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1. INTRODUCTION

Let (Xn), n ­ 1, be a sequence of independent and identically distributed
(i.i.d.) random variables (r.v.’s) defined over a common probability space (Ω,F , P ).
Suppose that the distribution function (d.f.) F of X1 is continuous. For each n ­ 1,
set Sn =

∑n
j=1Xj . For any integer r with 1 ¬ r ¬ n, let X(r)

n = Xm if |Xm|
is the r-th largest among |X1|, |X2|, . . . , |Xn|. Note that if Z1,n ¬ Z2,n ¬ . . . ¬
Zn,n are the order statistics of |X1|, |X2|, . . . , |Xn|, then X

(r)
n = Zn−r+1,n, n ­ r.

Let (r)Sn = Sn − (X
(1)
n + X

(2)
n + . . . + X

(r)
n ). Then (r)Sn is called a lightly

trimmed sum. The fact that d.f. F is continuous implies that the d.f. of |Xn| is
also continuous. Consequently, X(j)

n , 1 ¬ j ¬ r, are uniquely determined except
over a set of probability zero.

We now introduce some definitions and give some earlier developments in this
area.

A d.f. F is said to be semi-stable if it is infinitely divisible with the character-
istic function ϕ(·) given by

log ϕ(t) = iγt+
∞∫
−∞

(
eitx − 1− itx

1 + x2

)
dH(x),
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where the Lévy spectral function is of the form

H(x) =


−θ1(log x)

xα
if x > 0,

θ2(log |x|)
|x|α

if x < 0,

with α ∈ (0, 2), and θ1(·), θ2(·) oscillating bounded non-negative valued functions
with at least one of them positive valued.

A d.f. F is said to belong to the domain of partial attraction of an infinitely
divisible d.f. G∗ if over a subsequence (nk) one can find sequences (Ank

) and
(Bnk

) of constants such that
(
(Snk
−Ank

)/Bnk

)
converges to an r.v. with d.f. G∗.

Kruglov [6] established that if (nk) satisfies the condition

lim
k→∞

nk+1

nk
= ρ, 1 ¬ ρ <∞,

then the class of all limit distributions coincides with the class of all semi-stable
laws (which includes stable laws). In this paper, the domain of partial attraction of
semi-stable laws is defined as follows (based on Kruglov [6]).

A d.f. F is said to belong to the domain of partial attraction (DPA) of a semi-
stable law G∗α if there exists a sequence (nk) satisfying

(1) nk < nk+1, k ­ 1,
(2) nk+1/nk → ρ as k →∞, 1 ¬ ρ <∞,

and there exist sequences (Ank
) and (Bnk

) of constants such that

(1.1)
Snk
−Ank

Bnk

d→ Y ∗α ,

where Y ∗α ∼ G∗α.
In particular, if

lim
k→∞

nk+1

nk
= 1,

Kruglov [6] established the following:
(i) The limit law of (Snk

) is a non-normal stable law.
(ii) The sequence (Sn), properly normalized, will itself converge to the same

stable law. In other words, the d.f. F belongs to the domain of attraction of a stable
law.

For other references on DPA to semi-stable laws, see Pillai [9] and Shi-
mizu [11].

When the d.f. F is a symmetric stable law with index α, 0 < α < 2, Chover
[1] established that

(1.2) lim sup
n→∞

∣∣∣∣ Sn

n1/α

∣∣∣∣1/ log logn = e1/α a.s.,

where a.s. means “almost surely” or “almost sure” depending on the context.
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Vasudeva [12] showed that weak convergence to stable law is sufficient for
the law of the iterated logarithm (LIL) to hold. He showed that whenever (Sn/Bn)
converges in law to a stable r.v., it follows that

(1.3) lim sup
n→∞

∣∣∣∣Sn

Bn

∣∣∣∣1/ log logn = e1/α a.s. if α ∈ (0, 2)

and

(1.4) lim sup
n→∞

∣∣∣∣Sn

Bn

∣∣∣∣1/ log logn = β ∈ [1, e1/2] a.s. if α = 2.

where (Bn) is a solution of the equation n
(
1− F (Bn) + F (−Bn)

)
≃ 1.

Lu and Qi [7] obtained the LIL for ((r)Sn) when the underlying d.f. is in the
domain of attraction of a stable distribution with index α ∈ (0, 2]. They established
that for {An} and {Bn} with Bn →∞ as n→∞, if {(Sn −An)/Bn} converges
to a stable law with index α ∈ (0, 2], then

(1.5) lim sup
n→∞

(
|(r)Sn −An|

Bn

)1/ log logn

= e1/(α(r+1)) a.s.

when 0 < α < 2, and that there exists a β ∈ [1, e1/(2(r+1))] such that

(1.6) lim sup
n→∞

(
|(r)Sn −An|

Bn

)1/ log logn

= β a.s.

when α = 2.
When the d.f. F belongs to the domain of partial attraction of a semi-stable

law with index α, 0 < α < 2, Divanji and Vasudeva [2] established that

(1.7) lim sup
n→∞

∣∣∣∣Sn

Bn

∣∣∣∣1/ log logn = e1/α a.s.,

where (Bn) satisfies the relation n
(
1− F (Bn) + F (−Bn)

)
≃ 1.

Kesten and Maller [5] obtained LIL for ((r)Sn) when the underlying d.f. F
belongs to the domain of partial attraction of a normal distribution. They showed
that there exist sequences (A∗n) and (B∗n) ↑ ∞ such that

(1.8) − 1 = lim inf
n→∞

(r)Sn −A∗n
B∗n

< lim sup
n→∞

(r)Sn −A∗n
B∗n

= 1 a.s.,

where A∗n is a sequence chosen such that

(1.9) lim inf
n→∞

P (Sn ¬ A∗n) ∧ P (Sn > A∗n) = 0.
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Vasudeva and Srilakshminarayana [13] extended the results of Lu and Qi [7] to
the class of all d.f.’s F belonging to the domain of partial attraction of a semi-stable
law with index α, 0 < α < 2, α ̸= 1. They established that

lim sup
n→∞

∣∣∣∣ (r)Sn −An

Bn

∣∣∣∣1/ log logn = e1/((r+1)α) a.s.,

where Bn is a solution of the equation n
(
1− F (Bn) + F (−Bn)

)
≃ 1 and

An =

{
0 if 0 < α < 1,

E(X1) if 1 < α < 2.

When the d.f. has support on [0,∞] and belongs to the domain of attraction of
a positive stable law with index α ∈ (0, 1), Vasudeva and Srilakshminarayana [14]
obtained the large deviation results for ((r)Sn), the lightly trimmed sums. They
established that, for any sequence (xn) of positive constants diverging to infinity,
for any δ > 0 and for any integer r, r ­ 1,
(1.10)

lim
n→∞

x(r+δ)α
n P (X(r)

n ­ xnBn) =∞, lim
n→∞

x(r−δ)αn P (X(r)
n ­ xnBn) = 0,

(1.11)
lim
n→∞

x(r+1−δ)α
n P ((r)Sn > xnBn) = 0, lim

n→∞
x(r+1+δ)α
n P ((r)Sn > xnBn) =∞.

In this paper, we obtain similar large deviation results when F ∈ DPA(α),
0 < α < 1, and hence we will show that the set of a.s. limit points of the sequence
((r)Sn/Bn)

1/ log logn coincides with the interval [1, e1/(α(r+1))] (when the d.f. F
has support on (0,∞)). Even though many papers on LIL for trimmed sums can
be found in literature, perhaps this is the first attempt to examine the a.s. limit
points. It is made possible by the large deviation probability results established in
this paper.

Throughout the paper, c, k (integer) and N (integer), with an index, stand for
generic constants. The term ‘infinitely often’ will be denoted by i.o. For any x
positive, [x] stands for the greatest integer less than or equal to x. A non-negative
valued measurable function L(x), x > 0, is called a slowly varying (s.v.) function
if for any t > 0, L(tx)/L(x)→ 1 as x→∞.

A point θ is said to be an almost sure (a.s.) limit point of a sequence (ξn) of
r.v.’s defined over a common probability space if for any given ϵ > 0

P (θ − ϵ < ξn < θ + ϵ i.o.) = 1.

The large deviation probability results and the a.s. limit points are obtained in
the next section.
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2. ALMOST SURE LIMIT POINTS FOR TRIMMED SUMS

In this section, we show that any point β ∈ [1, e1/(α(r+1))] is an a.s. limit
point of ((r)Sn) properly normalized. We first present some lemmas and a theo-
rem needed in establishing the main result. Lemma 2.4 and Theorem 2.1 are the
extensions of large deviation results of Vasudeva and Srilakshminarayana [14] to
the case when F ∈ DPA(α), 0 < α < 1. Throughout this section, Bn is a solution
of the equation n

(
1− F (x)

)
= 1.

LEMMA 2.1. Let L(·) be a measurable s.v. function and let (xn) and (yn) be
sequences of real constants, both diverging to infinity. Then for any δ > 0

(2.1) lim
n→∞

y−δn

L(xnyn)

L(xn)
= 0 and lim

n→∞
yδn

L(xnyn)

L(xn)
=∞.

P r o o f. For a measurable s.v. function L(·), the Karamata representation is
given by

L(x) = a(x) exp

( x∫
c

ϵ(y)

y
dy

)
,

where a(x)→ a (a ∈ (0,∞)), ϵ(x)→ 0 as x→∞, and c is a positive constant.
Consequently,

(2.2)
L(xnyn)

L(xn)
=

a(xnyn)

a(xn)
exp

( xnyn∫
xn

ϵ(y)

y
dy

)
.

From the fact that ϵ(y)→ 0 as y →∞ it follows that for any given δ1 > 0 one can
find a y0 > 0 such that−δ1 < ϵ(y) < δ1 for all y > y0. Consequently, for n0 large
such that xn0 > y0, −δ1 < ϵ(y) < δ1 whenever y > xn with n > n0. Observing
that a(xnyn)/a(xn)→ 1 as n→∞, given δ2 > 0, one can find an n1 (> n0) such
that for all n ­ n1

(1− δ2) exp

(
−δ1 log

xnyn
xn

)
<

L(xnyn)

L(xn)
< (1 + δ2) exp

(
δ1 log

xnyn
xn

)
or

(2.3) (1− δ2)y
−δ1
n <

L(xnyn)

L(xn)
< (1 + δ2)y

δ1
n .

From (2.3), for any δ > δ1 one can see that

yδn
L(xnyn)

L(xn)
→∞ and y−δn

L(xnyn)

L(xn)
→ 0 as n→∞,

which establishes the lemma. �
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LEMMA 2.2. Let L(·) be an s.v. function over [x0,∞). Then, as x→∞,

x∫
x0

tγL(t)dt ∼ x1+γ

1 + γ
L(x)

whenever γ > −1.

P r o o f. See Feller [3]. �

LEMMA 2.3. Let a d.f. F be supported over (0,∞) and let F ∈ DPA(α),
0 < α < 1. Then there exist an s.v. function L(·) and a bounded function θ(·) with
0 < c1 ¬ θ(x) ¬ c2 <∞, for some c1, c2 > 0, such that

lim
n→∞

xα
(
1− F (x)

)
L(x)θ(x)

= 1.

P r o o f. See Divanji and Vasudeva [2]. �

LEMMA 2.4. Let F (0) = 0 and let F ∈ DPA(α), 0 < α < 1. Then, for any
sequence (xn) of positive constants diverging to infinity, for any δ > 0, and for
any integer r, r ­ 1,

lim
n→∞

x(r+δ)α
n P (X(r)

n ­ xnBn) =∞ and lim
n→∞

x(r−δ)αn P (X(r)
n ­ xnBn) = 0.

P r o o f. The proof follows, with minor modification in the arguments, in the
way of Vasudeva and Srilakshminarayana [14]. One needs to apply Lemma 2.3 in
place of the regularly varying tail of F . The details are omitted. �

THEOREM 2.1 (Large deviation results for lightly trimmed sums when
F ∈ DPA(α), 0 < α < 1). Let F (0) = 0 and let F ∈ DPA(α), 0 < α < 1. Then,
for any sequence (xn) of positive constants with xn →∞ as n→∞, and for any
δ > 0,

(2.4) lim
n→∞

x(r+1+δ)α
n P ((r)Sn > xnBn) =∞

and

(2.5) lim
n→∞

x(r+1−δ)α
n P ((r)Sn > xnBn) = 0.

P r o o f. The proof follows the lines of Vasudeva and Srilakshminarayana
[14]. The details are omitted. �

THEOREM 2.2. Let F (0) = 0 and let F ∈ DPA(α), 0 < α < 1. Then the set
of all a.s. limit points of

(
((r)Sn/Bn)

1/ log logn
)

coincides with [1, e1/((r+1)α)].
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P r o o f. The proof consists of two parts. In the first part we show that the
set of a.s. limit points S is contained in [1, e1/((r+1)α)] and in the second, each
point γ ∈ [1, e1/((r+1)α)] is shown to be an a.s. limit point. In showing that S ⊆
[1, e1/((r+1)α)], we establish that, for any given ϵ > 0,

(2.6) P

((
(r)Sn

Bn

)1/ log logn

< e−ϵ i.o.
)

= 0

and

(2.7) P

((
(r)Sn

Bn

)1/ log logn

> e(1+ϵ)/((r+1)α) i.o.
)

= 0.

We have ((
(r)Sn

Bn

)1/ log logn

< e−ϵ
)

=

(
(r)Sn <

Bn

(log n)ϵ

)
.

By the relation X
(r+1)
n < (r)Sn, (2.6) follows once we show that

(2.8) P

(
X(r+1)

n <
Bn

(log n)ϵ
i.o.

)
= 0.

Let mk = 2k, k ­ 1. Define

An =

(
X(r+1)

n <
Bn

(log n)ϵ

)
and B′k =

(
min

mk¬n<mk+1

X(r+1)
n <

Bmk+1

(logmk+1)ϵ

)
.

Observe that (An i.o.) ⊆ (B
′
k i.o.) and that

P (B
′
k) = P

(
X(r+1)

mk
<

Bmk+1

(logmk+1)ϵ

)

= P

(
X(r+1)

mk
<

Bmk+1

Bmk

Bmk

(logmk)ϵ
(logmk)

ϵ

(logmk+1)ϵ

)
.

By Lemma 2.3 note that Bn is a solution of the equation xα/
(
L(x)θ(x)

)
= n.

Hence, by Divanji and Vasudeva [2], one can see that

Bn ∼ n1/αL1(n)η1(n),

where L1(·) is an s.v. function and η1(·) is a function bounded between two positive
constants, say, 0 < a < η1(x) < b <∞ for x > 0. Consequently,

Bmk+1

Bmk

∼
m

1/α
k+1L1(mk+1)η1(mk+1)

m
1/α
k L1(mk)η1(mk)

¬ 21/α
L1(2 · 2k)b
L1(2k)a

.
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By the definition of an s.v. function, we have

L1(2 · 2k)
L1(2k)

→ 1

as k →∞. Hence, one can find a k1 and c1 > 0 such that, for all k ­ k1,

Bmk+1

Bmk

¬ c1.

Also, since (
logmk

logmk+1

)ϵ

=

(
k

k + 1

)ϵ

< 1,

for all k ­ k1 we have

Bmk+1

Bmk

(
logmk

logmk+1

)ϵ

¬ c1.

Let ymk
= (c1Bmk

)/(logmk)
ϵ. Then, for all k ­ k1,

P (B′k) ¬ P (X(r+1)
mk

< ymk
) =

r∑
l=0

(
mk

l

)(
F (ymk

)
)l (

1− F (ymk
)
)mk−l ,

where F (x) = 1− F (x), x > 0. Since 0 < F (·) < 1, for j = 0, 1, 2, . . . , r it fol-
lows that

Fmk−j(ymk
) ¬ Fmk−r(ymk

).

Using the fact that
1− F (x) ≃ x−αL(x)θ(x),

we obtain, for k large,

(2.9)
(
mk

j

)(
F (ymk

)
)j ∼ (

mk

j

)(
y−αmk

L (ymk
) θ (ymk

)
)j

=
mk(mk − 1) . . .

(
mk − (j − 1)

)
j!

(
(logmk)

ϵα L(ymk
)θ(ymk

)

cα1B
α
mk

)j

¬ c2m
j
k

(
(logmk)

ϵα L(ymk
)

Bα
mk

θ(ymk
)

)j

,

where c2 > 0 is a constant. Also, for k large, F (ymk
) ∼ y−αmk

L(ymk
)θ(ymk

) im-
plies that F (ymk

) ­ cy−αmk
L(ymk

)θ(ymk
) for some c > 0. As such (for k large),

F (ymk
) ¬ 1− F (ymk

) ¬
(
1− cy−αmk

L(ymk
)θ(ymk

)
)

=

(
1− c(logmk)

ϵα

Bα
mk

L(ymk
)θ(ymk

)

)
.
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Hence, one can find a k2 such that, for all k ­ k2,

P (X(r+1)
mk

< ymk
) ¬ c2

(
1− c(logmk)

ϵα

Bα
mk

L(ymk
)θ(ymk

)

)(mk−r)
(2.10)

×
r∑

j=0

(
mk(logmk)

ϵα

Bα
mk

L(ymk
)θ(ymk

)

)j

.

Note that

L(ymk
)θ(ymk

) =
L(ymk

)θ(ymk
)

L(Bmk
)θ(Bmk

)
L(Bmk

)θ(Bmk
)(2.11)

=
L(ymk

)θ(ymk
)

L
(
[(logmk)ϵ/c1]ymk

)
θ(Bmk

)
L(Bmk

)θ(Bmk
).

By Lemma 2.1 for any given δ1 < α one can find a k3 such that, for all k ­ k3,

(logmk)
−ϵδ1 ¬

L
(
[(logmk)

ϵ/c1]ymk

)
L(ymk

)
¬ (logmk)

ϵδ1 .

Also, from the definition of θ(·), we have

c1
c2
¬ θ(ymk

)

θ(Bmk
)
¬ c2

c1
.

Hence, for a δ ∈ (δ1, α) one can find a k4 (> k3) such that, for all k ­ k4,

(logmk)
−ϵδ ¬ L(ymk

)θ(ymk
)

L(Bmk
)θ(Bmk

)
¬ (logmk)

ϵδ.

In turn, for all k ­ k4 from (2.11) we have

1− c(logmk)
ϵα

Bα
mk

L(ymk
)θ(ymk

) ¬ 1− c(logmk)
(α−δ)ϵ

Bα
mk

L(Bmk
)θ(Bmk

)

= 1− c(logmk)
(α−δ)ϵ

mk

mkL(Bmk
)θ(Bmk

)

Bα
mk

and
mk(logmk)

ϵα

Bα
mk

L(ymk
)θ(ymk

) ¬ (logmk)
(α+δ)ϵmkL(Bmk

)θ(Bmk
)

Bα
mk

.

Consequently, from (2.10) one can see that, for all k ­ k4,

P (X(r+1)
mk

< ymk
) ¬ c3

(
1− c(logmk)

(α−δ)ϵ

mk

mkL(Bmk
)θ(Bmk

)

Bα
mk

)(mk−r)

×
r∑

j=0

(
(logmk)

(α+δ)ϵmkL(Bmk
)θ(Bmk

)

Bα
mk

)j

.
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Since
mkL(Bmk

)θ(Bmk
)

Bα
mk

→ 1

as k →∞, one can find a k5 (­ k4) and c4 > 0, c5 > 0 such that, for all k ­ k5,(
1− c(logmk)

(α−δ)ϵ

mk

mkL(Bmk
)θ(Bmk

)

Bα
mk

)(mk−r)
¬ e−c4(logmk)

(α−δ)ϵ

and

r∑
j=0

(
(logmk)

(α+δ)ϵmkL(Bmk
)θ(Bmk

)

Bα
mk

)j

¬ c5(logmk)
(α+δ)(r+1)ϵ.

In turn, by (2.10) one can show that, for all k ­ k5,

P (X(r+1)
mk

< ymk
) ¬ c6k

(α+δ)(r+1)ϵe−c7k
(α−δ)ϵ

,

where c6 > 0, c7 > 0 are constants. From the order test we get
∑

k P (B′k) <∞.
By the Borel–Cantelli lemma, P (B′k i.o.) = 0 follows. Recalling that

(An i.o.) ⊆ (B′k i.o.),

we obtain (2.8), which implies (2.6).
In Vasudeva and Srilakshminarayana [13], (2.7) has been established by using

the truncation arguments given in Mori [8]. We give an elementary proof based on
large deviation results in Theorem 2.1.

Note that((
(r)Sn

Bn

)1/ log logn

> e(1+ϵ)/((r+1)α)

)
=

((r)
Sn > Bn(log n)

(1+ϵ)/((r+1)α)
)
.

Define
Dn =

((r)
Sn > Bn(log n)

(1+ϵ)/((r+1)α)
)

and
Ek =

(
sup

mk<n¬mk+1

(r)Sn > Bmk
(logmk)

(1+ϵ)/((r+1)α)
)
.

Observe that (Dn i.o.) ⊆ (Ek i.o.). Also, since Xn’s are positive valued, ((r)Sn)
is an increasing sequence. Consequently,

P (Ek) = P

(
(r)Smk+1

> Bmk+1

Bmk

Bmk+1

(logmk)
(1+ϵ)/((r+1)α)

)
.

Let
xmk

=
Bmk

Bmk+1

(logmk)
(1+ϵ)/((r+1)α).
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One can find k6, c8 > 0, c9 > 0 such that, for all k ­ k6, c8 < Bmk
/Bmk+1

< c9.
Hence, by Theorem 2.1, for all k ­ k6,

P (Ek) ¬ c9(logmk)
−[(r+1−δ)α(1+ϵ)]/[(r+1)α] = c10k

−[(r+1−δ)α(1+ϵ)]/[(r+1)α],

where c10 > 0 is a constant. Choosing δ small such that(
1− δ

r + 1

)
(1 + ϵ) > 1 +

ϵ

2
,

one can have, for k ­ k6,
P (Ek) ¬

c10

k1+ϵ/2
.

From the Borel–Cantelli lemma and the relation (Dn i.o.) ⊆ (Ek i.o.) we obtain
(2.7). By (2.6) and (2.7), note that S ⊆ [1, e1/((r+1)α)].

We now establish that every point in [1, e1/((r+1)α)] is an almost sure limit
point of

(
((r)Sn/Bn)

1/ log logn
)
, and hence complete the proof.

For any p ∈ (0, 1), define nk = [ek
1/p

]. We now show that, for any ϵ with
0 < ϵ < p,

(2.12) P

((
(r)Snk

Bnk

)1/ log lognk

> e(p+ϵ)/((r+1)α) i.o.
)

= 0

and

(2.13) P

((
(r)Snk

Bnk

)1/ log lognk

> e(p−ϵ)/((r+1)α) i.o.
)

= 1,

which together imply that ep/((r+1)α) is an almost sure limit point of the sequence
((r)Snk

/Bnk
)1/ log lognk . Note that

P

((
(r)Snk

Bnk

)1/ log lognk

> e(p+ϵ)/((r+1)α)

)
= P

((r)
Snk

> Bnk
(log nk)

(p+ϵ)/((r+1)α)
)
.

Taking xn = (log n)(p+ϵ)/((r+1)α) in Theorem 2.1, one can find a k7 such that, for
all k ­ k7,

P
((r)

Snk
> Bnk

(log nk)
(p+ϵ)/((r+1)α)

)
¬ 1

(log nk)[(r+1−δ)(p+ϵ)]/(r+1)

¬ c11

k(1−δ/(r+1))(1+ϵ/p)
,

where c11 is a constant. Choosing δ small such that(
1− δ

r + 1

)(
1 +

ϵ

p

)
= 1 + ϵ1 > 1
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for some ϵ1 > 0, one gets, for all k ­ k7,

P

((
(r)Snk

Bnk

)1/ log lognk

> e(p+ϵ)/((r+1)α)

)
¬ c11

k1+ϵ1
.

By the Borel–Cantelli lemma, (2.12) follows.
In order to prove (2.13), note that (r)Snk

­ X
(r+1)
nk ­Mr+1,k, where Mr+1,k

is the (r + 1)-st largest among (Xnk−1+1, Xnk−1+2, . . . , Xnk
). Consequently,

P
((r)

Snk
> Bnk

(log nk)
(p−ϵ)/((r+1)α)

)
­ P

(
Mr+1,k > Bnk

(log nk)
(p−ϵ)/((r+1)α)

)
= P

(
X

(r+1)
nk−nk−1

> Bnk
(log nk)

(p−ϵ)/((r+1)α)
)
.

Applying Theorem 2.1 and using the property that nk−1/nk → 0 as k →∞, one
can find a k8 > 0 and a c12 > 0 such that, for all k ­ k8,

P
(
X

(r+1)
nk−nk−1

­ Bnk
(log nk)

(p−ϵ)/((r+1)α)
)

­ 1

(log nk)[(r+1+δ)(p−ϵ)]/(r+1)
­ c12

k(1+δ/(r+1))(1−ϵ/p) .

Choosing δ > 0 such that
(
1 + δ/(r + 1)

)
(1− ϵ/p) = 1 − ϵ2 for some ϵ2 > 0,

one gets, for k ­ k8,

P
(
Mr+1,k > Bnk

(log nk)
(p−ϵ)/((r+1)α)

)
­ 1

k1−ϵ2
.

From the fact that (Mr+1,k) are mutually independent, by the Borel–Cantelli lemma,
we have

(2.14) P
(
Mr+1,k > Bnk

(log nk)
(p−ϵ)/((r+1)α) i.o.

)
= 1.

Recalling that (r)Snk
> X

(r)
nk > Mr+1,k, we see that (2.14) implies (2.13). Points 1

and e1/((r+1)α) are limit points by continuity considerations. Hence [1, e1/((r+1)α)]
is the set of all a.s. limit points of

(
((r)Sn/Bn)

1/ log logn
)
. �

COROLLARY 2.1. Let F (0) = 0 and let F belong to the domain of attraction
of a positive stable law with index α, 0 < α < 1. Then the set of all a.s. limit points
of ((r)Sn/Bn)

1/ log logn is [1, e1/((r+1)α)], where Bn = n1/αl(n) and l(·) is slowly
varying.
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3. AN APPLICATION

Positive semi-stable distributions (which include positive stable ones) are of-
ten considered for fitting data on loss due to natural calamities such as flood, fire,
cyclone, etc. Also, these distributions are considered for fitting the claim size in
non-life insurance sectors. If Xn denotes the loss incurred/claim size on the n-th
occasion, then Sn stands for the total loss/total claim up to n occasions. As such
Sn plays an important role in many policy decisions. A natural question that arises
is to know how far some of the extremes/outliers effect the total loss/total claims.
Based on the estimate of the index α of the semi-stable law, by our result, one can
note that eventually the total loss on n occasions, after removing the r extremes,
fluctuates a.s. in the interval(

n1/αl(n)η(n)

(log n)ϵ
, n1/αl(n)η(n)(log n)(1+ϵ)/((r+1)α)

)
.
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