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Abstract. In this paper we study an innovation representation of a peri-
odically correlated (PC) sequence and describe the factorization of the den-
sities of a regular PC sequence generated by its innovation. As a byproduct
we obtain a certain factorization of vector analytic functions which may be
of interest in the theory of Hardy spaces.
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1. INTRODUCTION

In this paper a (stochastic) sequence
(
x(n)

)
is a not identically zero sequence

in some complex, separable Hilbert space H, indexed by the set of integers Z. If(
x(n)

)
is a stochastic sequence, then the covariance function Rx of

(
x(n)

)
is the

function on Z × Z defined by Rx(n,m) =
(
x(n), x(m)

)
, where (·, ·) is the in-

ner product in H. Two sequences
(
x(n)

)
and

(
y(n)

)
, in possibly different Hilbert

spacesH and K, are said to be unitary equivalent if Rx(m,n) = Ry(m,n) for ev-
ery m,n ∈ Z. Unitary equivalent sequences will be identified. This identification
makes the space H where the values of

(
x(n)

)
are physically located completely

irrelevant. The symbol (x|M) will denote the orthogonal projection of a vector
x ∈ H onto a closed subspace M ofH.

Given a sequence
(
x(n)

)
in H, the following subspaces of H will be of in-

terest:

Mx(n) = sp {x(m) : m ¬ n} and Mx = Mx(∞) = sp {x(m) : m ∈ Z},

where sp {N} stands for the closed linear subspace ofH spanned by linear combi-
nations of vectors from N . A sequence

(
x(n)

)
is called regular if

∩
nMx(n)={0}.

∗ This research was supported by ARO Contract No. W911NF-11-1-0051.
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The main objective of the theoretical prediction theory is to describe the projections(
x(n+ k)|Mx(n)

)
and the error of prediction

∥∥x(n+ k)−
(
x(n+ k)|Mx(n)

)∥∥.
This can be achieved by computing innovation coefficients of the sequence

(
x(n)

)
.

So far the prediction problem has been completely solved only for univariate sta-
tionary sequences (see, e.g., [5], [1], [10]). In particular, it is known that innovation
coefficients of a regular stationary sequence

(
x(n)

)
are the coefficients of an outer

square-factor of the spectral density γ′0(t) of
(
x(n)

)
. The last observation connects

the prediction problem with the theory of Hardy spaces and eventually leads to the
solution.

The main purpose of this paper is to examine the factorization of the spectral
densities of a periodically correlated sequence generated by its innovation repre-
sentation, and this is done in Section 3. In Section 2 we give preliminary results.
Section 4 contains remarks on the relation between an innovation of a PC sequence
and an innovation of the corresponding multivariate stationary sequence, and an in-
terpretation of our main theorem in terms of factorization of CT -valued analytic
functions.

We adopt the following notation. T will always be a positive integer, C will
stand for the field of complex numbers, CT will denote the Cartesian product of
T copies of C. Elements of the Cartesian product CT will be represented as row
vectors a = [a0, a1, . . . , aT−1] with coordinates labeled from 0 to T − 1, and ep,
p = 0, . . . , T − 1, will denote the standard orthonormal basis in CT . If a ∈ CT

then at is the transpose of a, and a∗ is the column vector whose k-th coordinate is
the complex conjugate ak of ak. With this notation the standard scalar product of
a, b ∈ CT can be expressed as ab∗. The interval [0, 2π) will be treated as a group
with addition modulo 2π. The symbol L2(CT ) will denote the Hilbert space of
all CT -valued functions on [0, 2π) which are square integrable with respect to the
Lebesgue measure du on [0, 2π), and L2

T (C
T ) will be the subspace of L2(CT )

consisting of all 2π/T -periodic functions. H2(CT ) will stand for the subspace of
L2(CT ) consisting of functions whose negative Fourier coefficients are zero, that
is, functions from L2(CT ) of the form h(u) =

∑∞
k=0 e

ikuhk, hk ∈ CT . Elements
of H2(CT ) will be called analytic functions. H2

T (C
T ) = H2(CT ) ∩ L2

T (C
T ) will

stand for the space of 2π/T -periodic analytic functions with values in CT . Finally,
MT (C) will denote the set of all T × T matrices with complex entries. The rows
and columns of a matrix A ∈MT (C) will be numbered from 0 to T − 1.

If m ∈ Z then q(m) and ⟨m⟩ will denote the quotient and the nonnegative
remainder in division of m by T , so that m = q(m)T + ⟨m⟩, q(m) ∈ Z, ⟨m⟩ ∈
{0, . . . , T − 1}. Other notation will be introduced later when needs occur.

2. MA REPRESENTATION

A sequence
(
x(n)

)
in H is called periodically correlated (PC) with period

T , or simply T -PC, if
(
x(n)

)
is not identically zero and Rx(m + T, n + T ) =

Rx(m,n) for every m,n ∈ Z. A PC sequence with T = 1 is called stationary. If



Innovation and factorization 17(
x(n)

)
is T -PC, then the mapping W : x(n)→ x(n+ T ), n ∈ Z, extends linearly

to the unitary operator in Mx, which is customarily called the T -shift of
(
x(n)

)
.

For every j, n ∈ Z define

(2.1) bj(n) =
1

T

T−1∑
r=0

e−2πijr/TRx(n+ r, r), j = 0, . . . , T − 1.

The correlation function Rx of a T -PC sequence
(
x(n)

)
is completely determined

by the sequences
(
bj(n)

)
, namely

(2.2) Rx(n+ r, r) =
T−1∑
j=0

e2πijr/T bj(n), n, r ∈ Z.

It is well known (see, e.g., [2] or [4]) that for every j there is a complex finite
measure γj on [0, 2π) such that

(2.3) bj(n) =
2π∫
0

e−intγj(dt), j = 0, . . . , T − 1, n ∈ Z.

Measures (γj) above are called the spectral measures of the T -PC sequence
(
x(n)

)
.

We say that a PC sequence
(
x(n)

)
has an absolutely continuous spectrum if each

γj is absolutely continuous with respect to the Lebesgue measure du on [0, 2π).
If this is the case, then the Radon–Nikodym derivatives of γj with respect to du
will be denoted by γ′j(u). By the spectral density γ′x of the sequence

(
x(n)

)
we

will understand the family of T functions γ′x = (γ′j), j = 0, . . . , T − 1. It has been
shown in [7] that if γ′x = (γ′j) is the spectral density of a T -PC sequence

(
x(n)

)
,

then there is a function g ∈ L2(CT ) such that for every j = 0, . . . , T − 1

(2.4) γ′j(u) =
1

T
g(u)g(u+ 2πj/T )∗ du-a.e.

Any function g ∈ L2(CT ) satisfying (2.4) will be referred to as a factor of the
spectral density γ′x of

(
x(n)

)
. It is known that a T -PC sequence

(
x(n)

)
is regu-

lar iff its spectrum is absolutely continuous and its spectral density γ′x admits an
analytic factor g ∈ H2(CT ) (see [7], Theorem 4.2).

DEFINITION 2.1. A T -PC sequence
(
x(n)

)
is called a moving average (MA)

if there exist an orthonormal system (ξn) in some Hilbert space H ⊇Mx(n), and
a set of scalars

(
ak(n)

)
, n, k ∈ Z, such that the following conditions are satisfied:

(A1) for every n ∈ Z, x(n) =
∑∞

k=−∞ ak(n)ξn−k,

(A2) the shift operator U of (ξn), defined as a unitary operator in H such
that Uξn = ξn+1, n ∈ Z, has the property that for every n ∈ Z it follows that
UTx(n) = x(n+ T ).
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If (A1) and (A2) are satisfied then a representation in (A1) will be referred to
as a moving average or MA representation of

(
x(n)

)
. The condition (A2) says that

UT restricted to Mx is equal to the T -shift W of
(
x(n)

)
and it implies that the MA

coefficients ak(n) are T -periodic in n. Indeed, from (A2) it follows that

∞∑
k=−∞

ak(n+ T )ξn+T−k = x(n+ T ) = UTx(n) =
∞∑

k=−∞
ak(n)ξn+T−k,

and hence ak(n+ T ) = ak(n).
Each MA representation of a T -PC sequence

(
x(n)

)
generates a certain fac-

tor of γ′x and vice versa – each factor of γ′x produces an MA representation of(
x(n)

)
. Before we prove it we will need the following lemma that was proved in

[7] (Lemma 3.3) in a much more general setting. In the case of sequences with
absolutely continuous spectra the proof is easy and we include it below.

LEMMA 2.1. Let g ∈ L2(CT ). If

(2.5) y(n)(u) = e−inu
(
1

T

T−1∑
j=0

e−2πijn/T g(u+ 2πj/T )

)
,

then
(
y(n)

)
is a T -PC sequence in L2(CT ) with absolutely continuous spectrum

and for every p = 0, . . . , T − 1

γ′p(u) =
1

T
g(u)g(u+ 2πp/T )∗.

P r o o f. The fact that
(
y(n)

)
is T -PC follows from the T -periodicity in n of

the expression in parentheses. By definition (2.1),

bp(n) =
1

T

T−1∑
r=0

e−2πipr/T
2π∫
0

y(n+ r)(u)y(r)(u)∗dy.

Substituting (2.5) into the above we obtain

bp(n) =

1

T 3

T−1∑
r=0

T−1∑
j=0

T−1∑
k=0

e−2πi(p−k+j)r/T
2π∫
0

e−in(u+2πj/T )g(u+2πj/T )g(u+2πk/T )∗du.

The sum over r is zero except when k = p+ j modulo T , and in the latter case it
is equal to T . Hence

bp(n) =
1

T 2

T−1∑
j=0

2π∫
0

e−in(u+2πj/T )g(u+ 2πj/T )g
(
u+ 2π(p+ j)/T

)∗
du.
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Putting t = u+ 2πj/T in the integral we see that the value of the integral does not
depend on j. Hence

bp(n) =
1

T

2π∫
0

e−intg(t)g(t+ 2πp/T )∗dt.

Consequently, γp(dt) = (1/T )g(t)g(t+ 2πp/T )∗dt. �

We will also use repeatedly the following simple observation.

LEMMA 2.2. Let ϕ ∈ L2(CT ), ϕ(u) =
∑∞

k=−∞ dke
iku, dk ∈ CT , and let P

be defined as

Pϕ(u) =
1

T

T−1∑
j=0

ϕ(u+ 2πj/T ).

Then Pϕ(u) =
∑∞

q=−∞ dqT e
iqTu.

P r o o f. Indeed, we have

Pϕ(u) =
∞∑

k=−∞
dke

iku

(
1

T

T−1∑
j=0

e2πijk/T
)

=
∞∑

q=−∞
dqT e

iqTu. �

Lemma 2.2 shows that P is the orthogonal projection in L2(CT ) onto LT (C
T ).

PROPOSITION 2.1. Let
(
x(n)

)
be a T -PC sequence with absolutely contin-

uous spectrum, and let γ′x = (γ′j) be its spectral density. Suppose that g(u) =∑∞
k=−∞ gke

iku, gk =
∑T−1

p=0 gpkep ∈ CT , is a factor of γ′x. Then there is an or-
thonormal system in some Hilbert spaceH ⊇Mx such that

x(n) =
∞∑

k=−∞
g
⟨n−k⟩
k+⟨n−k⟩ξn−k.

P r o o f. Define the sequence
(
G(n)

)
of functions in L2(CT ) as follows:

(2.6) G(n)(u) =
1

T

T−1∑
j=0

e−in(u+2πj/T )g(u+ 2πj/T ).

Using Lemma 2.2 for ϕ(u) = e−inug(u) =
∑∞

m=−∞ gn+meimu, we obtain

(2.7) G(n)(u) =
∞∑

q=−∞
gn+qT e

iqTu =
∞∑

q=−∞

T−1∑
p=0

eiqTugpn+qT ep.
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Substituting first m = −qT + p, so that q = −q(m) and p = ⟨m⟩, and then m =
n− k, we get

G(n)(u) =
∞∑

m=−∞
e−iq(m)Tug

⟨m⟩
n−q(m)T e⟨m⟩

=
∞∑

k=−∞
g
⟨n−k⟩
k+⟨n−k⟩(e

−iq(n−k)Tue⟨n−k⟩),

because n− q(n− k)T = n− (n− k) + ⟨n− k⟩ = k + ⟨n− k⟩. Note that each
G(n) is 2π/T -periodic, and consequently MG ⊆ L2

T (C
T ). If we define ζn(u) =(

1/
√
2π

)
e−iq(n)Tue⟨n⟩, then the last formula says that

(2.8) G(n)(u) =
√
2π

∞∑
k=−∞

g
⟨n−k⟩
k+⟨n−k⟩ζn−k(u).

The sequence (ζn) is an orthonormal system in L2
T (C

T ) and the shift U of (ζn)
satisfies UTG(n) = G(n + T ), so (2.8) is an MA representation of

(
G(n)

)
with

MA coefficients ak(n) = g
⟨n−k⟩
k+⟨n−k⟩, k, n ∈ Z. Since, by Lemma 2.1, G(n) and(

x(n)
)

have the same density, the proposition is proved. �

PROPOSITION 2.2. Let
(
x(n)

)
be a T -PC MA sequence and let

x(n) =
∞∑

k=−∞
ak(n)ξn−k(u) =

∞∑
m=−∞

an−m(n)ξm(u)

be its MA representation. For any k ∈ Z define gk =
(
1/
√
2π

)∑T−1
p=0 ak−p(k)ep,

and let

g(u) =
∞∑
k=0

eikugk.

Then
(
x(n)

)
is absolutely continuous, and g is a factor of γ′x.

P r o o f. The proof is just the reverse of an argument used in Proposition 2.1.
Define

(2.9) ζn(u) =
(
1/
√
2π

)
e−iq(n)Tue⟨n⟩.

Then (ζn) form an orthonormal system in the space L2
T (C

T ). Let

G(n)(u) =
∞∑

m=−∞
an−m(n)ζm(u).
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Obviously,
(
x(n)

)
and

(
G(n)

)
have the same correlation, and hence the same

spectrum. Substituting (2.9) into the above and writing m = −qT + p we obtain

G(n)(u) =
(
1/
√
2π

) ∞∑
m=−∞

an−m(n)e−iq(m)Tue⟨m⟩

=
∞∑

q=−∞
eiqTu

[(
1/
√
2π

) T−1∑
p=0

an−p+qT (n)ep
]
=

∞∑
q=−∞

eiqTugn+qT .

From Lemma 2.2 we conclude that

G(n)(u) = e−inu
1

T

T−1∑
j=0

e−2πijn/T g(u+ 2πj/T ).

By Lemma 2.1, g is a factor of the spectral density of
(
G(n)

)
, and hence also

of γ′x. �

Matrix visualization. The relationship between MA coefficients
(
ak(n)

)
of(

x(n)
)

and the coefficients gk = [gpk] of the corresponding factor g(u) =
∑

gke
iku

of γ′x,

(2.10) ak(n) =
(√

2π
)
g
⟨n−k⟩
k+⟨n−k⟩, gpk =

(
1/
√
2π

)
ak−p(k),

can be easily visualized in terms of matrices. First arrange MA coefficients
(
ak(n)

)
of

(
x(n)

)
into a {0, . . . , T − 1} × Z matrix A with rows labeled from i = 0 (top)

to T − 1 (bottom), and columns j labeled by Z (from left to right) in such a way
that the i, j-th entry of A is Ai,j = ai−j(i). Recall that the sequences ak(n) are
T -periodic in n, so the matrix A contains all MA coefficients of

(
x(n)

)
. If now

x = [x(n)]0T−1 and ξ = [ξn]
−∞
∞ are column vectors with coordinates labeled as

shown, then the representation (A1) can be written as x = Aξ. Let further A(k) be
the T × T block of the matrix A with the top left corner at the position (0,−Tk),
that is, A(k)i,j = Ai,j−kT = ai−j+kT (i):

A = . . . aT (0) . . . a1(0) a0(0) . . . a−T+1(0) . . .

. . . . . . A(1) . . . . . . A(0) . . . . . .

. . . a2T−1(T − 1) . . . aT (T − 1) aT−1(T − 1) . . . a0(T − 1) . . .

.
The formula (2.10) says that if g(u) =

∑
gke

iku is the factor of γ′x corresponding
to the MA representation

(
ak(n)

)
, then the vector gkT+r, r = 0, . . . , T − 1, k ∈ Z,

is equal to the r-th row of the matrix A(k).
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3. INNOVATION

Since the word innovation is used in different ways in the prediction theory,
we start with the definition.

DEFINITION 3.1. Let
(
x(n)

)
be a regular stochastic sequence. An innovation

of a sequence
(
x(n)

)
is a pair, an orthonormal system ξ = (ξn) in some Hilbert

space H ⊇ Mx(n), and a set of coefficients c =
(
ck(n)

)
, n, k ∈ Z, k ­ 0, called

innovation coefficients of
(
x(n)

)
, such that the following conditions hold:

(I1) for every n ∈ Z, x(n) =
∑∞

k=0 ck(n)ξn−k;

(I2) for every n ∈ Z, x(n)−
(
x(n)|Mx(n− 1)

)
= c0(n)ξn.

Our definition is slightly different from the one used in [3] and [4], but the
change is purely cosmetic and is dictated by convenience. In [3], for example, if
Mx(n− 1) = Mx(n) then ξn is defined to be zero, while in this paper we instead
define ξn to be a vector of norm one from outside of Mx and the corresponding
coefficient c0(n) = 0. Each regular sequence has an innovation. For the future use
we put sp {c0(m)ξm : m ¬ n} = Mcξ(n). With this notation the condition (I2)
can be replaced by the condition

(I2)′ for every n ∈ Z, Mx(n) = Mcξ(n).

For convenience, we also set ck(n) = 0 for each k < 0 and n ∈ Z, and then
the representation (I1) can be written as

(3.1) x(n) =
∞∑

m=−∞
cn−m(n)ξm.

An innovation is not unique; however, from (I2) it follows that if (c, ξ) and (d, ζ)
are two innovations of

(
x(n)

)
, then for every n ∈ Z and k ­ 0, |c0(n)| = |d0(n)|.

We can change the vectors (ξn) slightly and require that all c0(n) ­ 0, n ∈ Z.
Under this assumption the set

(
ck(n)

)
is uniquely determined by conditions (I1)

and (I2). The series representation in (I1) will be called an innovation representa-
tion of

(
x(n)

)
. The set of all n ∈ Z such that c0(n) ̸= 0 will be denoted by Sx

and will be called the support of the innovation of
(
x(n)

)
. Because of (I2), the

set Sx does not depend on a choice of innovation. If (c, ξ) is an innovation and
c0(n) = 0, then ck(k+ n) = 0 for all k ­ 0. Indeed, projecting orthogonally x(n)
onto Mx = Mcξ(∞) we obtain

0 = x(n)−
(
x(n)|Mx

)
=

∑
m/∈Sx

cn−m(n)ξm,

which implies that
∑

m/∈Sx
|cn−m(n)|2 = 0.

LEMMA 3.1. Let
(
x(n)

)
be a regular T -PC sequence, W be its T -shift opera-

tor, and
((
ck(n)

)
, (ξn)

)
be an innovation of

(
x(n)

)
. Then:
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(i) Sx = {n ∈ Z : c0(n) ̸= 0} is T -periodic, i.e., n ∈ Sx ⇔ n+ T ∈ Sx;

(ii) one can choose the sequence (ξn) in such a way that the shift U of (ξn)
satisfies UTpx(n) = x(n+ pT ) = W px(n), p, n ∈ Z.

P r o o f. If
(
x(n)

)
is regular and

((
ck(n)

)
, (ξn)

)
is its innovation, then from

the facts that Mcξ(n) = Mx(n) and W
(
Mx(n)

)
= Mx(n+ T ), n ∈ Z, it follows

that for every n, p ∈ Z

W p
(
c0(n)ξn

)
= W p

(
x(n)−

(
x(n)|Mx(n− 1)

))
= x(n+ pT )−

(
x(n+ pT )|Mx(n+ pT − 1)

)
= c0(n+ pT )ξn+pT .

This shows that for every n, p ∈ Z we have |c0(n)| = |c0(n+ pT )|. In particular,
c0(n) = 0 iff c0(n + pT ) = 0, which proves (i). If n /∈ Sx, then c0(n) ̸= 0 and
W p(ξn) =

(
c0(n + pT )/c0(n)

)
ξn+pT = αp,nξn+pT , where |αp,n| = 1. Starting

from ξr, r = 0, . . . , ξT−1, r /∈ Sx, we can therefore change the vectors ξr+pT so
that ξr+pT = W p(ξr), r /∈ Sx. �

An innovation satisfying condition (ii) of Lemma 3.1 will be called a periodic
innovation. The number of nonzero vectors in the set Dx = Sx ∩ {0, . . . , T − 1}
will be called the rank of

(
x(n)

)
. If

((
ck(n)

)
, (ξn)

)
is a periodic innovation of(

x(n)
)
, then (3.1) is an MA representation of

(
x(n)

)
. Hence everything that we

said in the previous section applies to the coefficients
(
ck(n)

)
, in particular, that

the sequence
(
x(n)

)
is absolutely continuous, the sequences ck(n) are T -periodic

in n, and that
(
ck(n)

)
generate a certain factor of the spectral density γ′x of

(
x(n)

)
.

The last statement is singled out below.

THEOREM 3.1. Let us suppose that
(
x(n)

)
is a T -PC regular sequence and((

ck(n)
)
, (ξn)

)
is a periodic innovation of

(
x(n)

)
. Let ck =

∑T−1
p=0 ck−p(⟨k⟩)ep

and

(3.2) f(u) =
∞∑
k=0

eikuck.

Then
(
x(n)

)
is absolutely continuous and its density γ′x = (γ′j) admits a factoriza-

tion
γ′j(u) = (1/T )f(u)f(u+ 2πj/T )∗ a.e., j = 0, . . . , T − 1.

A factor of γ′x that corresponds to some periodic innovation of
(
x(n)

)
will be

called an innovation generated factor or, shortly, an i-factor of γ′x.
In the case of regular stationary sequences

(
x(n)

)
(i.e., if T = 1) it is well

known that f(u) =
∑∞

k=0 e
ikufk, fk ∈ C, is an i-factor of the spectral density γ′0

of
(
x(n)

)
iff γ′0(u) = |f(u)|2 a.e., and sp {ϕ(u)f(u) : ϕ ∈ P} = H2(C), where
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P denotes the set of all scalar analytic polynomials. Below we try to characterize
i-factors of a regular T -PC sequence in a similar spirit. First we introduce needed
notation.

The symbols L2(CT ), H2(CT ), L2
T (C

T ), H2
T (C

T ), q(m) and ⟨m⟩ were
defined in Introduction. If M is a subspace of L2(C) then eimuM = {eimuh(u);
h ∈M}. By P we will denote the set of all scalar analytic polynomials, that is, el-
ements of H2(C) with only finitely many nonzero Fourier coefficients, and Pm =

eimuP . If Mp, p = 0, . . . , T − 1, are subspaces of L2(C), then M =
∑T−1

p=0 Mpep

= [M0, . . . ,MT−1] will stand for the subspace L2(CT ) consisting of all the func-
tions f =

∑T−1
p=0 fpep such that fp ∈Mp. Especially important for us will be the

spaces

(3.3) H2
T (C

T , r) =
r∑

p=0

H2
T ep +

T−1∑
p=r+1

eiTuH2
T ep, r = 0, . . . , T − 1,

where H2
T = H2

T (C) = L2
T (C) ∩H2(C), and if r = T − 1 then H2

T (C
T , T − 1)

=
∑T−1

p=0 H2
T ep. If a =

∑T−1
p=0 apep ∈ CT and D ⊆ {0, . . . , T − 1}, then a|D =∑T−1

p=0 ap1D(p)ep will denote the vector a in which the coordinates ap for p /∈ D
are replaced by zero. The same convention is used for the direct sum of subspaces;
in particular,

(3.4) H2
T (C

T , r)|D =
r∑

p=0

H2
T 1D(p)ep +

T−1∑
p=r+1

eiTuH2
T 1D(p)ep

is a subspace of H2
T (C

T , r) in which all p-th components for p /∈ D are replaced
by {0}.

THEOREM 3.2. Let
(
x(n)

)
be a regular T -PC sequence and γ′x be its spectral

density. A function f ∈ H2(CT ), f(u) =
∑∞

k=0 fke
iku, is an i-factor of γ′x iff

(i) f is a factor of γ′x,

(ii) there is a nonempty D ⊆ {0, . . . , T − 1} such that for every r = 0, . . . ,
T − 1 we have

sp
{ T−1∑

j=0

p(u+ 2πj/T )f(u+ 2πj/T ) : p ∈ P−r
}
= H2

T (C
T , r)|D.

P r o o f. (⇒) Let c =
(
ck(n)

)
, ξ = (ξn) be an innovation of

(
x(n)

)
, D be

its support, and f be a factor of γ′x constructed in Theorem 3.1. Consider the se-
quences

F (n)(u) = e−inu
1

T

T−1∑
j=0

e−2πijn/T f(u+ 2πj/T )

and ζn(u) =
(
1/
√
2π

)
e−iq(n)Tue⟨n⟩, n ∈ Z, as constructed in Proposition 2.1.

From the proof of Proposition 2.1 it follows that (c, ζ) is an innovation of
(
F (n)

)
.
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For r = 0, . . . , T − 1, we have

Mζ(r) = sp{e−iq(n)Tue⟨n⟩ : n ¬ r} =
T−1
⊕
p=0

sp{eiqTuep : −qT + p ¬ r}.

Since the span

sp{eiqTu : −qT + p ¬ r} =

{
H2

T (C) if 0 ¬ p ¬ r,

eiTuH2
T (C) if r < p ¬ T − 1,

Mζ(m) = H2
T (C

T , r), and hence Mcζ(m) = H2
T (C

T , r)|D. The space MF (m) is
the closed span of

m∑
n=−∞

anF (n) =
1

T

T−1∑
j=0

m∑
n=−∞

ane
−in(u+2πj/T )f(u+ 2πj/T )

=
1

T

T−1∑
j=0

p(u+ 2πj/T )f(u+ 2πj/T ),

where p(u) =
∑m

n=−∞ ane
−inu ∈ P−m. Since (c, ζ) is an innovation of

(
F (n)

)
,

Mcζ(m) = MF (m) for every m ∈ Z, and in particular for every r = 0, . . . , T − 1.

(⇐) Conversely, suppose that f(u) =
∑∞

k=0 fke
iku, fk =

∑T−1
p=0 fp

kep ∈ CT ,
satisfies the conditions (i) and (ii) of the theorem. Define

F (n)(u) =
1

T

T−1∑
j=0

e−in(u+2πj/T )f(u+ 2πj/T ).

From the assumption (i) and Lemma 2.1 it follows that γ′x is the spectral density
of

(
F (n)

)
. The T -shift of

(
F (n)

)
is the operator of multiplication by e−iTu. As

usual, we define fk = 0 if k < 0. From Lemma 2.2 it follows that

F (n)(u) =
∞∑

q=−∞
fn+qT e

iqTu =
∞∑

q=−∞

T−1∑
p=0

eiqTufp
n+qT ep.

Let us first look at F (r), where r = 0, . . . , T − 1. By assumption (ii), MF (r) =
H2

T (C
T , r)|D. In particular, F (r) ∈ H2

T (C
T , r)|D, which implies that fp

r = 0 for
p = r + 1, . . . , T − 1. Therefore,

F (r)(u) =
∞∑
q=1

T−1∑
p=0

eiqTufp
r+qT ep +

r∑
p=0

fp
r ep,

r = 0, . . . , T − 1. Since MF (r) = H2
T (C

T , r)|D, we conclude that

(3.5) F (r)−
(
F (r)|MF (r − 1)

)
= F (r)−

(
F (r)|H2

T (C
T , r − 1)|D

)
= f r

r er,



26 A. Makagon

r = 1, . . . , T − 1. Since F (r + qT )(u) = e−iqTuF (r)(u), we have

MF (−1) = eiTuMT (T − 1) = eiTuH2
T (C

T , T − 1)|D = eiTu
T−1∑
p=0

H2
T ep,

so the formula (3.5) holds true also for r = 0. If now n = r + qT , then

F (n)(u)−
(
F (n)|MF (n− 1)

)
(u) = e−iqTu

[
F (r)(u)−

(
F (r)|MF (r − 1)

)]
= e−iqTuf r

r er = f
⟨n⟩
⟨n⟩ (e

−iq(n)Tue⟨n⟩).

Defining ζn(u) =
(
1/
√
2π

)
e−iq(n)Tue⟨n⟩ we conclude from (3) that the pair((

ck(n)
)
, (ζn)

)
, where ck(n)=

(√
2π

)
f
⟨n−k⟩
k+⟨n−k⟩, is a periodic innovation of

(
F (n)

)
.

Since
(
x(n)

)
and

(
F (n)

)
have the same correlation, one can find an orthonormal

system in some space H ⊇Mx such that
((
ck(n)

)
, (ξn)

)
is a periodic innovation

of
(
x(n)

)
. To complete the proof note that D = DF = Dx. �

4. TWO REMARKS

We finish this paper with two remarks. In the first we discuss a relationship
between an innovation of a PC sequence and an innovation of the corresponding
multivariate stationary sequence. In the second we restate our main theorem in
terms of factorization of vector-valued analytic functions, which may be of interest
in the theory of vector Hardy spaces.

A family
(
xp(n)

)
, p = 0, . . . , T − 1, n ∈ Z, of elements of a complex Hilbert

spaceH is called a T -variate stationary sequence if for every r, s, n,m(
xr(n), xs(m)

)
=

(
xr(n−m), xs(0)

)
= Kr,s(n−m).

It is convenient to look at
(
xp(n)

)
as a column vector x(n) = [xp(n)]0T−1 with

rows indexed from 0 (top) to T − 1 and the r-th row being equal to xr(n). The
matrix function K(n) = [Kr,s(n)], n ∈ Z, r, s = 0, . . . , T − 1, is called the cor-
relation function of

(
x(n)

)
. The past of

(
x(n)

)
at a moment n ∈ Z is defined as

Mx(n) = sp{dmx(m) : m ¬ n, dm ∈ CT }. A sequence
(
x(n)

)
is called regu-

lar if
∩

nMx(n) = {0}. A T -variate stationary sequence ξ(n) = [ξpn], n ∈ Z, is
said to be T -variate orthonormal if its correlation function Kξ(n) = 0 for n ̸= 0,
and Kξ(0) = I , where here and in the sequel I stands for the identity T × T ma-
trix. An MA representation of a T -variate stationary sequence

(
x(n)

)
is a pair((

A(n)
)
, (ξn)

)
, where A(n) ∈MT (C), n ∈ Z, and (ξn) is a T -variate orthonor-

mal sequence in some spaceH ⊇Mx, such that

1. for every n ∈ Z, x(n) =
∑∞

k=−∞A(k)ξn−k;

2. the unitary operator U in Mξ, defined by the requirement U(ξpn) = ξpn+1,
has the property that U

(
xp(n)

)
= xp(n+ 1), n ∈ Z, p = 0, . . . , T − 1.
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If
(
x(n)

)
is a T -variate stationary sequence then there exists a T × T matrix

valued measure Γ of [0, 2π) such that K(n) =
∫ 2π

0
e−intΓ(dt). If Γ is absolutely

continuous (with respect to the Lebesgue measure on [0, 2π)), then its Randon–
Nikodym derivative will be denoted by Γ′(t) and will be referred to as the density
of

(
x(n)

)
. A T -variate stationary sequence

(
x(n)

)
has an MA representation iff

its spectral measure Γ is absolutely continuous. If
((
A(n)

)
, (ξn)

)
is an MA repre-

sentation of
(
x(n)

)
, then F (t) =

(
1/
√
2π

)∑∞
k=−∞A(k)eikt is a factor of Γ′(t)

in the sense that Γ′(t) = F (t)F (t)∗ dt-a.e. A factor F of Γ′ is called outer (cf. [9],
p. 190) if F is analytic (i.e., each F ij ∈ H2(C)) and

(4.1) sp{ϕ(t)F (t) : ϕ ∈ P(CT )} = H2(M) for some subspaceM⊆ CT ,

where H2(M) denotes the subspace of H2(CT ) consisting of functions f such
that f(t) ∈ M a.e., and P(CT ) is the set of all CT -valued analytic polynomials.
An MA representation

((
A(n)

)
, (ξn)

)
of

(
x(n)

)
is called an innovation of

(
x(n)

)
if A(k) = 0 for every k < 0 and, for every n ∈ Z,

x(n)−
(
x(n)|Mx(n− 1)

)
= A(0)ξn.

Here
(
x(n)|Mx(n − 1)

)
=

[(
xp(n)|Mx(n − 1)

)]
is a column vector whose

p-th coordinate is equal to
(
xp(n)|Mx(n− 1)

)
. Every regular T -variate stationary

sequence has an innovation. It is well known that
((
A(n)

)
, (ξn)

)
is an innovation

of a regular T -variate stationary sequence
(
x(n)

)
iff the corresponding factor F (t)

of the density of
(
x(n)

)
is outer. All the above facts are standard and in one or an-

other form can be found in any publication on prediction theory of multivariate
stationary processes, the best being Masani’s summary paper [8].

There is an obvious one-to-one correspondence between T -PC sequences(
x(n)

)
and T -variate stationary sequences

(
x(n)

)
given by

(4.2) x(n) = [xr(n)]↔ x(n) = x⟨n⟩
(
q(n)

)
,

where, as before, q(m) and ⟨m⟩ are the quotient and the remainder in division
of m by T . We will refer to

(
x(n)

)
and

(
x(n)

)
above as corresponding to each

other. Note that the shift V of x(n) (defined as V xp(n) = xp(n+ 1)) is equal to
the T -shift W of

(
x(n)

)
. Clearly, a T -PC sequence

(
x(n)

)
is regular iff the cor-

responding sequence
(
x(n)

)
is regular. Every MA representation

((
ak(n)

)
, (ξn)

)
of a T -PC sequence

(
x(n)

)
generates an MA representation of the corresponding

stationary sequence
(
x(n)

)
and vice versa. To see this arrange ak(n) into a matrix

A = [. . . A(2) A(1) A(0) A(−1) . . . ] as described at the end of Section 2. With
the notation introduced in that section we have

x(0) = [x(r)]0T−1 = A[ξn]
−∞
∞ =

∞∑
k=−∞

A(k)[ξn]
−kT
−kT+T−1 =

∞∑
k=−∞

A(k)ξ−k,
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where ξm = [ξmT , ξmT+1, . . . , ξmT+T−1]
t and at denotes the transpose of the vec-

tor a. Applying V T to both sides we conclude that x(n) =
∑∞

k=−∞A(k)ξn−k.
The relation between sequences ak(n) and

(
A(n)

)
is as follows:

(4.3) A(k)i,j = ai−j+kT (i), i, j = 0, . . . , T − 1, k ∈ Z.

Every factor f(u) =
∑∞

k=−∞ fke
iku of γ′x produces a factor

F (u) =
∞∑

k=−∞
F (k)eiku

of the density Γ′(u) of the corresponding stationary sequence x(n) and vice versa.
The relation is the following:

(4.4) F (k)i,j = f j
kT+i, i, j = 0, . . . , T − 1, k ∈ Z.

Every periodic innovation
((
ak(n)

)
, (ξn)

)
of a T -PC sequence

(
x(n)

)
gen-

erates, via formula (4.3), an innovation representation x(n) =
∑∞

k=0A(k)ξn−k
of the corresponding stationary sequence

(
x(n)

)
. But the converse is not true.

The reason is that in construction of an innovation of a T -variate stationary se-
quence we have a freedom in choosing an order of components of the innovation
vector ξn. Requiring that A(0) in innovation representation of

(
x(n)

)
is a lower

triangular matrix still is not sufficient in general to assure that
((
ak(n)

)
, (ξk)

)
,

where ai−j+kT (i) = A(k)i,j and ξkT+p = ξpk , is an innovation of the correspond-
ing T -PC sequence. An example is below.

EXAMPLE 4.1. Let (ξn) be any orthonormal system inH and for every q ∈ Z
define x(3q) = ξ3q, x(3q + 1) = 0, and x(3q + 2) = ξ3q+2. The sequence

(
x(n)

)
is PC with period T = 3. Since

(
x(n)

)
is orthogonal, it follows that each projection(

x(n)|Mx(n − 1)
)
= 0, and hence the above is an innovation representation of(

x(n)
)
. The only nonzero innovation coefficients are c0(0) = 1 and c0(2) = 1.

Putting C(0) to be a diagonal matrix with diagonal entries 1, 0, 1, we see that the
corresponding innovation representation of the block sequence

(
x(n)

)
is x(n) =

C(0)ξn, ξn = [ξ3n, ξ3n+1, ξ3n+2]
t. We change the order of elements in ξn and

define ζn = [ξ3n, ξ3n+2, ξ3n+1]
′, that is,

ζn = Bξn, where B =

 1 0 0
0 0 1
0 1 0

.
Then (ζn) is a 3-variate orthonormal system and x(n)=C(0)ξn=B(0)ζn, where

B(0) = C(0)B−1 =

 1 0 0
0 0 0
0 1 0

.
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Note that B(0) is lower triangular. Because
(
x(n)

)
are orthogonal, x(n) = B(0)ζn

is an innovation representation of
(
x(n)

)
. In terms of the corresponding PC se-

quence the equation x(n) = B(0)ζn reads

x(3q) = ζ3q, x(3q + 1) = 0, x(3q + 2) = ζ3q+1, q ∈ Z.

For the system (ζn) above we have b0(0) = 1, b1(2) = 1, and the remaining bk(n)
are zero. But the pair

((
bk(n)

)
, (ζn)

)
is not an innovation of

(
x(n)

)
in our sense

because x(2)−
(
x(2)|Mx(1)

)
= ζ1 ̸= b0(2)ζ2 = 0.

Another reason that
((
bk(n)

)
, (ζn)

)
above is not an innovation of

(
x(n)

)
is

that b0(1) = 0 but b1(2) ̸= 0, which contradicts the fact that if (c, ξ) is an inno-
vation and c0(n) = 0, then ck(k + n) = 0 for all k ­ 0. One can easily see that
given an innovation

((
C(n)

)
, (ξn)

)
of

(
x(n)

)
, the pair

((
ck(n)

)
, (ζn)

)
, where

ci−j+kT (i) = C(k)i,j and ζnT+r = ξr(n), is an innovation of the corresponding
T -PC sequence x(nT + r) = xr(n), n ∈ Z, r = 0, . . . , T − 1, if and only if the
matrix C(0) is lower triangular and C(0)i,i = 0 implies that the i-th column of
each C(k) is zero. In the case of sequences of full rank the second condition is ob-
viously always satisfied. Example 4.1 also shows that the outerness (4.1) of F (t)
is not sufficient for f given by (4.4) to be an i-factor of the density of the corre-
sponding T -PC sequence.

Since every g ∈ H2(CT ) is a factor of the density γ′ of a certain T -PC se-
quence (Lemma 2.1), and any two factors differ by 2π/T -periodic partial isometric
multiple ([7], Corollary 4.2), Theorem 3.2 translates into the following (possibly
known) theorem about factorization of vector analytic functions.

THEOREM 4.1. Suppose that g ∈ H2(CT ), g ̸= 0. Then there exists an f ∈
H2(CT ), a unique nonempty D ⊆ {0, . . . , T − 1}, and a 2π/T -periodic analytic
T × T -matrix function V (u) such that

(i) V (u) is a partial isometry (du-a.e.),
(ii) g(u) = f(u)V (u) a.e.,

(iii) for every r = 0, . . . , T − 1,

sp
{ T−1∑

j=0

p(u+ 2πj/T )f(u+ 2πj/T ) : p ∈ P−r
}
= H2

T (C
T , r)|D.

The function f can be chosen in such a way that f r
r ­ 0 for each r = 0, . . . ,

T − 1, and such f is then unique.
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