 1

2
log f(h∗) + o

(
b(h∗)

)
=

b(h∗)∫
1

(
− log f

(
h∗ a(u)

))
du− 1

2
log f(h∗) + o

(
b(h∗)

)
as r → 0.

Applying here (4.4), (4.5) and (4.7), we find that the conditions (2.15), (2.16) and
(1.8) (see also (3.14), (3.2) and (3.9)) imply (2.17). Thus, Theorem 2.3 is proved. �

5. PROOFS OF COROLLARIES 2.1–2.3

P r o o f o f C o r o l l a r y 2.1. In order to derive the corollary from Theo-
rem 2.1 we have to estimate suitably two first summands on the right-hand side
of (2.5).

So, let (2.4) and (2.6) hold, and let I(x) =
∫ x

1
ex xδ−1 dx. Then

(5.1)
h∫
u0

b(u) du/u =
h∫
u0

e(c
−1 log u)1/δ du/u = c δ I

(
log b(h)

)
+O (1) as r → 0.

Let M = [δ/(δ − 1)] be the integer part of δ/(δ − 1), and therefore

M = k ­ 1⇔ (k + 1)/k < δ ¬ k/(k − 1).

Further, we need the following result (see, for instance, [8], (6.5)).

LEMMA 5.1. Let y(x) = 1 +
∑

k­1 ck x
k. Then y1/δ(x) = 1 +

∑
l­1 bl x

l,
where

(5.2) bν =
∑ s−1∏

l=0

(1/δ − l)
ν∏

m=1

cm
km

km!
, s = k1 + . . .+ kν ,

and the summation is taken over all integers km ­ 0 with 1 · k1 + . . .+ ν · kν = ν.

Put s = |log r|, s̃ = (s/c)1/δ (that is, es̃ = b(1/r)), τ = s̃/s = s̃1−δ/c.
Next we show that one can define the function h from (2.6) by means of the

equality

(5.3) log h = s
(
1 +

M∑
l=1

cl τ
l
)
,

where c1 = 1 and cl+1, 1 ¬ l ¬M − 1, satisfy the equation cl+1 = bl (see (5.2)).



174 L. V. Rozovsky

In particular, c2 = b1 = c1/δ = 1/δ, c3=b2=c2/δ + (1/δ)(1/δ − 1) c21/2 =
(3− δ)/(2δ2).

We have

(5.4) log b(h)= s̃
(
1+

M∑
k=1

ck τ
k
)1/δ

= s̃
(
1+

M∑
l=1

bl τ
l+O (τM+1)

)
as r → 0,

where, by virtue of (5.3) and Lemma 5.1 with y(x) = 1 +
∑M

k=1 ck x
k, the coeffi-

cients bl satisfy (5.2). Hence,

log h− log b(h) = s
(
1 +

M∑
k=1

ck τ
k
)
− s τ

(
1 +

M−1∑
l=1

bl τ
l +O (τM )

)
= s+O (s τM+1) = s+ o (1) as r → 0,

and (2.6) follows.
Now we examine the asymptotic behavior of I

(
log b(h)

)
(see (5.1)).

Put YM = s̃
(
1 +

∑M
l=1 bl τ

l
)
. Note that due to (5.4) we have as r → 0

(5.5)
eYM ∼ eYM−1 ∼ b(h),

I
(
log b(h)

)
= I(YM ) +O

(
s̃ τM+1 b(h) s̃δ−1

)
= I(YM ) + o

(
b(h)

)
.

We will study the cases δ > 2, δ = 2 and 1 < δ < 2 (i.e., M = 1,M = 2 and
M > 2) separately.

In the first case we have YM = Y1 = s̃+ s̃ τ/δ.
Put ∆ = s̃ τ/δ = s̃2−δ/(c δ), k = 2 + [1/(δ − 2)]. Then we have

(5.6) I(Y1) = I(s̃) +
k−1∑
l=1

∆l

l!
I(l)(s̃) +

∆k

k!
I(k)(s̃+ θ∆), 0 < θ < 1.

But
I(l)(t) = et tδ−1

(
1 +O (1/t)

)
, l ­ 2, t→∞,

and, in addition, we have I(k)(s̃ + θ∆) ∼ b(1/r) s̃δ−1 and ∆k s̃δ−1 = o (1) as
r → 0. Hence,

k−1∑
l=1

∆l

l!
I(l)(s̃) = es̃ s̃δ−1

k−1∑
l=1

∆l/l! +O (s̃δ−2∆2)(5.7)

= es̃ s̃δ−1 (e∆ − 1) + o
(
b(1/r)

)
as r → 0.

Taking into account (5.5)–(5.7) and the relation

(5.8) I(s̃) = es̃ s̃δ−1
(
1 +

[δ−1]∑
l=1

(−1)l
l∏

k=1

(δ − k) s̃−l
)
+ o

(
b(1/r)

)
as r → 0,
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one easily gets for δ > 2, as r → 0,

(5.9)

I
(
log b(h)

)
= es̃ s̃δ−1

(
es̃

2−δ/(c δ) +
[δ−1]∑
l=1

(−1)l
l∏

k=1

(δ − k) s̃−l
)
+ o

(
b(1/r)

)
.

Now consider the case δ = 2. We have

YM = Y2 = s̃+ s̃ τ/2 + s̃ τ2/8 = s̃+
1

2c
+

1

8 c2 s̃
,

eY2 = es̃+1/(2c)

(
1 +

1

8 c2 s̃
+O (1/s̃2)

)
as r → 0.

Thus, as r → 0,

I(Y2) = eY2 (Y2 − 1) +O (1) = b(1/r) e1/(2c)
(
s̃− 1 +

1

2c
+

1

8 c2
+O (1/s̃)

)
,

and, therefore, for δ = 2 we have

(5.10) I
(
log b(h)

)
= b(1/r) e1/(2c)

(
s̃− 1 +

1

2c
+

1

8 c2
+ o (1)

)
as r → 0.

It remains to examine the case δ < 2. Here (see (5.4)), as r → 0,

I(YM ) = eYM Y δ−1
M + o

(
b(h)

)
,

Y δ−1
M = s̃δ−1 (1 + ν τ) +O (τ), ν = (δ − 1)/δ, s̃δ−1 (1 + ν τ) = s̃δ−1 + ν/c.

Hence, by (5.5), for 1 < δ < 2 we have

(5.11) I
(
log b(h)

)
= eYM

(
s̃δ−1 +

δ − 1

c δ
+ o (1)

)
.

Thus, under the condition (2.4) the required asymptotics for the first summand on
the right-hand side of (2.5) follow from (5.1) and (5.9)–(5.11).

Now evaluate the second one. We can assume without loss of generality (see
[1]) that under the condition (2.7)

(5.12) − logF0(e
−t) = g(t) + o (1), where t g′(t)→ −γ, t→∞.

Let us put

(5.13) J(h) =
h∫
u0

− logF0(u/h) db(u), µ(t) = b(et), k = log u0, τ = log h.
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If R = R(h) tends to infinity slowly enough as r → 0, then (see (1.2) and [1])

(5.14) J(h) =
τ−R∫
k

g(τ − y) dµ(y) + o
(
b(h)

)
.

Set ϵ = δ (c/τ)1/δ, Q = ϵ τ and

J1 =
Q∫
R

g(u) d
(
µ(τ)− µ(τ − u)

)
, J2 = −

τ−k∫
Q

g(u) dµ(τ − u),

J̃1 = −
Q∫
R

(
µ(τ)− µ(τ − u)

)
dg(u), J̃2 =

τ−k∫
Q

µ(τ − u) dg(u).

We have

(5.15)
τ−R∫
k

g(τ − y) dµ(y) = −
τ−k∫
R

g(u) dµ(τ − u) = J1 + J2,

and

J1 =
(
µ(τ)− µ(τ −Q)

)
g(Q)−

(
µ(τ)− µ(τ −R)

)
g(R) + J̃1,

J2 = µ(τ −Q) g(Q)− µ(k) g(τ − k) + J̃2,

whence

(5.16) J1 + J2 = J̃1 + J̃2 +
(
g(Q) + o (1)

)
b(h) as r → 0.

Let us write

(5.17) ω(u) =
1− (1− u)1/δ

u
, u ∈ (0, 1].

Then (recall (2.4) and (5.13)) µ(τ − y)/µ(τ) = e−ω(y/τ) y/Q, and therefore

J̃1/µ(τ) = −
1∫

R/Q

(1− e−ω(ϵ y) δ y)
(
Qy g′(Qy)

)
dy/y,

J̃2/µ(τ) =
(τ−k)/Q∫

1

e−ω(ϵ y) δ y
(
Qy g′(Qy)

)
dy/y.

From (5.12) and the dominated convergence theorem it follows that

J̃1/µ(τ)→ γ
1∫
0

(1− e−y) dy/y, J̃2/µ(τ)→ −γ
∞∫
1

e−y dy/y as τ →∞.
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Thus (see (5.13), (5.3) and (5.12)), we have, as r → 0,

(5.18) J̃1 + J̃2 =
(
γ E + o (1)

)
b(h),

and

(5.19) g(Q)=g(s̃δ−1)+
Q∫

s̃δ−1

tg′(t) dt/t=− logF0(s̃
δ−1)−γ log (cδ) + o (1).

The relations (5.13)–(5.19) imply the relevant asymptotics for the second summand
on the right-hand side of (2.5). Thus, the proof of Corollary 2.1 is complete. �

P r o o f o f C o r o l l a r y 2.2. For the proof we use Theorem 2.2 for a(u) =
ed−u/c, u ­ 1 (that is, b(t) = c (d+ log t), t ­ 1/a(1)).

Set s = log (1/r), h = s es, τ = log h = s+ log s. Then we have

(5.20) l(h) = c
h∫
u0

(d+ log t) dt/t = c (d s+ s log s+ s2/2) + o (s) as r → 0.

Further (see (5.12)–(5.14) with k = R = log s), as r → 0,

(5.21) J(h) = c
h∫
u0

− logF0(u/h) du/u = c
s∫

log s

g(τ − y) dy + o (s)

= c
s∫

log s

g(t) dt+ o (s) = c
(
−Rg(R) + sg(s)−

s∫
log s

tg′(t) dt
)
+ o (s)

= c s
(
γ + g(s) + o (1)

)
= c s

(
γ − logF0(r) + o (1)

)
.

The relation (2.14) follows from (2.13), (5.20) and (5.21), i.e., Corollary 2.2 is
established. �

P r o o f o f C o r o l l a r y 2.3. Let us substitute b(t) = c (c + log t)1/δ and
h = c s1/δ es with s = log (1/r) in (2.17). Then we have, as r → 0,

l(h) = c s1/δ
(

δ

1 + δ
s+

1

δ
log s+ d+ log c+ o (1)

)
and (see (5.12)–(5.14))

J(h) =

(
g(τ − k)−

1−k/τ∫
R/τ

(
1−

µ
(
τ (1− u)

)
µ(τ)

)
dg(τ u)

)
b(h) + o (s1/δ),

where g(τ − k) = g(s) + o (1) = − logF0(r) + o (1) and the integral tends to γ ν.
Consequently, (2.18) follows. �
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