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Abstract. Let Zα and Z̃α be two independent positive α-stable random
variables. It is known that (Zα/Z̃α)

α is distributed as the positive branch of
a Cauchy random variable with drift. We show that the density of the power
transformation (Zα/Z̃α)

β is hyperbolically completely monotone in the
sense of Thorin and Bondesson if and only if α ¬ 1/2 and |β| ­ α/(1−α).

This clarifies a conjecture of Bondesson (1992) on positive stable densities.
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1. INTRODUCTION

A function f : (0,∞)→ (0,∞) is said to be hyperbolically completely mono-
tone (HCM) if for every u > 0 the function f(uv)f(u/v) is completely monotone
(CM) as a function of the variable w = v + v−1. This class coincides with that of
functions of the form

(1.1) c xa
n∏

i=1

(1 + cix)
−bi

with a ∈ R and c, ci, bi > 0, or pointwise limits thereof. A positive distribution is
called HCM if it has a density which is HCM. The HCM class is closed with respect
to multiplication and division of independent random variables. Moreover, if X
has an HCM density, so has Xβ for every |β| ­ 1. This class was introduced by
L. Bondesson by using an idea of O. Thorin from 1977 (Bondesson introduced the
HCM-condition in 1990 and the HCM-name in 1992). It is closely connected with
the class of generalized gamma convolutions (GGC). We say that the distribution
of a positive random variable X is a GGC if its Laplace transform reads

(1.2) E(e−λX) = exp

(
− aλ−

∞∫
0

log

(
1 +

λ

x

)
ν(dx)

)
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for some a ­ 0 called the drift coefficient and some positive measure ν called the
Thorin measure, which is such that

1∫
0

| log(x)|ν(dx) <∞ and
∞∫
1

x−1ν(dx) <∞.

The GGC class is a subclass of the positive self-decomposable distributions, and
in particular all GGC distributions are infinitely divisible. In [3] Bondesson proved
the inclusion HCM ⊂ GGC, which allowed for showing the GGC property, and
hence the infinite divisibility of many positive distributions whose Laplace trans-
forms are not explicit enough. As a genuine example, Thorin proved in [14] the
infinite divisibility of powers of a gamma random variable at order ξ with |ξ| ­ 1.
This is actually a consequence to the fact that gamma densities are HCM.

Another link between the two above classes is that a probability distribution is
a GGC if and only if its Laplace transform is HCM. This characterization, which
is also due to Bondesson, can be used to show both GGC and HCM properties,
and it will play some role in the proof of the main result of this paper. We refer to
the monograph [4] for an account on these topics, including the proof of all above
properties.

Let Zα be a positive α-stable random variable, α ∈ (0, 1), normalized so that
its Laplace transform reads

E(e−λZα) = exp (−λα) = exp

(
− α sin(απ)

π

∞∫
0

log

(
1 +

λ

x

)
xα−1dx

)
.

Observe that this Laplace tranform is of the form (1.2), so that all positive α-stable
distributions are GGC. In this paper we are concerned with the following

CONJECTURE 1.1 (Bondesson [5]). The density of Zα is HCM if and only if
α ¬ 1/2.

This problem is stated in [5], where the easy “only if” part is also obtained. If
α = 1/n for some integer n ­ 2, the HCM property for the density of Z1/n is a
direct consequence of the factorization (see Example 5.6.2 in [4])

(1.3) Z−11/n

d
= nnγ1/n × . . .× γ(n−1)/n,

where the factors are supposed to be independent and, here and throughout, γt
denotes a gamma random variable with shape parameter t and explicit density

xt−1e−x

Γ(t)
·

The “if” part of this conjecture is however still open when α ̸= 1/n. In [13], it
is shown that Zα has a hyperbolically monotone density (viz. its density f is such



HCM property and the half-Cauchy distribution 193

that f(uv)f(u/v) is non-increasing in the variable v+1/v) if and only if α ¬ 1/2.
Proposition 4 of [9] shows that the quotient Zα/Z̃α (with independent components)
has an HCM density if and only if α ¬ 1/2. We refer to the whole article [9] for
other partial results on Bondesson’s conjecture. Lastly, a positive answer to the “if”
part for α ∈ (0, 1/4] ∪ [1/3, 1/2] has been recently announced in [8].

In this paper we consider the random variable(
Zα

Z̃α

)β

,

where Zα ⊥ Z̃α and β ∈ R. It is well known – see (3.3.18) in [16] or Exercise 4.21
in [6] – that (Zα/Z̃α)

α has an explicit density which is that of an affine transfor-
mation of a Cauchy random variable conditioned to be positive:

THEOREM 1.1 (Zolotarev [16]).(
Zα

Z̃α

)α

∼ sin(πα)

πα
(
x2 + 2 cos(πα)x+ 1

) ·
When α = 1/2, the above distribution is the half-Cauchy distribution whose

infinite divisibility has been obtained in [2]. This result has been refined into self-
decomposability in [7]. On the other hand, we know from (ix), p. 68, in [4] that
(Zα/Z̃α)

α has never an HCM density. Our main result shows that this property
holds when taking sufficiently high power transformations:

THEOREM 1.2. The power transformation (Zα/Z̃α)
β has an HCM density if

and only if α ¬ 1/2 and |β| ­ α/(1− α).

Whereas the “only if” part of this theorem is a direct consequence of known
analytical properties of HCM functions, the “if” part is more involved and relies
on a Pick function characterization. This result shows that the explicit density of
(Zα/Z̃α)

β is the pointwise limit of functions of the type (1.1) as soon as α ¬ 1/2
and |β| ­ α/(1− α), but we could not find any constructive argument for that.

The main interest of our theorem is to propose a refined version of Bondes-
son’s conjecture from the point of view of power transformations. It is indeed nat-
ural to raise the further

CONJECTURE 1.2. The density of Zβ
α is HCM if and only if α ¬ 1/2 and

|β| ­ α/(1− α).

Observe that our result shows already the “only if” part. Some partial results
for the “if” part are also given in [9], where it is shown that the distribution of
Zβ
α is self-decomposable when α ¬ 1/2 and β ¬ −α/(1 − α) – see Proposi-

tion 1 in [9] and the whole Section 3 therein where the critical power exponent
α/(1− α) appears naturally. In general, this conjecture on the power transforma-
tions of Zα seems hard to solve even when α is the reciprocal of an integer. In this
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paper we briefly handle the explicit case α = 1/2, which is immediate, and the
case α = 1/3, which relies on the HCM property for the modified Bessel function
Kν . This latter property leads to the following

THEOREM 1.3. Let γt and γs be two independent gamma random variables.
The density of

√
γtγs is HCM if and only if |t− s| ¬ 1/2.

In particular, the square root of the product of two independent unit exponen-
tial random variables has an infinitely divisible distribution, a fact which seems
unnoticed in the literature. Recall that

√
γt does not have an infinitely divisible

distribution because of the superexponential tails of its distribution function (see
Theorem 26.1 in [11]), and hence it is not HCM either.

2. PROOF OF THEOREM 1.2

Let us consider the function

(2.1) fα,t(x) =
1

x2t + 2 cos(πα)xt + 1

with α ∈ (0, 1) and t ­ 0. The function fα,t is, up to the multiplication by the func-
tion sin(πα)txt−1/πα, the density of (Zα/Z̃α)

α/t. Hence Theorem 1.2 amounts
to show that fα,t is HCM if and only if α ¬ 1/2 and t ¬ 1− α.

2.1. Proof of the “only if” part. The condition α ¬ 1/2 is necessary because
otherwise the function fα,t would be locally increasing at 0+ (see (x), p. 68, in [4]).
To show the necessity of t ¬ 1 − α it suffices to invoke the fact that an HCM
function can be extended to an analytic function on C \R− (see (ix), p. 68, in [4]).
More precisely, let

(2.2) Pα(z) = z2 + 2 cos(πα)z + 1.

Note that this polynomial has two zeroes e±i(1−α)π and that the power function zt

is surjective from C \ R− onto the cone {ρeiθ; (ρ, θ) ∈ (0,∞) × (−πt, πt)}, so
that the function Pα(z

t) vanishes on C \ R− if and only if t > 1− α. Hence, fα,t
has an analytic continuation on C \ R− if and only if t ¬ 1− α.

2.2. Proof of the “if” part. By formula (iv), p. 68, in [4] it is enough to prove
that fα,1−α is HCM. Observe first that

fα,1−α(x) =
1

x2(1−α) + 2 cos(πα)x1−αx1−α + 1
→ 1

(x+ 1)2

as α→ 0, and that the limit is of the form (1.1).
Formula (iv), p. 68, and Theorem 5.4.1 in [4] show that it is enough to prove

that G = − log(fα,1−α) is a Thorin–Bernstein function. By Theorem 8.2 (ii) in [12],
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this is equivalent to G′ being a Stieltjes function in the sense of Definition 2.1
in [12]. We will use the Pick characterization of Stieltjes transform given by Corol-
lary 7.4 in [12]. In fact, since the family of all Stieltjes functions is closed under
pointwise limits (see Theorem 2.2 (iii) in [12]), it suffices to show that

Gε = − log(fα,1−α−ε)

is a Stieltjes function for ε > 0 small enough. Fixing ε > 0, we saw during the
proof of the “only if” part that fα,1−α−ε has an analytic continuation on C \ R−.
Moreover, the function does not vanish on C \R−. All in all Gε has also an analytic
continuation on C \ R−. Hence we need to check that

Im(z) > 0 ⇒ Im
(
G′ε(z)

)
¬ 0.

The function h = − Im(G′ε) defined on {z ∈ C; Im(z) > 0} is a harmonic func-
tion as the imaginary part of the analytic function −G′ε. Besides, h can be ex-
tended continuously to H = {z ∈ C; Im(z) ­ 0} and vanishes on (0,∞). Lastly,
it is clear that h(z)→ 0 as |z| → ∞ uniformly on H. Hence, setting

m = inf
z∈H

h(z),

we see that m ∈ (−∞, 0]. We will now prove that m = 0. Applying the minimum
principle to the harmonic function h : {z ∈ C; Im(z) > 0} → R, we see that the
latter property follows as soon as h(−x) ­ 0 for all x > 0. First, we compute, for
all z ∈ H,

h(z) = −2(1− α− ε) Im

(
z−(α+ε) z1−α−ε + cos(πα)

z2(1−α−ε) + 2 cos(πα)z1−α−ε + 1

)
.

Hence, setting −x = ρ1/(1−α−ε)eiπ for some ρ > 0 we find

h (−x) = −A Im
[
e−i(α+ε)π

(
ρei(1−α−ε)π + cos(πα)

)
×

(
ρ2e−i2(1−α−ε)π + 2 cos(πα)ρe−i(1−α−ε)π + 1

)]
= A cos(πα) sin

(
(α+ ε)π

)(
ρ2 − 2

cos
(
(α+ ε)π

)
cos(πα)

ρ+ 1︸ ︷︷ ︸
­0

)

with

A =
2(1− α− ε)ρ−(α+ε)/(1−α−ε)

|ρ2ei2(1−α−ε)π + 2 cos(πα)ρei(1−α−ε)π + 1|2
­ 0.

This completes the proof.

In the following figure we give two plots of the function h along the lines
{Im(z) = 1} and {Im(z) = 0.1} for α = 1/5 and ε = 1/10.
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Figure 1. Plot of h along the lines Im(z) = c

2.3. Remarks

2.3.1. The cases α = 1/2 and α = 1/3 Here we give another way to handle
the two cases α = 1/2 and α = 1/3 proving directly the HCM property for Z1/2

and
√

Z1/3.
Using the identity (1.3) with n = 2, i.e.,

Z1/2
d
=

1

4γ1/2
,

we infer that Z1/2 has an HCM density.
The case α = 1/3 is a little bit more involved. By using a change of variable

and formula 2.8.31 in [16], the density of
√

Z1/3 is given by

2

3πx2
K1/3

(
2

3
√
3x

)
,

where

Kν(x) =
∞∫
0

cosh(νy)e−x cosh(y)dy, ν ∈ R,

is a modified Bessel function. In Section 3 we will prove that this latter function is
HCM if and only if |ν| ¬ 1/2.

2.3.2. Our result claims that the function log
(
x2t + 2 cos(πα)xt + 1

)
is a

Thorin–Bernstein function in the sense of Chapter 8 in [12] if and only if α ∈
[0, 1/2] and t ∈ [0, 1− α]. In other words, the function

x2t + 2 cos(πα)xt + 1

x2t−1 + cos(πα)xt−1

is a complete Bernstein function if and only if α ∈ [0, 1/2] and t ∈ [0, 1− α].



HCM property and the half-Cauchy distribution 197

2.3.3. A consequence of our result is that the function fα,t is CM for all α ¬
1/2, t ∈ [0, 1− α]. When t ¬ 1/2, this property follows also from the immediate
fact that fα,t is the reciprocal of a Bernstein function, hence the Laplace transform
of the potential measure of some subordinator – see Chapter 1 in [12] for details
and terminology. On the other hand, the function x2(1−α) + 2 cos(πα)x1−α + 1 is
not Bernstein for α < 1/2.

One could ask if fα,1−α is also a Stieltjes function, viz. the double Laplace
transform of a non-negative measure. The answer is however negative when α <
1/2. Indeed, the Stieltjes inversion formula (see Chapter VIII, Theorem 7.a, in [15])
would entail

m(dx) = − 1

π
lim
ε→0+

Im [fα,1−α(−x+ iε)] dx,

and we can check that the right-hand side is not non-negative. Another way to see
this is to use again the fact that 1/fα,1−α is not a Bernstein function, hence not a
complete Bernstein function (see Chapter 6 in [12]).

2.3.4. Writing

fα,t(uv)fα,t(u/v) =
1

u4t + c2u2t + 1 + c(ut + u3t)wt + u2tw2t

with wa = va + v−a for all a ­ 0 and using the fact that w 7→ wa is a Bernstein
function when a ∈ [0, 1] (see p. 183 in [3]), we see that the right-hand side is CM
in w for all α, t ¬ 1/2. But again, this argument does not work for t = 1− α.

3. PROOF OF THEOREM 1.3

3.1. The density of
√
γtγs is given explicitly through the modified Bessel

function Kt−s by
4xt+s−1

Γ(t)Γ(s)
Kt−s(2x)

for all s, t > 0. Indeed,

d

dx
P(
√
γtγs ¬ x) =

d

dx

∞∫
0

P(γt ¬ x2/u)
us−1e−u

Γ(s)
du

=
2xt+s−1

Γ(t)Γ(s)

∞∫
0

vs−t−1 e−x(v+v−1) dv

=
4xt+s−1

Γ(t)Γ(s)

∞∫
0

cosh
(
(s− t)y

)
e−2x cosh(y) dy,

where we made the substitutions u = vx and v = ey. Then the density is HCM if
and only if the function Kt−s is HCM. On the other hand, formula 9.6.23 in [1]
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states that for all ν > −1/2 one has

(3.1) Kν(x) =

√
π(x/2)ν

Γ(ν + 1/2)

∞∫
1

e−xy
dy

(y2 − 1)1/2−ν
,

and hence

Kν(x) = Cν x
ν e−x

∞∫
0

e−xy
dy(

y(y + 2)
)1/2−ν

for some constant Cν > 0. For ν ¬ 1/2 the function
(
y(y + 2)

)ν−1/2 is HCM,
thus the function is the density of a widened GGC – we use the terminology of
Chapter 3.5 in [4]. Therefore, its Laplace transform is HCM, and hence Kν is
HCM.

It remains to show that, for ν > 1/2, Kν is not HCM. Assume the contrary.
Then it follows from (3.1) that the Laplace transform

∫∞
1

e−xy(y2 − 1)ν−1/2dy

is HCM, and hence the function (y2 − 1)ν−1/2 is a widened GGC on (1,∞). But
then

(
y(y + 2)

)ν−1/2 is a widened GGC on (0,∞). Applying Theorems 4.1.4 and

6.2.4 in [4], we see that e−y
(
y(y + 2)

)ν−1/2 is proportional to the density of a
GGC on (0,∞) whose Thorin mass is ν + 1/2. Theorem 4.1.1 in [4] then implies
that e−y(y + 2)ν−1/2 is CM. However, it is easily shown that this latter function is
not CM when ν > 1/2.

3.2. Remark. It follows from the product formula 9.6.24 in [1] that for all
ν ∈ (−1/2, 1/2), x, y > 0, one has

Kν(x)Kν(y) = 2 cos(πν)
∞∫
0

K2ν

(
2
√
xy sinh(t)

)
e−(x+y) cosh(t)dt.

Hence, for all u, v > 0,

Kν(uv)Kν(u/v) = 2 cos(πν)
∞∫
0

K2ν

(
2u sinh(t)

)
e−uw cosh(t)︸ ︷︷ ︸

CM in w

dt,

and since the CM class is closed under mixing (see Chapter 1 in [12]), all in all
this shows that Kν(uv)Kν(u/v) is CM in the variable w = v + 1/v, which entails
the required HCM property for

√
γtγs when |t− s| ¬ 1/2. The converse cannot be

retrieved with this formula which is less powerful than (3.1) in the HCM-context.

4. FURTHER REMARKS AND COMMENTS

4.1. Infinite divisibility of (Zα/Z̃α)α distribution. The infinite divisibility of
the half-Cauchy distribution was proved in [2]. As the author mentions in Re-
mark 7.2, the half-Cauchy is a gamma mixture with shape parameter 2. In other
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words, the function

g(x) =
1

x(x2 + 1)
=
∞∫
0

e−xy
(
1− cos(y)

)
dy

is CM. In [10], Kristiansen proved that a mixture with shape parameter smaller
than 2 is infinitely divisible, and hence gave a new proof of the infinite divisibility
of this distribution. It is then easy to see that the distribution of (Zα/Z̃α)

α is also
infinitely divisible when 0 < α < 1/2. Indeed,

1

x
(
x2 + 2 cos(πα)x+ 1

) =
(
sin−3(πα)

)(
1 +

cos(πα)

x

)
g

(
x+ cos(πα)

sin(πα)

)
is a CM function.

4.2. Complete monotonicity of fα,t. Set α ¬ 1/2. We know that the function
fα,t is CM for all 0 ¬ t ¬ 1 − α (see Remark 2.3.3). Besides, this last constant
1− α is optimal for the HCM property of fα,t by our main result. Lastly, it is clear
– see again Chapter 1 in [12] – that there exists some tα ­ 1− α such that fα,t is
CM if and only if t ¬ tα, and it is a natural question whether tα = 1 − α or not.
The next proposition entails that tα < 1.

PROPOSITION 4.1. The function fα,1 is not CM for any α ∈ (0, 1).

P r o o f. Using the Laplace inversion formula (see Chapter II, Theorem 7.4,
in [15]), by a computation of the residues of the function z 7→ eλzfα,1(z) we obtain

L −1f(λ) =
1

2iπ

∫
Re(z)=c

eλzfα,1(z)dz = e−λa
sin(λb)

b

with a = cos(πα) and b = sin(πα). Therefore, (2iπ)−1
∫
Re(z)=c

eλzg(z)dz does
not have a non-negative sign for all λ > 0, and hence fα,1 is not CM. �

Recall that x−α fα,1−α(x) is up to a constant the density of (Zα/Z̃α)
α/(1−α).

Consequently, observe that the distribution is a gamma mixture with shape param-
eter 1− α. In other words, we have the factorization(

Zα

Z̃α

)α/(1−α)
d
= γ1−α × Yα,

where Yα is some positive random variable independent of γ1−α. More generally,
it is easy to see that fα,t is CM if and only if the distribution of (Zα/Z̃α)

α/t is a
gamma mixture with shape parameter t, which means that the function

s 7→
Γ
(
1− s

t

)
Γ
(
1 + s

t

)
Γ(t)

Γ
(
1− αs

t

)
Γ
(
1 + αs

t

)
Γ(t+ s)

is the Mellin transform of some probability distribution. However, it is not easy to
prove directly this latter property.
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