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Abstract. In this paper we present the base of a general technique to
derive new positive definite functions on pairings from already known ones.
To describe this technique we use two concrete applications. The first one
refers to the function depending on the number of connected components,
the second one to the function depending on the number of crossings. In
the first application we get a new family of functions identifying nontrivial
connected components.
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1. INTRODUCTION

An interesting method for constructing non-commutative Gaussian processes
was found by Bożejko and Speicher (see [9], [12], [8], [36]). The key object in
this procedure is the field operator related to an appropriate Fock space. Roughly
speaking, there is some underlying real Hilbert space HR and an R-linear transfor-
mation G : HR → ∗alg [G (HR)] into the unital ∗-algebra with a state ϕ, making
G (HR) the Gaussian field, i.e.,

ϕ
(
G (f1) . . . G (fm)

)
= ϕ

(
G
(
O (f1)

)
. . . G

(
O (fm)

))
, ∀fj ∈ HR, m ∈ N,

where O is any orthogonal transformation on HR. The quantity above can be eval-
uated by using the so-called Wick formula. This formula claims the existence of a
function t : P2 (∞)→ C on pairings (see Definition 2.1) with the property

ϕ
(
G(f1) . . . G(f2m)

)
=

∑
ν∈P2(2m)

t (ν)
m∏
p=1

⟨fip , fjp⟩HR ,
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where ν =
{
{i1, j1} , . . . , {im, jm}

}
is a pairing on the set {1, . . . , 2m}. We refer

to the papers [31] and [30] for very interesting investigations on this topic. The
functions t appearing in the formula above are called positive definite. The original
definition of this positive definiteness was formulated in terms of tensor algebra
over Hilbert space with involution (see [12]). Later Guţă and Maassen character-
ized in [17] the positivity above as usual positivity in the ∗-semigroup of broken
pairings. They also proved that for any multiplicative (see Definition 2.3) positive
definite function t there exists a non-commutative Gaussian process (generated by
field operators) having the function t in its Wick formula.

Indeed, given a positive definite function t with underlying Hilbert space HR=
L2 (R+, dx) one can construct the Gaussian process B(t) by the formula B(t) =
G(χ[0,t]). We refer to the papers [3], [6], [15] and [35] where the hyper- and ultra-
contractivities for the functor of second quantization on some Gaussian fields are
treated as well as some general kind of Khintchine inequalities is studied.

At the present time a number of positive definite functions are known: “num-
ber of crossings” (see [9]), “number of connected components” (see [12]), “recur-
rence formula for orthogonal polynomials” (see [1]), “Thoma’s characters” (see
[7]). See also [18] for some very interesting general considerations on this topic.
The set of positive definite functions on pairings is closed under convex combi-
nations and pointwise multiplications. There are some other interesting operations
preserving the set of these functions.

Bryc et al. [13] computed the free additive convolution (see [37] and [24] for
the concept and other interesting investigations of free convolution) of the clas-
sical Gaussian measure and of the Wigner measure as the limit distribution of
large random Markov matrices. They wrote the moments of the measure γM =

γ0�γ1, dγ0(x) = χ[−2,2](x)
√
4− x2dx, dγ1(x) = (2π)−1/2 exp(−x2/2)dx in the

following way:

m2m (γM ) =
∑

ν∈P2(2m)

2m
(
1

2

)m−h(ν)
,

where h (ν) is the number of connected components consisting of exactly one
block (non-crossing pairings maximize the function h). We draw the pictures be-
low for clarification:

h (ν) = 3 h (ν) = 0 h (ν) = 5

In this paper we prove that the function

Hq (ν) = qm−h(ν),

where m is the number of blocks in the pairing ν, i.e. ν ∈ P2 (2m), is positive def-
inite for any q ∈ [0, 1]. The function Hq is multiplicative (see Definition 2.3). The
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expectation ϕ in the algebra affiliated with Gaussian processes is a trace (ϕ (ab) =
ϕ (ba)). By an adaptation of the proof given in [13] (γM = γ0�γ1) it follows that
the spectral measure (in the state ϕ) of the (normalized in the second norm) Gaus-
sian operator arisen in this setting is equal to the free additive convolution of (prop-
erly dilated) γ0 and γ1,

γHq = (D1/
√
1−qγ0)�(D1/

√
qγ1),

where (Dλµ) (A) = µ (λ ·A). This gives an interpolation between classical
(q = 1) and free (q = 0) Gaussian processes. The measure γM appears in the mid-
dle of the scale, γM = D1/2γH1/2

.
The main tool in the proof is the non-commutative Central Limit Theorem

(shortly, nc-CLT). We start with a Gaussian field (or process). Then we make some
perturbation, and finally we come back to the class of Gaussian fields using the
nc-CLT. In the present paper we make the deformation of the Gaussian field that is
the easiest in computations, depending on the number of connected components.
This gives us the function Hq.

In the last section we apply the same perturbation to the q-Gaussian field de-
pending on the number of crossings. In this case we do not get new positive defi-
nite functions; however, this result gives some kind of limit-distribution inclusion
among the q-Gaussian fields. It is related to the question whether von Neumann
algebras generated by field operators arising from q-commutation relations (given
in Fock representation) are isomorphic for various parameters q.

2. NOTIONS AND THE nc-CLT

DEFINITION 2.1. A covering of the set A = {1, . . . , 2m} by two-element
disjoint subsets (blocks) {i, j} ⊂ A is called a two-partition or pairing. The set of
all two-partitions will be denoted by P2 (2m) or, simply, by P2.

The usual graphical representation of a pairing
{
{1, 3},{2, 6},{4, 5},{7, 9},

{8, 10}
}

looks like the following picture:

1 3 4 5 7 92 6 8 10

Big part of non-commutative probabilities is connected with pairings. In the
paper [12] by Bożejko and Speicher the notion of positive definite function on
pairings was introduced. In the paper [17] by Guţă and Maassen, positivity was
characterized as usual positivity in the ∗-semigroup of broken partitions.

The most important (for this paper) observation related to pairings is the fol-
lowing nc-CLT by Bożejko and Speicher (see Theorem 0 in [12]).
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THEOREM 2.1. Let B be a unital ∗-algebra equipped with a state ϕ. Con-
sider selfadjoint elements bi = b∗i ∈ B (i ∈ I) with normalized second moments
(ϕ(b2i ) = 1), which fulfill for all m ∈ N the following assumptions (singleton and
exchanging conditions):

ϕ (bi1bi2 . . . bim) = 0 whenever ∃r : # {p : ir = ip} = 1,(a)
ϕ (bi1bi2 . . . bim) = ϕ(bπ(i1)bπ(i2) . . . bπ(im)) for any injection π : I→ I.(b)

Then for the sequence
(
SN (k)

)
k∈N of operators,

SN (k) =
1√
N

∑
i∈AN,k

bi,

where for fixed N, (AN,k)k∈N is an arbitrary family of disjoint sets with cardinality
N, the following equalities hold for all m, kj ∈ N:

lim
N→∞

ϕ
(
SN (k1) . . . SN (k2m+1)

)
= 0,(i)

lim
N→∞

ϕ
(
SN (k1) . . . SN (k2m)

)
=

∑
ν∈P2(2m)

t (ν)
m∏
p=1

δkip ,kjp ,(ii)

where ν=
{
{i1, j1} , . . . , {im, jm}

}
and t is some positive definite function on P2.

The elements bi in the above theorem are called Gaussian operators whenever
the conditions (i) and (ii) hold without the limit. In fact, it is enough to prove this
for N = 1.

DEFINITION 2.2. Let B and ϕ be as in the theorem above. The operators
gi ∈ B are called Gaussian operators whenever the following conditions hold for
all m ∈ N:

ϕ(gk1 . . . gk2m+1) = 0,(i)

ϕ(gk1 . . . gk2m) =
∑

ν∈P2(2m)

t (ν)
m∏
p=1

ϕ(gkipgkjp ),(ii)

where ν=
{
{i1, j1} , . . . , {im, jm}

}
and t is some positive definite function on P2.

DEFINITION 2.3. Let t be a function on pairings. The function t is called
multiplicative whenever for any m and any pairing ν ∈ P2 (2m) of the form ν =
ν1 ·∪ν2, where ν1 is a pairing of the subinterval {k, k + 1, . . . , l} ⊂ {1, . . . , 2m},
the following condition holds:

t (ν) = t
(
I (ν1)

)
· t
(
I (ν2)

)
,

where I (µ) for µ being a pairing of even-cardinality subset of naturals is defined
by order-preserving bijection of partitioned sets, e.g. I

({
{7, 17} , {11, 23}

})
={

{1, 3} , {2, 4}
}

.



New interpolations between classical and free Gaussian processes 185

3. q-NUMBER OF CONNECTED COMPONENTS

In this section we fix a natural number n and a real number q ∈ (0, 1). For
this reason we write the function names tc, tTc , Tc,N,k instead of tc,q,n, tTc,q,n ,

Tc,q,n,N,k. Let (c(q)α )α∈N×{1,...,n} be a sequence of Gaussian operators having the
function t given by the formula

tc (ν) = qm−c(ν),

where c(ν) is the number of connected components in the pairing ν ∈ P2 (2m) and
q ∈ (0, 1). As an explanation of the quantity c(ν) we give the picture below and
we refer to the paper [12] by Bożejko and Speicher for details. We have

ν =
1 3 5 7 10 11 12 1413 164 8 9 152 6

, c (ν) = 3 .

Let us consider the operators

Tc,N,k =
1√
N

∑
i∈AN,k

c
(q)
(i,1) . . . c

(q)
(i,n) + c

(q)
(i,n) . . . c

(q)
(i,1)√

2 (1 + qn−1)
,

where AN,k is as in the assertion of Theorem 2.1.
Since the operator Tc,N,k has the form of the operators SN,k from Theorem 2.1,

where

bi =
c
(q)
(i,1) . . . c

(q)
(i,n) + c

(q)
(i,n) . . . c

(q)
(i,1)√

2 (1 + qn−1)
,

we can compute the corresponding function tTc . The following formula for tTc can
be easily checked:

tTc (ν) =
1

[2 (1 + qn−1)]m
∑

µ∈Z(ν)

2m tc(µ),

where m is the number of blocks in the pairing ν, and Z (ν) is the set of the
two-partitions of the set {1, . . . , 2n ·m} which are constructed from ν by replac-
ing any block by one of the blocks

{
{1, n} , {2, n− 1} , . . . , {n/2, n/2 + 1}

}
or
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{1, n/2 + 1}, {2, n/2 + 2}, . . . , {n/2, n}

}
, as shown in the following picture:

(1)

0

1

For example, when
ν =

and n = 3, then Z (ν) consists of the following pairings:

In the case when ν ∈ P2 (2m) has exactly one connected component, any
µ ∈ Z(ν) has also one connected component (with the exception of m = 1) and
µ ∈ P2 (2m · n). Consequently, under the assumption that m ­ 2, we obtain

tTc (ν) = qm−1 ·
(

2qn−1

1 + qn−1

)m

.

For m = 1 we have

tTc

({
{1, 2}

})
=

1

[2 (1 + qn−1)]1
(
2tc (ν1) + 2tc (ν2)

)
=

1

[2 (1 + qn−1)]1
(2 + 2qn−1),

where ν1 =
{
{1, n} , {2, n− 1} , . . . , {n, n+ 1}

}
and ν2 is the partition ν2 ={

{1, n+ 1} , {2, n+ 2} , . . . , {n, 2n}
}
.

Since the function tc is multiplicative and the transformation above sends con-
nected components into connected components, the function tTc is also multiplica-
tive and, finally,

(2) tTc (ν) = tc (ν) q
m−h(ν)
1 ,

where m is the number of blocks in ν, h (ν) is the number of connected compo-
nents consisting of one block only and q1 = 2qn−1/(1 + qn−1).



New interpolations between classical and free Gaussian processes 187

Now we would like to erase the factor tc(ν) in the formula (2). For this reason
we take the limit when q goes to 1 (qi = 1 − 1/i). Simultaneously, we change n
according to the formula ni = [a · i], where a ∈ (0,∞) is fixed. This gives us q1 in
formula (2) equal to 2e−a/(1 + e−a). Since 2e−a/(1 + e−a) runs over (0, 1) when
a ∈ (0,∞), we get the following

THEOREM 3.1. Let q ∈ [0, 1] and h (ν) be equal to the number of connected
components in the pairing ν ∈ P2 (2m) consisting of one block. Then the function

Hq (ν) = qm−h(ν), q ∈ [0, 1],

is positive definite.

Let us note that the function above was discovered (in the one-dimensional
case for q = 1

2 ) in [13].

4. q-NUMBER OF CROSSINGS

In this section, as in the previous one, we fix n, q and we do not write indices n
and q in the function names except when it is needed. Let us replace the operators
c
(q)
α from the preceding section by Gaussian operators g(q)α related to the function

ti (ν) = qi(ν),

where i(ν) is the number of crossings in the pairing ν and q ∈ (−1, 1). As an
explanation of the quantity i(ν) we give the picture below and we refer to the
paper [9] by Bożejko and Speicher for details. We have

ν =
1 3 5 7 10 11 12 1413 164 8 9 152 6

, i (ν) = 5.

Moreover, let us replace the scaling factor 1/
√

2 (1 + qn−1) by 1/

√
2
(
1 + q(

n
2)
)
,

so that the new operators

Ti,N,k =
1√
N

∑
i∈AN,k

g
(q)
(i,1) . . . g

(q)
(i,n) + g

(q)
(i,n) . . . g

(q)
(i,1)√

2
(
1 + q(

n
2)
)

become normalized in the second moment ϕ(T 2
i,N,k) = 1.

As in the previous section we get

tTi (ν) =
1[

2
(
1 + q(

n
2)
)]m ∑

µ∈Z(ν)

2m ti (µ),

where ν ∈ P2 (2m).



188 A. Buchholz

Let us enumerate the blocks in the pairing ν and write µ = ν (i1, . . . , im),
where the indices i1, . . . , im are equal to 0 or 1 depending on the choice of the
replacement (0 or 1 in the picture (1)) for the corresponding blocks 1, . . . ,m in the
pairing ν. One can check that

ti
(
ν (i1, . . . , im)

)
= t

i,qn2 (ν)
m∏
p=1

(
q(

n
2)

ip)
.

The factor t
i,qn

2 (ν) appears because any crossing in the pairing ν turns into n2

crossings, and the factors
(
q(

n
2)
)ip appear because we get additional q(

n
2) crossings

if we substitute 1 for the p’s block and we do not get additional crossings if we
substitute 0 for this block. Finally, we get tTi (ν) = t

i,qn2 (ν) =
(
qn

2)i(ν)
.
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[1] L. Accardi and M. Bożejko, Interacting Fock spaces and Gaussianization of probability
measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (1998), pp. 663–670.

[2] C. A. Akemann and P. A. Ostrand, Computing norms in group C∗-algebras, Amer. J.
Math. 98 (1976), pp. 1015–1047.

[3] P. Biane, Free hypercontractivity, Comm. Math. Phys. 184 (1997), pp. 457–474.
[4] A. Bonami, Étude des coefficients de Fourier des fonctions de Lp(G), Ann. Inst. Fourier

(Grenoble) 20 (2) (1970), pp. 335–402.
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[9] M. Bożejko and R. Speicher, An example of a generalized Brownian motion, Comm.
Math. Phys. 137 (1991), pp. 519–531.
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