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Abstract. A mean-field system is a weakly interacting system of N

particles in Rd confined by an external potential. The aim of this work is to
establish a simple result about the exit problem of mean-field systems from
some domains when the number of particles goes to infinity. More precisely,
we prove the existence of some subsets of RdN such that the probability of
leaving these sets before any T > 0 is arbitrarily small by taking N large
enough. On the one hand, we show that the number of steady states in the
small-noise limit is arbitrarily large with a sufficiently large number of par-
ticles. On the other hand, using the long-time convergence of the hydro-
dynamical limit, we identify the steady states as N goes to infinity with the
invariant probabilities of the McKean–Vlasov diffusion so that some steady
states in the small-noise limit are not steady states in the large N limit.
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1. INTRODUCTION

We are interested in some exit problems for a class of weakly interacting,
mean-field particle systems. We know the asymptotics of the exit time of the mean-
field system in the small-noise limit, see [11], [10]. Indeed, if the number of par-
ticles, N , is finite, the system corresponds to a classical diffusion in RdN . The
exit problem has also been studied as the number of particles goes to infinity and
the diffusion coefficient goes to zero, see [24]. However, here, we take the large
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N limit, N being the number of particles and the diffusion coefficient is fixed.
In other words, we consider N diffusions in Rd with independent d-dimensional
Wiener processes and independent initial random values. We add a friction term,
that is, the gradient of an external potential V . Moreover, we assume that each par-
ticle is under the influence of the global behaviour of the particle system, which
justifies the expression “mean-field system”. One way to understand this model is
to think about several individuals maximizing their utility function according to
the global data of the market. Here, we assume that each particle is attracted by
any other one and that the interaction depends only on the distance between the
particles. Thus, the equation satisfied by each diffusion Zi is

Zi
t = Zi

0 + σBi
t −

t∫
0

∇V (Zi
s)ds−

1

N

N∑
j=1

t∫
0

∇F (Zi
s − Zj

s)ds

for any 1 ¬ i ¬ N . Here, B1, . . . , BN are N independent d-dimensional Wiener
processes. By taking µN

t := N−1(δZ1
t
+ . . .+ δZN

t
), we can write

Zi
t = Zi

0 + σBi
t −

t∫
0

∇V (Zi
s)ds−

t∫
0

∇F ∗ µN
s (Zi

s)ds.

The random variables Z1
0 , . . . , Z

N
0 are i.i.d. with common law µ0. Moreover,

the initial positions Z1
0 , . . . , Z

N
0 are independent of the Brownian motions

B1, . . . , BN . Here, the function V is called the confining potential. Indeed, it at-
tracts each diffusion to its minimizers. The potential F is the so-called interacting
potential. Due to the assumptions on the interaction, the function x 7→ ∇F (x) is
radial. The specific hypotheses are given after the introduction. Let us notice that
we write Zi

t instead of Zi,N,σ
t in order to simplify the notation.

Such models intervene in many applications. Let us mention [8] in which
the McKean–Vlasov diffusion (which corresponds to the hydrodynamical limit
of (Z1, . . . , ZN )) is used to obtain a representation of a solution to a particular
stochastic partial differential equation. Also, mean-field systems are relevant to
study the social interaction, see [7].

We introduce the notation: ZN := (Z1, . . . , ZN ) and BN := (B1, . . . , BN ).
Thereby, ZN ties in a classical diffusion in RdN ,

(1.1) ZN
t = ZN

0 + σBNt −N
t∫
0

∇ΥN
0 (ZN

s )ds,

the potential ΥN
0 being defined by

ΥN
0 (Z) := 1

N

N∑
i=1

V (Zi) +
1

2N2

N∑
i=1

N∑
j=1

F (Zi − Zj)
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for anyZ = (Z1, . . . , ZN ) ∈ RdN . Three concurrent forces generate the motion of
the process ZN . The first one is the gradient of the diagonal potential
(Z1, . . . , ZN ) 7→ V (Z1) + . . .+ V (ZN ). The second term represents the average
tension of the interacting potential F between the coordinates. The first two forces
generate NΥN

0 . We are interested in the trajectorial behaviour as N , the number
of particles, is large. Thus, we need to approximate each particle in RdN by tak-
ing the hydrodynamical limit. We remark that the potential ΥN

0 has a sense as N
goes to infinity. Indeed, if {Zi ; i ∈ N∗} is a family of i.i.d. random variables with
common law µ, we have

lim
N→+∞

ΥN
0 (Z1, . . . , ZN ) = Υ0(µ) :=

∫
Rd

{
V (x) +

1

2
F ∗ µ(x)

}
µ(dx),

the convergence being almost sure. Here, ∗ denotes the convolution, that is,
F ∗ µ(x) :=

∫
Rd F (x− y)µ(dy). The third influence is a dN -dimensional Wiener

process BN which allows the diffusion ZN to escape from the stable domains of
the potential NΥN

0 .
By µN

t := N−1(δZ1
t
+ . . . + δZN

t
) we denote the empirical measure of the

particle system. Using the Itô formula, we obtain

d

dt
E
{ ∫

Rd

fµN
t

}
= E

{
σ2

2

∫
Rd

∆fµN
t −

∫
Rd

⟨∇f ; ∇V +∇F ∗ µN
t ⟩µN

t

}

for any smooth function with compact support f from Rd to R. Let us notice that if
a family of deterministic measures {νt ; t ­ 0} were satisfying the previous equa-
tion, it would be a solution of the so-called granular media equation

(1.2)
∂

∂t
µt = div

{
σ2

2
∇µt + (∇V +∇F ∗ µt)µt

}
.

Heuristically, if the family of random measures {µN
t ; 0 ¬ t ¬ T} converges to a

family of deterministic measures {µt ; 0 ¬ t ¬ T}, this deterministic family sat-
isfies the non-linear partial differential equation (1.2). Since we take N arbitrarily
large, it motivates to focus on this family of measures. Indeed, we can prove this
convergence.

The idea of the propagation of chaos is the following. Let us assume that
{Zi

0 ; i ∈ N} is a family of i.i.d. random variables with common law µ0. The law
of large numbers implies the convergence of the empirical measure at time zero,
that is, µN

0 := N−1(δZ1
0
+ . . . + δZN

0
), to µ0 as N goes to infinity. We say that

propagation of chaos holds on the interval [0, T ] with T < ∞ if the family of
random measures {µN

t ; 0 ¬ t ¬ T} converges to the family of deterministic mea-
sures {µt ; 0 ¬ t ¬ T} satisfying the equation (1.2). About details on the propa-
gation of chaos, we refer the reader to [22], [21], [4], [18], [19]. Another way to
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understand propagation of chaos is the following. By hypotheses, the particles are
independent (chaotic) at time zero. The propagation of chaos on the interval [0, T ]
means that the larger is N , the more independent the two particles are. Besides, we
have a coupling result on [0, T ], that is,

lim
N→∞

E{ sup
0¬t¬T

∥Z1
t −X1

t ∥2} = 0,

X1 being the so-called McKean–Vlasov diffusion,

(1.3)
X1

t = Z1
0 + σB1

t −
t∫
0

∇V (X1
s )ds−

t∫
0

∇F ∗ µs(X
1
s )ds,

µs = L(X1
s ).

Cattiaux et al. [6] provide a uniform propagation of chaos, that is,

lim sup
N→∞

{E[∥Z1
t −X1

t ∥2] ; t ­ 0} = 0,

under simple assumptions.
About propagation of chaos phenomena, let us also mention that it has recently

been studied in the context well beyond that of the Brownian motion, namely, in
the situation where the driving Brownian motions have been replaced by Lévy
processes and anomalous diffusions, see [15]–[17].

The own law of X1
t intervenes in the drift. We say that it is non-linear in the

sense of McKean, see [20]. About the existence of a solution, we refer the reader
to [1], [12]. Furthermore, it is well known (see [20]) that the probability measure
µt is absolutely continuous with respect to the Lebesgue measure provided that
t > 0. From now on, let us denote by ut its density. We notice that the family of
functions {ut ; t ­ 0} satisfies the granular media equation (1.2). This equation
allows us to characterize the invariant probabilities of diffusion (1.3) and its long-
time behaviour. See [19], [2], [5], [6] with a convex confining potential, and [13],
[14], [25]–[27], [23] with a multi-wells confining potential.

In [9], the authors go further than the propagation of chaos by studying large
deviations. The family of empirical measures {µN

t ; 0 ¬ t ¬ T} is a small pertur-
bation, with respect to N , of the family {µt ; 0 ¬ t ¬ T}.

The exit time of the diffusions in the small-noise limit can be estimated by
a Kramers type law theorem (see [10], [11]). However, in this work, we do not
want σ to be small but N to be large and we cannot apply this method. Con-
sequently, the functional Υ0 is not appropriate to understand the long-time be-
haviour of ZN . Thus, we need to introduce the entropy S(µ). If µ is absolutely
continuous with respect to the Lebesgue measure with density u, the entropy is
equal to −

∫
Rd u(x) log

(
u(x)

)
dx if this quantity is well defined. Alternatively,

S(µ) := −∞. In order to obtain the free energy, we subtract the dissipated energy,
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that is, the product of the temperature σ2/2 with the entropy S(µ) to Υ0(µ),

(1.4) Υσ(µ) :=
∫
Rd

{
σ2

2
log

(
u(x)

)
+ V (x) +

1

2
F ∗ u(x)

}
u(x)dx

for the measures µ absolutely continuous with respect to the Lebesgue measure
with density equal to u. Otherwise, Υσ(µ) = +∞.

In this work, we deal with general settings and we simply use the propagation
of chaos and the study made in [25], [27] about the adherence values of the family
{µt ; t ­ 0}. The first two sections deal with the assumptions, the notation and the
potential geometry. Then the propagation of chaos and the main results on the exit
problems are provided in the last section.

2. PRELIMINARIES

First, let us denote by ∥ · ∥ the Euclidean norm on Rd, ∥x∥2 := x21 + . . .+ x2d
for all x = (x1, . . . , xd) ∈ Rd. Now, we give the assumptions used in the current
work.

ASSUMPTIONS (M). The triple (V, F, µ0) satisfies the set of assumptions (M)
if the following conditions hold true:

(M1) V is a smooth function on Rd. Moreover, there exist m ∈ N∗ and C > 0
such that lim∥x∥→+∞ V (x)∥x∥−2m = C.

(M2) There exists K, a compact subset of Rd, such that ∇2 V (x) > 0 for all
x /∈ K. Besides, lim∥x∥→∞∇2 V (x) = +∞.

(M3) The gradient ∇V is slowly increasing: there exist C ′ > 0 and a func-
tion R from Rd to Rd such that ∇V (x) = C ′∥x∥2m−2x +R(x) for all x ∈ Rd.
Moreover, the functionR satisfies lim∥x∥→+∞R(x)∥x∥−(2m−1) = 0.

(M4) There exists an even polynomial function G on R such that F (x) =
G(∥x∥). Moreover, deg(G) := 2n ­ 2.

(M5) The function G is convex.

(M6) The 8q2-th moment of the measure µ0 is finite with q := max {m,n}.
(M7) The measure µ0 admits a C∞-continuous density u0 with respect to the

Lebesgue measure. Moreover, the entropy −
∫
Rd u0(x) log

(
u0(x)

)
dx is finite.

By Theorem 2.13 in [12], we know that equation (1.3) admits a unique strong
solution on R+. Besides, there exists M0 > 0 satisfying

(2.1) max
1¬j¬8q2

sup
t­0

E[∥Xt∥j ] ¬M0 .

We deduce immediately from this inequality that the family {µt ; t ­ 0} is tight.
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DEFINITION 2.1. By Aσ (respectively, Sσ) we denote the set of the limiting
values of the family {µt ; t ­ 0} (respectively, the set of the invariant probabilities
of diffusion (1.3)).

In the following, E(x) is the unique integer such that x− 1 < E(x) ¬ x. Let
us present some notation about RdN .

DEFINITION 2.2. (1) The space RdN is equipped with the Euclidean norm
∥ · ∥N defined by

∥Z∥2N := N−1(∥Z1∥2 + . . .+ ∥ZN∥2) for all Z = (Z1, . . . , ZN ) ∈ RdN .

(2) For all r > 0 and for all Z0 ∈ RdN , we introduce the ball

BN
r (Z0) := {Z ∈ RdN : ∥Z − Z0∥N ¬ r}.

(3) For any ZN
0 ∈ RdN , we introduce the diffusion ZN defined by

ZN
t = ZN

0 + σBNt −N
t∫
0

∇ΥN
0 (ZN

s )ds.

By Zi
t ∈ Rd we denote the i-th coordinate of ZN

t .

We recall Theorem A in [27].

PROPOSITION 2.1. Let us assume that the set of assumptions (M) is satisfied.
ThenAσ is either a single element µσ ∈ Sσ or a path-connected subset of Sσ such
that Υσ(Aσ) = {limt→∞Υσ(µt)}.

We finish this section by introducing

V := {x ∈ Rd : ∇V (x) = 0},

the set of all the critical points of the potential V .

3. POTENTIAL GEOMETRY

Now, we study the geometry of the potential ΥN
0 . Each point of the form

(a0, . . . , a0) with a0 ∈ V is a critical point of ΥN
0 . Let us prove that they are the

only ones under the set of assumptions (M) and an additional assumption.

PROPOSITION 3.1. Let us assume that the set of assumptions (M) is satisfied
and that synchronization occurs, that is, G′′(0) + inf{∇2 V (x) ; x ∈ Rd} > 0.
Then Z ∈ RdN is a critical point of ΥN

0 if and only if there exists a ∈ V such that
Z = (a, . . . , a). Moreover, if the signature of the Hessian matrix∇2V (a) is (p, q)
then the signature of the Hessian matrix ∇2ΥN (a, . . . , a) is

(
(N − 1)d+ p, q

)
.
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P r o o f. S t e p 1. For all 1 ¬ i ¬ N , the differential of the potential ΥN
0 with

respect to zi is

(3.1)
∂

∂zi
ΥN

0 (z1, . . . , zN ) =
1

N

{
∇V (zi) +

1

N

N∑
j=1

∇F (zi − zj)

}
.

Let Z = (Z1, . . . , ZN ) be a critical point of ΥN
0 . We introduce the function from

Rd to R,

ρZ(z) := V (z) +
1

N

N∑
j=1

F (z − Zj).

Due to the synchronization, ρZ is convex. Thus, it admits only one critical point.
However, according to equality (3.1), Zi is a critical point of ρZ for all 1 ¬ i ¬ N .
It implies the existence of a ∈ Rd such that Zi = a for all 1 ¬ i ¬ N . Besides, the
equality∇ρZ(a) = 0 leads to ∇V (a) = 0, which means a ∈ V .

S t e p 2. By Id we denote the identity matrix of dimension d. Let us look at
∇2ΥN

0 (a, . . . , a). We compute the second derivatives:

∂2

∂z2i
ΥN

0 (a, . . . , a) =
1

N

{
∇2 V (a) +G′′(0)

(
1− 1

N

)
Id

}
for all 1 ¬ i ¬ N . Moreover, for all 1 ¬ i ̸= j ¬ N , we have

∂2

∂zi∂zj
ΥN

0 (a, . . . , a) = −G
′′(0)

N2
Id .

Simple results on linear algebra imply that the eigenvalues of∇2ΥN
0 (a, . . . , a) are

those of N−1∇2 V (a) (each one being associated with a vector space of dimen-
sion one) and N−1

(
∇2 V (a) +G′′(0)Id

)
(each one being associated with a vector

space of dimension N − 1). �

Under simple assumptions, Theorem 4.5 in [13] and Proposition 3.7 in [14]
establish that diffusion (1.3) admits an invariant probability arbitrarily close to the
Dirac measure of a local maximizer a of the confining potential V . However, the
vector (a, . . . , a)∈RdN is never a local minimizer of ΥN

0 if inf{∇2V (x); x∈Rd}
+G′′(0) > 0. This points out the importance of the entropy and σ since there is no
correspondence between the local minimizers of ΥN

0 and the invariant probabili-
ties of diffusion (1.3).

Now, we show that under easily verified assumptions the number of local min-
imizers of the potential ΥN

0 goes to infinity as N goes to infinity.

PROPOSITION 3.2. We assume the existence of a ∈ V such that∇2 V (a) > 0
and b ̸= a such that∇V (b) +∇F (b− a) = 0 and∇2 V (b) +∇2 F (b− a) is pos-
itive definite. Then the number of local minimizers of the potential ΥN

0 converges
to infinity as N goes to infinity.
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P r o o f. First, we notice that ΥN
0 and NΥN

0 have the same minimizers. There-
by, we study NΥN

0 . In the following, we say that Z ∈ RdN is an (a1, a2, p)-vector
if there exists τ ∈ SN such that Zτ(i) = a1 for all 1 ¬ i ¬ E (pN) and Zτ(i) = a2
for all E (pN) + 1 ¬ i ¬ N .

S t e p 1. According to (3.1), an (a1, a2, p)-vector is a critical point of NΥN
0

if and only if the triple (a1, a2, p) solves the following two equations:

(3.2) Ψ1(a1, a2) := ∇V (a1)−∇V (a2)−∇F (a2 − a1) = 0

and

(3.3) p∇V (a1) + (1− p)∇V (a2) = 0.

By the definition of a and b, we have Ψ1(a, b) = 0 and∇V (a) = 0. Consequently,
the triple (a, b, 1) satisfies equations (3.2)–(3.3). Since ∇2 V (a) > 0, we have
∇2 V (a) +∇2 F (b− a) > 0. This implies that the matrix (∂/∂a1)Ψ1(a, b) is pos-
itive definite. We apply the implicit function theorem and we infer the existence of
two connected open sets I ∋ a and J ∋ b and a bijection ξ from I to J such that
Ψ1

(
a1, ξ(a1)

)
= 0 for all a1 ∈ I . Moreover, ξ(a) = b.

S t e p 2. Now, we look at equation (3.3). Let us define

Ψ2(p, a1) := p∇V (a1) + (1− p)∇V
(
ξ(a1)

)
for any a1 ∈ I and p ∈ [0, 1]. We already know that Ψ2(1, a) = 0. Furthermore,
by equation (3.2) with a and b, we have∇V (a)−∇V (b) = ∇F (b− a). However,
b ̸= a, so the differential (∂/∂p)Ψ2(p, a) = ∇V (a) −∇V (b) ̸= 0. Applying the
implicit function theorem, we deduce the existence of ρ > 0, an open set L ⊂ I
which contains a, and a bijection φ1 from ]1− ρ, 1] to L such that Ψ2

(
p, φ1(p)

)
=0

for all p ∈]1− ρ, 1]. Let us define φ2 := ξ ◦ φ1. This function is a bijection from
]1− ρ, 1] to an open set K ⊂ J . Thus, for all p ∈]1− ρ, 1], any

(
φ1(p), φ2(p), p

)
-

vector is a critical point of NΥN
0 .

S t e p 3. Now, we study N∇2ΥN
0

(
φ1(p), φ2(p), p

)
. By making linear alge-

bra computations, we can show that the eigenvalues are those of four matrices
λ1(N, ρ), λ2(N, ρ), λ3(N, ρ) and λ4(N, ρ) satisfying

lim
ρ→0

lim
N→∞

λ1(N, ρ) = ∇2 V (a) +∇2 F (0),

lim
ρ→0

lim
N→∞

λ2(N, ρ) = lim
ρ→0

lim
N→∞

λ3(N, ρ) = ∇2 V (b) +∇2 F (b− a),

lim
ρ→0

lim
N→∞

λ4(N, ρ) = ∇2 V (a).

Since∇2 V (b) +∇2 F (b− a) and∇2 V (a) are positive definite, λ1, λ2 and λ3 are
positive and definite. We proceed as in the previous steps by applying the implicit
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function theorem. Hence, there exists ρ0 > 0 such that for all 1− ρ0 < ρ ¬ 1 and
for N large enough, any

(
φ1(ρ), φ2(ρ), ρ

)
-vector is a local minimizer of NΥN

0 ,
and so is a local minimizer of ΥN

0 .

S t e p 4. Now, we remark that the number of
(
φ1 (k/N) , φ2 (k/N) , k/N

)
-

vectors is equal to N !/
(
k!(N − k)!

)
. Consequently, the number of local minimiz-

ers constructed in Step 3 is

N∑
k=E((1−ρ0)N)

N !

k!(N − k)!
,

which converges to infinity as N goes to infinity. �

Proposition 3.2 gives us a result which has previously been established in [3]
for a near-neighbour system, that is, the convergence to infinity of the number of
wells as N goes to infinity.

Proposition 3.2 also points out that the number of steady states, as σ goes to
zero, is arbitrarily large for N large enough.

REMARK 3.1. In the proof of Proposition 3.2, we recover the family of equa-
tions (3.11) in [14]. Due to the restriction to the (a1, a2, p)-vectors with a1 close to
a ∈ Rd such that ∇2 V (a) > 0, a2 close to b such that ∇V (b) +∇F (b− a) = 0
and ∇2 V (b) + ∇2 F (b − a) > 0 and p close to 1, the minimizers that we con-
structed satisfy the following two inequalities:

∇2 V (a1) + p∇2 F (0) + (1− p)∇2 F (a2 − a1) > 0

and

∇2 V (a2) + p∇2 F (a2 − a1) + (1− p)∇2 F (0) > 0,

that is, the family of inequalities (3.13) in [14]. However, there is no correspon-
dence between the local minimizers of ΥN

0 and the invariant probabilities of the
non-linear diffusion since the family of equations (3.12) in [14], that is,

∇F (a2 − a1)

F (a2 − a1)
=
∇V (a2) +∇V (a1)

V (a2)− V (a1)
,

is not a priori satisfied. However, a discrete measure is the small-noise limit of a
sequence of invariant probabilities only if it satisfies (3.11)–(3.13).

Nevertheless, even if the number of wells of ΥN
0 goes to infinity, we establish

in the following that there is no correspondence between the steady states of the
mean-field system (1.1) and these wells as N goes to infinity.
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4. MAIN RESULTS

Now, we remind the reader of the classical results about the propagation of
chaos. Particularly, we give a coupling result on the interval [0, T ] between the
mean-field system and the self-stabilizing process as N converges to infinity. Each
particle of the mean-field system satisfies the equation

Zi
t = Zi

0 + σBi
t −

t∫
0

∇V (Zi
s)ds−

t∫
0

1

N

N∑
j=1

∇F (Zi
s − Zj

s)ds,

and the associated McKean–Vlasov diffusions are

Xi
t = Zi

0 + σBi
t −

t∫
0

∇V (Xi
s)ds−

t∫
0

∇F ∗ µs(X
i
s)ds

with µs = µi
s := L(Xi

s). Here, B1, . . . , BN are independent d-dimensional Wien-
er processes. The proof is similar to that of Theorem 5.3 in [1]. Consequently, it is
left to the reader.

PROPOSITION 4.1. Let us assume that the triple (V, F, µ0) satisfies the set
of assumptions (M). Let {Zi

0 ; i ∈ N∗} be a family of i.i.d. random variables with
common law µ0. Then there exist two positive constants C and K such that

max
1¬i¬N

E{ sup
0¬t¬T

∥Xi
t − Zi

t∥2} ¬
CT

N
exp[K T ].

This result is not uniform with respect to the time. Now, we give the following
essential lemma.

LEMMA 4.1. We assume that the triple (V, F, µ0) satisfies the set of assump-
tions (M). Let T be a positive real and {Zi

0 ; i ∈ N∗} be a family of i.i.d. ran-
dom variables with law µ0. Let µN := {N−1(δZ1

t
+ . . . + δZN

t
); 0 ¬ t ¬ T} be

the family of random empirical measures on the Skorokhod path space ET :=
D([0, T ] ; Rd). Then µN converges, as N goes to infinity, to the family of deter-
ministic measures µ∞ := {µt ; 0 ¬ t ¬ T} in law and in probability.

P r o o f. The proof is similar to that of Theorem 4.4 in [21]. By πN we denote
the law of the family of random measures µN . In other words, for any f ∈ ET , we
have ∫
P(ET )

∫
[0,T ]×Rd

f(t, x)m(dt, dx)πN (dm) = E
{ ∫

[0,T ]×Rd

f(t, x)µN
t (dx)dt

}
.

We need to verify the following three arguments:
• The family {πN ; N ∈ N∗} is tight.
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• Each adherence value of the family {µN ; N ∈ N∗} satisfies the martingale
problem associated with equation (1.3).

• There is a unique solution to this martingale problem.

The tightness of the family {πN ; N ∈N∗} is a consequence of Proposition 4.6
in [21]. Indeed, if E is a Polish space, this proposition points out that a family of
probability measures {ηN ; N ∈ N∗} on P(E) is tight provided that the family of
intensity measures {I(ηN ) ; N ∈ N∗} is tight, the measure I(ηN ) being defined
as follows: ∫

E

f(x)I(ηN )(dx) :=
∫
P(E)

( ∫
E

f(x)m(dx)
)
ηN (dm).

Here, the intensity measure is equal to {L(Z1
t ) ; 0 ¬ t ¬ T}. However, by Propo-

sition 4.1, the family of intensity measures converges to {µt ; 0¬ t¬T} in Wasser-
stein distance. Consequently, the family of intensity measures is tight. Hence, the
family {πN ; N ∈ N∗} is tight. The identification between the limiting values and
the solutions of the martingale problem is the same as in the proof of Theorem 4.4
in [21]. For the last point, we refer the reader to Theorem 2.13 in [12]. �

Let us recall that Aσ is the set of the adherence values of the family of proba-
bility measures {µt ; t ­ 0}, Sσ is the set of the invariant probabilities of diffusion
(1.3), and ut is the density of µt with respect to the Lebesgue measure. Now, we
are able to provide the main result of the paper.

THEOREM 4.1. We assume that the triple (V, F, µ0) satisfies the set of as-
sumptions (M). Let {Zi

0 ; i ­ 1} be a family of i.i.d. random variables with com-
mon law µ0. We take a smooth function f from Rd to itself satisfying the inequality

∥f(x)− f(y)∥ ¬ C∥x− y∥(1 + ∥x∥+ ∥y∥),

C being a positive constant. Then, for all δ > 0 and for all T ­ 0, we have

(4.1) lim
N→+∞

P
{

sup
0¬t¬T

∥∥∥∥ 1

N

N∑
i=1

f(Zi
t)−

∫
Rd

f(x)ut(x)dx

∥∥∥∥ < δ

}
= 1.

Furthermore, there exists Tδ ­ 0 deterministic such that

(4.2) lim
N→+∞

P
{

sup
Tδ¬t¬Tδ+T

inf
µ∈Aσ

∥∥∥∥ 1

N

N∑
i=1

f(Zi
t)−

∫
Rd

f(x)µ(dx)

∥∥∥∥ < δ

}
= 1

for any T > 0.
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P r o o f. S t e p 1. We aim to prove (4.1). The triangular inequality provides∥∥∥∥ 1

N

N∑
i=1

f(Zi
t)−

∫
Rd

f(x)ut(x)dx

∥∥∥∥ ¬ 1

N

N∑
i=1

sup
0¬t¬T

∥f(Zi
t)− f(Xi

t)∥

+ sup
0¬t¬T

∥∥∥∥ 1

N

N∑
i=1

f(Xi
t)−

∫
Rd

f(x)ut(x)dx

∥∥∥∥
for any t ∈ [0, T ]. By AN

1 (respectively, AN
2 ) we denote the first term (respectively,

the second one). Therefore, we obtain the inequality

P
{

sup
0¬t¬T

∥∥∥∥ 1

N

N∑
i=1

f(Zi
t)−

∫
Rd

f(x)ut(x)dx

∥∥∥∥ ­ δ

}
¬ P

{
AN

1 ­
δ

2

}
+ P

{
AN

2 ­
δ

2

}
.

According to Lemma 4.1, the second term, P
{
AN

2 ­ δ/2
}

, goes to zero as N goes
to infinity. Let us prove that limN→+∞ P{AN

1 ­ δ/2} = 0.

S t e p 2. For the moment we take f0(x) := x. Applying Markov’s inequality
we get

P
{

1

N

N∑
i=1

sup
0¬t¬T

∥Zi
t −Xi

t∥ ­
δ

2

}
¬ 2

δ
E
{

sup
0¬t¬T

1

N

N∑
i=1

∥Zi
t −Xi

t∥
}
.

The particles Zi are exchangeable and the McKean–Vlasov diffusions are inde-
pendent. So, we obtain

P
{
AN

1 ­
δ

2

}
¬ 2

δ
E{ sup

0¬t¬T
∥Z1

t −X1
t ∥} ¬

2

δ

√
CT

N
exp

[
KT

2

]
after applying the Cauchy–Schwarz inequality and Proposition 4.1. Using inequal-
ity (2.1) and the propagation of chaos established in Proposition 4.1, we see that
the following holds for all T > 0:

E[ sup
0¬t¬T

∥X1
t ∥2] + E[ sup

0¬t¬T
∥Z1

t ∥2] ¬ λ(T ) <∞.

S t e p 3. In the general case, again the Markov inequality, the Jensen inequal-
ity and Proposition 4.1 imply

P
{
AN

1 ­
δ

2

}
¬ 2

δ
E{ sup

0¬t¬T
∥f(Z1

t )− f(X1
t )∥}

¬ 2

δ

√
CT

N

√
1 + λ(T ) exp

[
KT

2

]
,

which goes to zero as N goes to infinity.
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S t e p 4. In order to prove the second statement it is sufficient to notice that
the tightness of the family {µt ; t ­ 0} and the definition of Aσ yield

lim
T0→+∞

sup
t­T0

inf
µ∈Aσ

∥∥ ∫
Rd

f(x)ut(x)dx−
∫
Rd

f(x)µ(dx)
∥∥ = 0.

Consequently, for all δ > 0, there exists Tδ ­ 0 such that

inf
{∥∥ ∫

Rd

f(x)ut(x)dx−
∫
Rd

f(x)µ(dx)
∥∥; µ ∈ Aσ

}
¬ δ/2

for any t ­ Tδ. Then we apply the first statement with δ/2 on the interval [0, Tδ +
T ], which completes the proof. �

The time Tδ is deterministic and is linked to the rate of convergence to the
invariant probabilities of Aσ, so it does depend on σ.

REMARK 4.1. Under the set of assumptions (M), the limits (4.1) and (4.2)
in Theorem 4.1 hold with a smooth function f from Rd to R satisfying, for some
C > 0,

|f(x)− f(y)| ¬ C∥x− y∥(1 + ∥x∥+ ∥y∥).
From Theorem 4.1 and the remark above we derive two corollaries. The first

one establishes that the mean-field system is a prisoner one, as N goes to infinity,
of some union of balls.

COROLLARY 4.1. Let us assume that the triple (V, F, µ0) satisfies the set
of assumptions (M). Let {Zi

0 ; i ­ 1} be a family of i.i.d. random variables with
common law µ0. Then, for all r > 0, there exists Tr ­ 0 such that

(4.3) lim
N→+∞

P
{
ZN
t ∈

∪
µ∈Aσ

SNr (µ);∀ Tr ¬ t ¬ Tr + T
}
= 1,

the set SNr (µ) being defined by

SNr (µ) :=

{
Z ∈ RdN : Var(µ)− r ¬ 1

N

N∑
i=1

∥Zi − E{µ}∥2 ¬ Var(µ) + r

}
.

Here, the limit (4.3) holds for any T ­ 0.

P r o o f. S t e p 1. First of all, for all t ­ 0 and for all µ ∈ Aσ, we define the
quantity

ΛN
t (µ) :=

1

N

N∑
i=1

∥Zi
t − E{µ}∥2 −Var(µ).

In the same way, we define

Λ∞t (µ) :=
∫
Rd

∥x− E{µ}∥2µt(dx)−Var(µ).
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S t e p 2. Let us prove that inf {Λ∞t (µ) ; µ ∈ Aσ} converges to zero as t
goes to infinity. We proceed by reductio ad absurdum, assuming the existence
of r0 > 0 and a family {Tn ; n ∈ N∗} such that Tn ­ n and inf{Λ∞Tn

(µ) ; µ ∈
Aσ} ­ r0 for all n ­ 0. The family of measures {µt ; t ­ 0} is tight, so the family
{µTn ; n ∈ N∗} has an adherence value µσ ∈ Aσ (by the definition of the set Aσ).
Moreover, this element µσ satisfies

inf
µ∈Aσ

{ ∫
Rd

∥x− E{µ}∥2µσ(dx)−Var(µ)
}
­ r0.

This is absurd since it is equal to zero, µσ belonging to Aσ.

S t e p 3. Let r be a positive real. There exists Tr > 0 such that, for all t ­ Tr,
we have |inf {Λ∞t (µ) ; µ ∈ Aσ}| < r/2. Let T be a positive real. We apply Theo-
rem 4.1 on the interval [Tr, Tr + T ]; more precisely, the limit (4.1) with f1(x) := x
and the limit (4.1) (plus Remark 4.1) with f2(x) := ∥x∥2. We obtain the following
two limits:

lim
N→+∞

P
{

sup
Tr¬t¬Tr+T

∥∥∥∥ 1

N

N∑
i=1

Zi
t −

∫
Rd

xut(x)dx

∥∥∥∥ < δ

}
= 1

and

lim
N→+∞

P
{

sup
Tr¬t¬Tr+T

∣∣∣∣ 1N N∑
i=1

∥Zi
t∥2 −

∫
Rd

∥x∥2ut(x)dx
∣∣∣∣ < δ

}
= 1.

However, for all (Z1, . . . , ZN ) ∈ RdN such that∥∥∥∥ 1

N

N∑
j=1

Zj −
∫
Rd

xut(x)dx

∥∥∥∥ < δ and
∣∣∣∣ 1N N∑

j=1

∥Zj∥2 −
∫
Rd

∥x∥2ut(x)dx
∣∣∣∣ < δ,

the following inequality holds for all µ ∈ Aσ:∣∣∣∣ 1N N∑
i=1

∥Zi − E{µ}∥2 −Var(µ)− Λ∞t (µ)

∣∣∣∣ ¬ (1 + 2∥E{µ}∥) δ.

However, due to the inequality (2.1), we have sup{∥E{µ}∥ ; µ ∈ Aσ} ¬M0. Tak-
ing δ := r/

(
2(1 + 2M0)

)
, we obtain the limit (4.3). �

This result means that, for all T ­ 0, limN→+∞ P {τ rN ¬ T} = 0, τ rN being
the first exit time of the domain∪

µ∈Aσ

BN√
Var(µ)+r

(E [µ] , . . . ,E [µ]) ∩
(
BN√

Var(µ)−r
(E [µ] , . . . ,E [µ])

)c
.

Let us present two examples of application of Corollary 4.1, when the set Aσ

is a single element and when it is not.



Mean-field systems and exit problems 157

EXAMPLE 4.1. Take d := 1, V (x) := x4/4 − x2/2 and F (x) := (α/2)x2

with α > 1. Let µ0 be a measure which satisfies the assumptions (M6) and (M7).
We consider a family {Zi

0 ; i ­ 1} of i.i.d. random variables with common
law µ0. Thus, for all r > 0, by taking σ sufficiently small there exists Tr > 0
and m ∈ {−1, 0, 1} such that

lim
N→+∞

P{ZN
t ∈ BN

r (m, . . . ,m);∀ Tr ¬ t ¬ Tr + T} = 1

for any T ­ 0.

P r o o f. By Theorems 3.2 and 4.5 in [13] and by Proposition 3.7 in [14], we
know that diffusion (1.3) admits exactly three invariant probabilities if σ is small
enough and these measures converge in the small-noise limit to δ−1, δ0 or δ1. This
implies that sup {Var(µ) ; µ ∈ Sσ} goes to zero as σ goes to zero. Then, we apply
Corollary 4.1 since the set of assumptions (M) is satisfied. �

However, the set Aσ is not necessarily a single element. Then, we give a sim-
ilar result in the case in which the set Sσ is not discrete.

EXAMPLE 4.2. Take d>1, V (x) := 1
4∥x∥

4− 1
2∥x∥

2 and F (x) :=(α/2)∥x∥2
with α > 1. Let µ be a measure satisfying (M6), (M7) and

(4.4)
∫
Rd

V (x)µ(dx) +
1

2

∫ ∫
Rd×Rd

F (x− y)µ(dx)µ(dy) < 0.

We consider {Zi
0 ; i ­ 1}, a family of i.i.d. random variables with common law

µ0. Thus, for all r > 0, by taking σ sufficiently small, there exists Tr > 0 such
that, for all T ­ 0,

lim
N→+∞

P{1− r < ∥ZN
t ∥N < 1 + r; ∀ Tr ¬ t ¬ Tr + T} = 1.

P r o o f. Let us denote by µσ
0 the unique radial invariant probability of dif-

fusion (1.3). We can easily prove that limσ→0Υσ (µ
σ
0 ) = 0. By inequality (4.4),

we see that Υσ(µ) < Υσ(µ
σ
0 ) for σ sufficiently small. Thus, by Theorem A in

[27] and Proposition 2.1 in [5], we know that µσ
0 /∈ Aσ. By Proposition 3.10 in

[23], we know that each family {µσ ; σ > 0} with µσ ∈ Sσ admits an adherence
value. And, by Proposition 3.8 in [23], since α > 1, we know that the only possible
small-noise limits of these sequences are Dirac measures δa, a being in V , the set
of the critical points of V . Here, we have V = {0} ∪ {x ∈ Rd : ∥x∥ = 1}. Since
Υσ (µ0) < Υσ (µ

σ
0 ), we infer that δ0 is not the small-noise limit of any family of

adherence values of {µt ; t ­ 0}. Besides, since the small-noise limits are Dirac
measures, it implies limσ→0 sup{Var(µ) ; µ ∈ Sσ} = 0. Then, we apply Corol-
lary 4.1. �
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The second corollary provides a sufficient condition to forbid the crossing of
any hyperplane {Z ∈ RdN : N−1(Z1 + . . .+ ZN ) = m}, m ∈ Rd.

COROLLARY 4.2. We assume the triple (V, F, µ0) satisfies the set of assump-
tions (M) and m0 ∈ Rd is such that Υσ(µ0) < inf

{
Υσ(µ) :

∫
Rd xµ(dx) = m0

}
.

Then, for all T ­ 0, the following limit holds:

lim
N→+∞

P
{

1

N

N∑
i=1

Zi
t ̸= m0; ∀ 0 ¬ t ¬ T

}
= 1.

P r o o f. By Proposition 2.1 in [5], the free energy is non-increasing along the
orbit {µt ; t ­ 0}. Consequently, Υσ(µt) < inf

{
Υσ(µ) :

∫
Rd xµ(dx) = m0

}
for

all t ∈ [0, T ], and so
∫
Rd xµt(dx) ̸= m0 for all t ­ 0. We conclude by applying

(4.1) with f(x) := x and δ := inf
{∥∥ ∫

Rd xµt(dx)−m0

∥∥; 0 ¬ t ¬ T
}
> 0. �

This result means that limN→+∞ P{Tm0
N ¬ T} = 0 for any T ­ 0, where

Tm0
N is the first hitting time of {Z ∈ RdN : N−1 (Z1 + . . .+ ZN ) = m0}.

As a conclusion, let us make the following remark. When N is fixed, the
Freidlin–Wentzell theory takes into account the microscopic wells for the com-
putations of the exit time in the small-noise limit. However, when σ is fixed, they
do not intervene in the dynamics as N goes to infinity.
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