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Abstract. Let us assume that (B
(1)
t , B

(2)
t , B

(3)
t + µt) is a three-

dimensional Brownian motion with drift µ, starting at the origin. Then
Xt = ∥(B(1)

t , B
(2)
t , B

(3)
t + µt)∥, its distance from the starting point, is a

diffusion with many applications. We investigate the supremum of (Xt),
give an infinite-series formula for its distribution function and an exact esti-
mate of the density of this distribution in terms of elementary functions.
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1. INTRODUCTION

In his famous paper [10] (see also [9], p. 436) David Williams showed how one
can decompose the paths of a transient one-dimensional diffusion at its maximum
(or minimum). One of the best-known examples of such decomposition is that of
B(t) + µt, a Brownian motion with a positive drift µ, as a Brownian motion with
a negative drift B(t)− µt and a diffusion with generator ∆µ,

(1.1) ∆µ =
1

2

d2

dx2
+ µ coth(µx)

d

dx
.

Namely, for µ > 0 let B(t)− µt be a Brownian motion with constant drift −µ, Zt

a diffusion with generator (1.1), started at zero, and let γ be a random variable with
exponential distribution with parameter 1

2µ . Assume that Bt, Zt and γ, defined on
the same probability space, are independent. Put τ = inf{t > 0 : Bt − µt = −γ}.
Then the process

Xt =

{
Bt − µt, 0 ¬ t ¬ τ,

Zt−τ − γ, t > τ,
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has the same law as Bt + µt, a Brownian motion with a positive drift µ. Williams
[10] also showed that Zt can be viewed as a Brownian motion with drift condi-
tioned to stay positive forever. Later on a process with generator (1.1), known as a
hyperbolic Bessel process ([8], p. 357) or as a Bessel process of drifting Brownian
motion and denoted by BES(3, µ) (see [9], [5]), appeared also in many papers as a
drifting Brownian motion conditioned to not to hit zero. Recently, it was proved in
[1] that it can be obtained as a deterministic involution of Brownian motion with
drift µ. If µ = 1 then (Zt) is a radial part of a hyperbolic Brownian motion in
three-dimensional hyperbolic space.

The transition density function of (Zt) is well known (cf. [7] or [5]) but to
our best knowledge, the distribution of different functionals of this process has
not been investigated yet. In this paper we investigate the process (Zt) killed on
exiting interval (0, r0) and give a formula describing the distribution of Mt =
sups¬t Zs, the supremum of the process (Zt). Because the formula is given as an
infinite series, we obtain its exact estimate using elementary functions. Moreover,
our method of estimation applied to a theta function ssy(v, t), used in a hand-
book by Borodin and Salminen [2], gives a very precise estimate of this function
(cf. Remark 5.1 after Theorem 5.3).

2. TRANSITION DENSITY OF A BESSEL PROCESS OF DRIFTING BROWNIAN MOTION,
KILLED ON EXITING INTERVAL (0, r0)

Let Z(t) be a diffusion on (0,∞) generated by the operator (1.1) with µ > 0.
The speed measure of this diffusion is equal to m(dy) = sinh2(µy) dy, and with
respect to m(dy) the transition density of Z(t) has the following form (cf. [7]):

(2.1) p(t;x, y) =
e−µ

2t/2(e−(y−x)
2/(2t) − e−(y+x)2/(2t))√

2πt sinh(µx) sinh(µy)
.

By (Zr0
t ) we will denote the process killed on exiting (0, r0). For positive µ, the

process starting from x > 0 cannot reach zero and drifts to infinity so that almost
all trajectories will be killed at r0. Even if (Zt) starts from zero, with probability
one it will never visit zero again.

The transition density pr0(t;x, y) of (Zr0
t ), with respect to m(dy), is a solution

of the following Dirichlet problem:

(2.2)


∂
∂tp

r0(t;x, y) = ∆µp
r0(t;x, y), t > 0, x ∈ (0, r0), y ∈ (0, r0),

pr0(t;x, r0) = 0, t > 0, x ∈ (0, r0),

limt→0 p
r0(t;x, y)m(dy) = δx(dy), x ∈ (0, r0), y ∈ (0, r0),

where δx(dy) is the Dirac delta function. Because of killing, pr0(t;x, r0) = 0 for
t > 0. Moreover, if µ > 0 then by (2.1) we have lim supy→0 p(t;x, y) < ∞ for
t, x > 0, and pr0(t;x, y) ¬ p(t;x, y) implies lim supy→0 p

r0(t;x, y) <∞.
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We will use the separation variable technique, which is well known in math-
ematical physics. Suppose that pr0(t;x, y) = Y (y)T (t). Then, by (1.1), the first
equation of the system (2.2) takes on the form

(2.3) Y (y)T ′(t) =

(
1

2
Y ′′(y) + µ coth(µy)Y ′(y)

)
T (t).

We add 1
2(λ

2 + µ2)T (t)Y (y) to both sides of (2.3) and get two separate differ-
ential equations. The solution of the first equation, T ′(t) + 1

2(λ
2 + µ2)T (t) = 0,

is T (t) = c1e
−(λ2+µ2)t/2. If in the second equation, Y ′′(y) + 2µ coth(µy)Y ′(y)

+ (λ2 + µ2)Y (y) = 0, we substitute Y (y) = u(y)/ sinh(µy) (see [6], Chapter XI,
formula (1.9)), we get

1

sinh(µy)

(
u′′(y) + λ2u(y)

)
= 0.

By the above discussion, lim supy→0 Y (y) <∞ and Y (y) = u(y)/ sinh(µy), so
limy→0 u(y) = 0. It is well known that this boundary problem has a solution if and
only if λ = nπ

r0
, n = 1, 2, . . ., and this solution (up to a multiplicative constant) is

given by un(y) = sin(nπy/r0). Thus we may expand pr0(t;x, y) as

(2.4)

pr0(t;x, y) =
∞∑
n=1

[(
an(x)

sinh(µy)
sin

(
nπy

r0

))
exp

(
−(n2π2/r20 + µ2)t

2

)]
.

To determine the coefficient an(x) let us multiply the equation (2.4) by

ak(x)
sin(kπy/r0)

sinh(µy)
,

then integrate the product over (0, r0) with respect to the measure sinh2(µy)dy
and let t→ 0. Then we get

ak(x) sin (kπx/r0)

sinh(µx)
=

r0
2
a2k(x);

hence ak(x) = 2 sin(kπx/r0)/
(
r0 sinh(µx)

)
. To sum up, we have just proved the

following theorem.

THEOREM 2.1. Transition density (with respect to the measure sinh2(µy) dy)
of the Bessel process of drifting Brownian motion, starting from x ∈ (0, r0) and
killed at r0, is given by the following formula:
(2.5)

pr0(t;x, y) =
∞∑
n=1

[(
2 sin(nπx/r0) sin(nπy/r0)

r0 sinh(µx) sinh(µy)

)
exp

(
−(n

2π2/r20 + µ2)t

2

)]
.
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Observe that

pr0(t;x, y) =

=

(
2 exp(−µ2t/2)

r0 sinh(µx) sinh(µy)

) ∞∑
n=1

sin

(
nπx

r0

)
sin

(
nπy

r0

)
e−(n

2π2t)/2

and use the Jacobi-type identity (see Exercise 3, p. 67, in [3]). In this way we get

THEOREM 2.2. Transition density (with respect to the measure sinh2(µy) dy)
of the Bessel process of drifting Brownian motion, starting from x ∈ (0, r0) and
killed at r0, is given by the following formula:

pr0(t;x, y) =

=
e−µ

2t/2

√
2πt sinh(µx) sinh(µy)

∞∑
k=−∞

[e−(y−x+2kr0)2/(2t) − e−(y+x+2kr0)2/(2t)].

3. EXIT TIME

Let us consider Mt = sups¬t Zs, the supremum of the Bessel process of drift-
ing Brownian motion. The distribution of (Mt) is closely related to the distribu-
tion of the time when the process (Zt) exits the interval (0, r0). Recall that for
µ > 0 the process (Zt) exits (0, r0) at the point r0. For r0 > 0 let us define
τr0 = inf{s : Zs > r0}. The distribution of (Mt) and the survival probability of
the killed process (Zr0

t ) are related by the following formula:

Px(Mt < r0) = Px(τr0 > t) =
r0∫
0

pr0(t;x, y) sinh2(µy)dy.

Integrating the n-th term of (2.5), we get (cf. [4], formula 2.671)
r0∫
0

sin

(
nπy

r0

)
sinh(µy)dy =

(−1)n+1πr0n sinh(µr0)

n2π2 + µ2r20
,

so that we may write the following:

THEOREM 3.1. For t, r0 > 0 and x ∈ (0, r0) the following formula holds:

(3.1) Px(Mt < r0) = Px(τr0 > t)

=
∞∑
n=1

[(
(−1)n+12πn sinh(µr0) sin(nπx/r0)

sinh(µx)(n2π2 + µ2r20)

)
exp

(
−(n

2π2/r20 + µ2)t

2

)]
.

If we differentiate the above series term by term with respect to t we get

π sinh(µr0)

sinh(µx)r20
exp

(
−µ

2t

2

) ∞∑
n=1

(−1)nn sin(nπx/r0) exp

(
−n

2π2

2r20
t

)
.
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Since Px(τr0 ∈ dt) = − ∂
∂tP

x(τr0 > t), the exit time density is given by the fol-
lowing formula.

THEOREM 3.2. For fixed r0 > 0, 0 < x < r0 and any t > 0

(3.2)
Px(τr0 ∈ dt)

dt

=
π sinh(µr0)

sinh(µx)r20
e−µ

2t/2
∞∑
n=1

(−1)n+1n sin(nπx/r0)e
−n2π2t/(2r20).

In order to obtain another representation of the exit time density, we will use
the Poisson summation formula (cf. (13.4) in [11]): for any function g absolutely
integrable on (−∞, ∞)

(3.3)
∞∑

n=−∞
g(n) =

∞∑
k=−∞

∞∫
−∞

g(x)e−2πikxdx.

Note that the series in formula (3.2) can be written in the following form:

∞∑
n=1

(−1)n+1n sin

(
nπx

r0

)
e−n

2π2t/(2r20)

=
1

2

∞∑
n=−∞

(−1)n+1n sin

(
nπx

r0

)
e−n

2π2t/(2r20).

In order to use (3.3), we will compute the Fourier transform of its n-th term, taking
z in place of n. First we take only the cosine of exp(−2πikz), next we integrate
by parts and finally we use formula 3.896.4 in [4] to get

(3.4)
∞∫
−∞

z sin

(
zπy

r0

)
exp

(
−z2π2t

2r20

)
exp(−2πikz)dz

=
r20√

2(πt)3/2
[(y + 2kr0)e

−(y+2kr0)2/(2t) + (y − 2kr0)e
−(y−2kr0)2/(2t)].

Observe that

sin

(
nπ(r0 − x)

r0

)
= (−1)n+1 sin(nπx/r0);

hence putting y = r0− x in (3.4) and using the Poisson formula, we get the second
representation of the exit time density:

THEOREM 3.3. For fixed r0 > 0, 0 < x < r0 and any t > 0

Px(τr0 ∈ dt)

dt
=

sinh(µr0)e
−µ2t/2

sinh(µx)
√
2πt3/2

∞∑
k=−∞

(r0 − x+ 2kr0)e
−(r0−x+2kr0)2/(2t).
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4. MEAN EXIT TIME

Now we want to compute Ex(τr0), the mean exit time of (Zt) from the interval
(0, r0). We will use the formula Ex(τr0) =

∫∞
0

tPx(τr0 ∈ dt), hence we need to
compute the integral

sinh(µr0)√
2π sinh(µx)

∞∫
0

e−µ
2t/2

√
t

∞∑
k=−∞

(r0 − x+ 2kr0)e
−(r0−x+2kr0)2/(2t)dt.

Integrating a single term we use formula (3.471(15)) from [4] and get

∞∫
0

1√
t
exp

(
−(r0 + 2kr0 − x)2

2t
− µ2t

2

)
dt =

√
2π

µ
exp(−µ|r0 + 2kr0 − x|)dt,

which gives

(4.1) Ex(τr0) =
sinh(µr0)

µ sinh(µx)

∞∑
k=−∞

[(r0 − x+ 2kr0) exp(−µ|r0 − x+ 2kr0|)]

=
sinh(µr0)

µ sinh(µx)

∞∑
k=1

[
(r0 − x+ 2kr0) exp

(
µ(−r0 + x− 2kr0)

)]
+

sinh(µr0)

µ sinh(µx)

×
[ ∞∑
k=1

[
(r0−x−2kr0) exp

(
µ(r0−x−2kr0)

)]
+(r0−x) exp

(
− µ(r0−x)

)]
.

But
∞∑
k=1

exp(−2µkr0) = 1/(e2µr0 − 1)

and
∞∑
k=1

k exp(−2µkr0) = e2µr0/(e2µr0 − 1)2.

If we put them into (4.1), after some algebraic manipulation the formula for Ex(τB)
can be simplified a lot. Namely, we get the following:

THEOREM 4.1. For any fixed r0 > 0 and any starting point x ∈ (0, r0)

Ex(τr0) =
1

µ

(
r0 coth(µr0)− x coth(µx)

)
.

5. ESTIMATES

Except for the last one, all the above formulas are given as series so that they
are not convenient for computations or applications. In this section we give exact
approximations by elementary functions of the transition density of the killed pro-
cess, of the killing time and of the density of the distribution of the supremum of
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the process. The notation f ≈ g means that there exist two absolute constants c1
and c2 such that for all possible values of variables and parameters it follows that
c1f < g < c2f .

For simplicity let us put γr0(t;x)dt = Px (τr0 ∈ dt). Recall that by Theorems
3.2 and 3.3 we have

(5.1) γr0(t, x) =
π sinh(µr0)e

−µ2t/2

sinh(µx)r20

∞∑
n=1

(−1)n+1n sin(nπx/r0)e
−n2π2t/(2r20),

(5.2) γr0(t, x) =
sinh(µr0)e

−µ2t/2

sinh(µx)
√
2πt3/2

∞∑
n=−∞

(r0 − x+ 2nr0)e
−(r0−x+2nr0)2/(2t)

and, by Theorem 2.2,

(5.3) pr0(t;x, y) =

=
e−µ

2t/2

sinh(µx) sinh(µy)
√
2πt

∞∑
n=−∞

[e−(y−x+2nr0)2/(2t) − e−(y+x+2nr0)2/(2t)].

We will start with estimates in the particular case r0 = 1. We also make separate
calculations for t ∈

(
0, 14

]
and for t ∈

[
1
4 , ∞

)
.

THEOREM 5.1. Let r0 = 1. For 0 < t ¬ 1
4 and 0 < x < 1

0.25 ¬ γ1(t, x)

(
1√

2πt3/2
x(1− x)

t+ x

sinh(µ)

sinh(µx)
e−µ

2t/2−(1−x)2/(2t)
)−1
¬ 4.02.

P r o o f. First we consider the case 0 < x ¬ 1
2 and use the formula (5.2). It

is enough to estimate only the part of γ1(t, x) consisting of a series, multiplied by
e(1−x)

2/(2t)/x, that is, the following quantity:

I =
e(1−x)

2/(2t)

x

∞∑
k=−∞

(2k + 1− x)e−(2k+1−x)2/(2t).

Observe that we can group terms of the series: k = 0 with k = −1, k = 1 with
k = −2, and so on. In this way we get

(5.4) I =
∞∑
k=0

e−2k(k+1−x)/t (2k + 1− x)− (2k + 1 + x)e−2(2k+1)x/t

x
.

Now

(t+ x)I =
∞∑
k=0

(t+ x)e−2k(k+1−x)/t (2k + 1− x)− (2k + 1 + x)e−2(2k+1)x/t

x
.
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Below we will estimate separately the term for k = 0 and terms for k ­ 1. The term
for k = 0 is equal to g(x, t) = 1 − x − t + t

x(1 − e−2x/t) − (1 + x + t)e−2x/t.
We will show that for 0 < x ¬ 1/2 and 0 < t < 1/4 it follows that g(x, t) ¬ 2.
Indeed, a derivative

∂g(x, t)

∂x
=

e−2x/t

tx2

(
2x2(1 + x)− tx

(
x(e2x/t − 1)− 2

)
− t2(e2x/t − 1)

)
is negative for x > 0 and t > 0 because e2x/t − 1 > 2x/t+ (2x)2/(2t2) and this
inequality implies that, in the formula for the derivative, the quantity in the brackets
is negative. Hence g(x, t) ¬ limx→0 g(x, t) = 2 − 2t, and this is less than 2 for
t > 0.

In order to estimate terms for k ­ 1, we use the assumptions 0 < t ¬ 1
4 , 0<x

¬ 1
2 and the inequality 1− e−x < x, valid for x > 0, and get

(t+ x)I ¬ 2 +
∞∑
k=1

e−2k
2/t

(
2k + 1 +

t

x
(2k + 1)(1− e−2(2k+1)x/t)

)
¬ 2 +

∞∑
k=1

e−8k
2
(2k + 1)(4k + 3) ¬ 2 + 21e−8 +

14

8

∞∑
k=2

8k2e−8k
2

¬ 2 + 21e−8 +
14

8

∞∑
n=32

ne−n ¬ 2.01.

To get an estimate from below, we will use the inequality 1 − e−x ­ x/(x + 1),
valid for x > −1. Using formula (5.4), we obtain, for 0 < t ¬ 1

4 and 0 < x ¬ 1
2 ,

I =
∞∑
k=0

e−2k(k+1−x)/t−2x+ (2k + 1 + x)(1− e−2(2k+1)x/t)

x

­
∞∑
k=0

e−2k(k+1−x)/t 2(2k + 1)(2k + 1− x)− 2t

t+ 2(2k + 1)x

­
∞∑
k=0

e−2k(k+1−x)/t 2k + 1− x− t

t+ x

­ 1

t+ x

∞∑
k=0

e−2k(k+1−x)/t
(
2k +

1

4

)
­ 1

4(t+ x)
,

so that (t+ x)I ­ 1
4 . Both the above estimates imply the following:

0.25 ¬ t+ x

x
e(1−x)

2/(2t)
∞∑

k=−∞
(2k + 1− x)e−(2k+1−x)2/(2t) ¬ 2.01.

If, for 0 < x ¬ 1
2 , we divide the middle term of the above inequality by (1− x) ∈[

1
2 , 1

)
, we must multiply its left- and right-hand sides by, respectively, 1 and 2.

This proves the theorem in this case.
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Now we prove the theorem in the case 1
2 ¬ x < 1 and 0 < t ¬ 1

4 . As in the
proof of the first case, we will examine the following quantity:

e(1−x)
2/(2t)

1− x

∞∑
k=−∞

(2k + 1− x)e−(2k+1−x)2/(2t) =
∞∑

k=−∞
e−(2k

2+2k(1−x))/t

+
1

1− x

∞∑
k=1

2k(e−(2k
2+2k(1−x))/t − e−(2k

2−2k(1−x))/t) = A+
1

1− x
B.

First we estimate the series denoted by A: for 0 < 1− x ¬ 1
2 and 0 < t ¬ 1

4
we get

A− 1 =
∞∑
k=1

(e−(2k
2+2k(1−x))/t + e−(2k

2−2k(1−x))/t)

¬
∞∑
k=1

(e−2k
2/t + e−(2k

2−k)/t)

¬
∞∑
k=1

(e−8k
2
+ e−4k

2
) ¬ 1

e8
+

1

e4
+
∞∑

k=16

2e−k < 0.02,

and hence 1 < A < 1.02.
Now we have to estimate 1

1−xB. Observe that B is negative for 1
2 < x < 1

because all terms of the series are negative. We will estimate the following positive
quantity:

−B
1− x

=
∞∑
k=1

2k

(
e−(2k

2−2k(1−x))/t − e−(2k
2+2k(1−x))/t

1− x

)
=
∞∑
k=1

2ke−2k
2/t

(
e2k(1−x)/t − e−2k(1−x)/t

1− x

)
= 4

∞∑
k=1

2k2

t
e−2k

2/t sinh
(
2k(1− x)/t

)
2k(1− x)/t

.

For fixed t > 0 and k = 1, 2, 3, . . . the function

g(x) =
sinh

(
2k(1− x)/t

)
2k(1− x)/t

is decreasing for 1
2 ¬ x < 1, hence its maximal value is attained for x = 1

2 and is
equal to

sinh(k/t)

k/t
=

ek/t − e−k/t

2k/t
.
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Thus

0 <
−B
1− x

= 4
∞∑
k=1

2k2

t
e−2k

2/t e
k/t − e−k/t

2k/t
¬ 8

∞∑
k=1

ke−(2k
2−k)/t

¬ 8
∞∑
k=1

ke−k
2/t ¬ 2

∞∑
k=1

4k2e−4k
2 ¬ 2

(
4

e4
+
∞∑

n=16

ne−n
)
¬ 0.15.

Finally, using the estimates −0.15 < B/(1 − x) < 0 and 1 < A < 1.02, we
get the desired result: for 0 < t ¬ 1

2 and 1
2 ¬ x < 1

0.85 < A+
1

1− x
B < 1.02,

which, for 1
2 ¬ x < 1, implies the following:

0.85 ¬ γ1(t, x)

(
1√

2πt3/2
(1− x)

sinh(µ)

sinh(µx)
e−µ

2t/2−(1−x)2/(2t)
)−1
¬ 1.02.

If we want to write the factor x(1− x)/(t+ x) instead of (1− x) in the denomina-
tor, we need to multiply the right-hand side constant by 3/2 because for 0 < t ¬ 1

4
and 1

2 ¬ x < 1 we have the relation 2
3 ¬ x/(t + x) < 1. This gives the estimate

for t ­ 1
4 with constants 0.85 and 1.53. Finally, taking into account estimates for

0 < x ¬ 1
2 and for 1

2 ¬ x < 1 we get the desired estimate, which completes the
proof of the theorem. �

Now we will give the estimate for t ­ 1
4 .

THEOREM 5.2. For t ­ 1
4 and 0 < x < 1

0.8 ¬ γ1(t, x)

(
π sin(πx)

sinh(µ)

sinh(µx)
e−(µ

2+π2)t/2

)−1
¬ 1.2.

P r o o f. For t ­ 1
4 we use (5.1) and the inequality |sin(kπx)| ¬ k sin(πx),

valid for 0 < x < 1. The first term of the series
∞∑
k=1

(−1)k+1k sin(kπx)e−k
2π2t/2

is much larger than the sum of the absolute values of all the rest:

|
∞∑
k=2

(−1)k+1k sin(kπx)e−k
2π2t/2| ¬ sin(πx)e−π

2t/2
∞∑
k=2

k2e−(k
2−1)π2t/2

¬ sin(πx)e−π
2t/2

∞∑
n=4

ne−(n−1)π
2/8 ¬ e−π

2/4(4eπ
2/8 − 3)

(eπ2/8 − 1)2
sin(πx)e−π

2t/2

¬ 0.2 sin(πx)e−π
2t/2.
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This means that

0.8 sin(πx)e−π
2t/2 ¬

∞∑
k=1

(−1)k+1k sin(kπx)e−k
2π2t/2 ¬ 1.2 sin(πx)e−π

2t/2,

and hence for t ­ 1/4 and 0 < x < 1

0.8π sin(πx)
sinh(µ)

sinh(µx)
e−µ

2t/2−π2t/2 ¬ γ1(t, x)

¬ 1.2π sin(πx)
sinh(µ)

sinh(µx)
e−µ

2t/2−π2t/2,

which completes the proof. �

Now, because for all x ∈ (0, 1) we have π2 < π sin(πx)/
(
x(1− x)

)
< 4π,

the above inequality implies the following:

(5.5) 0.8π2 ¬ γ1(t, x)

(
x(1− x)

sinh(µ)

sinh(µx)
e−µ

2t/2−π2t/2

)−1
¬ 4.8π.

Observe that the above inequality differs from that given in Theorem 5.1 for the
case 0 < x ¬ 1

2 : it does not contain the factor 1/(
√
2πt3/2) in the denominator and

instead of the factor e−(1−x)
2/(2t) it has e−π

2t/2. If we want to have one estimate
for all t > 0 and 0 < x < 1, we must add such factors. Multiplying the estimating
function from Theorem 5.1 by e−π

2t/2 ∈ (e−π
2/8, 1), we must multiply the con-

stant on the left-hand side by e−π
2/8 ≈ 0.29. This operation changes the constant

1
4 from Theorem 5.1 to e−π

2/8/4 ≈ 0.0728 > 0.07.
On the other hand, the estimating function from the denominator in (5.5) must

be multiplied by (1 + t)5/2e−(1−x)
2/(2t)/

(√
2π(t + x)t3/2

)
. But for t ­ 1

4 and
0 < x < 1 the above function is greater than 1/

√
2π ≈ 0.3989 . . . and less than

25
√
5e−1/8/(4

√
2π) ≈ 4.92 . . . < 5. Hence the constant 4.8π from (5.5) must be

changed to 5 · 4.8π = 24π, and the constant 0.8π2 from (5.5) must be changed to
0.8π2/

√
2π > 3.1499 > π.

In this way Theorems 5.1 and 5.2 together imply the following:

COROLLARY 5.1. For all t > 0 and 0 < x < 1 we have

0.07 ¬ γ1(t, x)

(
x(1− x)

t+ x

sinh(µ)

sinh(µx)

(1 + t)5/2√
2πt3/2

exp

(
− µ2+π2

2
t− (1−x)2

2t

))−1
¬ 24π < 75.4.

It is easy to notice that by (5.2) the following scaling property holds:

γr0(t, x) =
sinh(µx/r0)

sinh(µ) sinh(µx)r20
exp

(
−µ
2
t

(
1− 1

r20

))
γ1

(
t

r20
,
x

r0

)
.

This together with the above corollary proves the following:



212 A. Pyć et al.

THEOREM 5.3. For µ, r0, t > 0 and 0 < x < r0 we have

(5.6) 0.07 ¬ γr0(t, x)

(
x(r0 − x)

t+ r0x

sinh(µr0)

sinh(µx)

(r20 + t)5/2√
2πr40t

3/2

)−1
×

(
exp

(
− (r0µ)

2 + π2

2r20
t− (r0 − x)2

2t

))−1
¬ 75.4.

REMARK 5.1. Many formulas in the book [2] are given in the language of a
theta function of imaginary argument (cf. [2], p. 641):

ssy(v, t) =
1√

2πy3/2

∞∑
k=−∞

(t− v + 2kt)e−(t−v+2kt)2/(2y), v ¬ t.

Observe that sst(x, r0) is precisely the series in our γr0(t, x) and was estimated
above. Using our method we can give an estimate of sst(x, r0) for all possible
values of variables (like we did it in Theorem 5.3 for γr0(t, x)) but estimates for
different sets of t and x, given in Theorems 5.1 and 5.2, are much more exact. For
instance, the proof of Theorem 5.1 gives the following: for r0 = 1, 0 < t ¬ 1

4 and
0 < x ¬ 1

2 we have

0.25 ¬ sst(x, 1)

(
x√

2πt3(t+ x)
e−(1−x)

2/(2t)

)−1
¬ 2.01.

Now we estimate the density of the transition probability of the killed process.

THEOREM 5.4. For fixed r0 > 0, all x, y ∈ (0, r0) and t > 0

pr0(t;x, y) ≈ (r20 + t)5/2

r50 sinh(µx) sinh(µy)
√
t

(
1 ∧ xy

t

)(
1 ∧ (r0 − x)(r0 − y)

t

)
× exp

(
−(r0µ)

2 + π2

2r20
t− (x− y)2

2t

)
.

In the above estimate we can take the constants c1 = 0.0029 and c2 = 2413.

P r o o f. Observe that
(5.7)

pr0(t;x, y) =
sinh(µx/r0) sinh(µy/r0)

sinh(µx) sinh(µy)r0
exp

(
−µ

2t

2

(
1− 1

r20

))
p1
(

t

r20
;
x

r0
,
y

r0

)
.

Thus it is sufficient to consider only the case when r0 = 1. Define the following
function:

λ(w) =
1√

2πt3/2

∞∑
k=−∞

(w + 2k) exp

(
−(w + 2k)2

2t

)
, w ∈ R.
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Note that the function sst(0, w) mentioned in Remark 5.1 is given by the same
series, but the range of its argument w is different. By the formula (5.3) we have

p1(t;x, y) =
e−µ

2t/2

sinh(µx) sinh(µy)

x+y∫
x−y

λ(w)dw.

From the definition of λ(w) it follows that

λ(−w) = −λ(w), λ(1 + w) = −λ(1− w),

which implies

p1(t;x, y) =
e−µ

2t/2

sinh(µx) sinh(µy)

1−|1−x−y|∫
|x−y|

λ(w)dw.

Observe that |x− y| < 1− |1− x− y| for x, y ∈ (0, 1). Because, by (5.2),

γ1(t, x) =
sinh(µ)e−µ

2t/2

sinh(µx)
λ(1− x),

we get, by virtue of Corollary 5.1,

(5.8) λ(1− x) ≈ x(1− x)

t+ x

(1 + t)5/2

t3/2
exp

(
−π

2

2
t− (1− x)2

2t

)
.

Consequently,

p1(t;x, y) ≈ e−(µ
2+π2)t/2(1 + t)5/2

sinh(µx) sinh(µy)t3/2

1−|1−x−y|∫
|x−y|

w(1− w)

t+ (1− w)
e−w

2/(2t)dw.

Now, substituting w =
√
1− vt, we get

1− w = 1−
√
1− vt =

vt

1 +
√
1− vt

and dw =
−t√
1− vt

,

and hence

(5.9)
1

2
tv ¬ 1− w ¬ tv.

Combining this with Lemma 6.1 from the Appendix, we obtain

p1(t;x, y) ≈ e−(µ
2+π2)t/2(1 + t)5/2

sinh(µx) sinh(µy)t1/2
e−1/(2t)

(1−(x−y)2)/t∫
(1−(1−|1−x−y|)2)/t

v

1 + v
ev/2dv

≈ e−t(µ
2+π2)/2(1 + t)5/2

sinh(µx) sinh(µy)t1/2
e−(x−y)

2/(2t)

×
(
1 ∧ 1− (x− y)2

t

)(
1 ∧ (1− |1− x− y|)2 − (x− y)2

t

)
.
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We rewrite the expression in the last parentheses as follows:

(1− |1− x− y|)2 − (x− y)2 =

{
4xy, y + x < 1,

4(1− x)(1− y), y + x ­ 1,

= 4
[
xy ∧

(
(1− x)(1− y)

)]
.

Moreover, it is easy to check that 1 ¬
(
1− (x− y)2

)
/(1− x)(1− y) ¬ 4 for

0 ¬ x ¬ 1− y ¬ 1. Since f(x, y) = 1− (x− y)2 = f(1− x, 1− y), we get for
all x, y ∈ (0, 1)

1 ¬ 1− (x− y)2

(xy) ∨
(
(1− x)(1− y)

) ¬ 4.

Thus for all x, y ∈ (0, 1) we obtain(
1 ∧ 1− (x− y)2

t

)(
1 ∧ (1− |1− x− y|)2 − (x− y)2

t

)
¬ 16

(
1 ∧

(xy) ∨
(
(1− x)(1− y)

)
t

)(
1 ∧

(xy) ∧
(
(1− x)(1− y)

)
t

)
= 16

(
1 ∧ xy

t

)(
1 ∧ (1− x)(1− y)

t

)
and (

1 ∧ 1− (x− y)2

t

)(
1 ∧ (1− |1− x− y|)2 − (x− y)2

t

)
­

(
1 ∧ xy

t

)(
1 ∧ (1− x)(1− y)

t

)
.

Theorem 5.3 implies that in the estimate (5.8) of λ(x) we have the constants
c1 = 0.07 and c2 = 75.4. Using this, the above inequalities, constants from Lem-
ma 6.1 in Appendix and inequality (5.9), we get the constants in the assertion. �

Recall that Mt = sup0<s¬t Zs and put m(t, x, y)dy = Px(Mt ∈ dy). An es-
timate of this density is the most complicated. In the proof we will use three ele-
mentary lemmas, which will be proved in the Appendix.

THEOREM 5.5. For all 0 < x < y and t > 0 we have

m(t;x, y) ≈ x(y − x)

y2t

sinh(µy)

sinh(µx)

(y2 + t)5/2
(
1 + t3/2

y3
+
√
t

y−x +
√
tµ
)

(
y2 + t

(
(yµ)2 + 1

))
(t+ yx)

×
exp

(
−(y − x)2/(2t)− (yµ)2+π2

2y2
t
)

√
1 + (y−x)2y2

t(y2+t((yµ)2+1))

.
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P r o o f. By the strong Markov property we have for y′ > y > x

Px
(
Mt ∈ (y, y′)

)
= Px(τy < t, τy′ > t)

= Ex[τy < t;Ey(τy′ > t− τy)] =
t∫
0

γy(u, x)
∞∫
t−u

γy
′
(v, y) dv du.

By (5.6) we obtain

Px
(
Mt ∈ (y, y′)

)
≈ x(y − x)y(y′ − y)

(y′y)4
sinh(µy′)

sinh(µx)

×
t∫
0

(y2 + u)5/2

(u+ yx)u3/2
exp

(
−(yµ)

2 + π2

2y2
u− (y − x)2

2u

)
×
∞∫
t−u

(y′2 + v)5/2

(v + y′y)v3/2
exp

(
−(y

′µ)2 + π2

2y′2
v − (y′ − y)2

2v

)
dv du

:= F (t, x; y, y′).

Since m(t;x, y) is continuous (it is obtained by differentiating formula (3.1) with
respect to r0), we have

m(t;x, y) = lim
y′→y

Px
(
Mt ∈ (y, y′)

)
y′ − y

.

Hence

m(t;x, y) ≈ lim
y′→y

F (t, x; y, y′)

y′ − y

=
x(y − x)

y7
sinh(µy)

sinh(µx)

t∫
0

(y2 + u)5/2

(u+ yx)u3/2
exp

(
−(yµ)

2 + π2

2y2
u− (y − x)2

2u

)
×
∞∫
t−u

(y2 + v)3/2

v3/2
exp

(
−(yµ)

2 + π2

2y2
v

)
dv du

=
x(y − x)

y7
sinh(µy)

sinh(µx)
exp

(
−(yµ)

2 + π2

2y2
t

) t∫
0

(y2 + u)5/2

(u+ yx)u3/2

× exp

(
−(y − x)2

2u

)∞∫
0

(y2 + t− u+ v)3/2

(t− u+ v)3/2
exp

(
−(yµ)

2 + π2

2y2
v

)
dv du.

Now we apply Lemma 6.2 from the Appendix with a = y2, b = t − u and c =(
(yµ)2 + π2

)
/(2y2) to the inner integral and get

m(t;x, y) ≈ x(y − x)

y5
sinh(µy)

sinh(µx)
exp

(
−(yµ)

2 + π2

2y2
t

)
×

t∫
0

(y2 + u)5/2(y2 + t− u)3/2e−(y−x)
2/(2u)

√
t− u(u+ yx)u3/2

(
y2 + (t− u)

(
(yµ)2 + 1

))du.
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We split the above-given integral into two parts:
∫ t/2

0
+
∫ t

t/2
= I1 + I2, and sub-

stitute

w =
(y − x)2

2

(
1

u
− 2

t

)
, w =

(y − x)2

2

(
1

u
− 1

t

)
in I1 and I2, respectively. Before the substitution we use the following estimates:
t− u ≈ t for u ∈

(
0, t

2

)
and u ≈ t for u ∈

(
t
2 , t

)
. Additionally, the second substi-

tution gives t− u = 2t2w/
(
2tw + (y − x)2

)
. Consequently,

I1 ≈
(y2 + t)3/2√

t
(
y2 + t

(
(yµ)2 + 1

)) t/2∫
0

(y2 + u)5/2e−(y−x)
2/(2u)

(u+ yx)u3/2
du

=

√
2y4(y2 + t)3/2e−(y−x)

2/t

√
tx(y − x)

(
y2 + t

(
(yµ)2 + 1

))
×
∞∫
0

(
w + (y − x)2

(
1
t +

1
2y2

))5/2
e−w(

w + (y−x)2
t

)2 (
w + (y − x)2

(
1
t +

1
2xy

))dw,
I2 ≈

(y2 + t)5/2

(t+ yx)t3/2

t∫
t/2

(y2 + t− u)3/2e−(y−x)
2/(2u)

√
t− u

(
y2 + (t− u)

(
(yµ)2 + 1

))du
=

2(y2 + t)4e−(y−x)
2/(2t)

(y − x)2(t+ yx)
(
y2 + t(yµ)2 + 1

)
×

(y−x)2/(2t)∫
0

(
w + (y−x)2y2

2t(y2+t)

)3/2
e−w

√
w
(
w + (y−x)2y2

2t(y2+t((yµ)2+1))

)dw.
Now we apply Lemma 6.3 to the integral in the estimate of I1 with

a = (y − x)2
(
1

t
+

1

2y2

)
, b =

(y − x)2

t
, c = (y − x)2

(
1

t
+

1

2yx

)
and Lemma 6.4 to the integral in the estimate of I2 with

a =
(y − x)2

2t
, b =

(y − x)2y2

2t(y2 + t)
, c =

(y − x)2y2

2t
(
y2 + t

(
(yµ)2 + 1

)) .
For (y − x)2/(2t) ­ 1 we have y2 ­ t, which implies

(y − x)2y2

2t(y2 + t)
=

(y − x)2

t

1

2(1 + t/y2)
≈ (y − x)2

t
,
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so all the assumptions of Lemma 6.4 are satisfied. Hence
I1 + I2 ≈

≈ (y2 + t)3/2y4e−(y−x)
2/t

√
t
(
y2 + t

(
(yµ)2 + 1

))
x(y − x)

(
t(y − x)

(
y2+t
ty2

)5/2(
1 + (y−x)2

t

)
yx+t
yxt

+
1

1 + (y − x)2 yx+t
yxt

)
+

(y2 + t)4e−(y−x)
2/(2t)

(y − x)2(t+ yx)
(
y2 + t

(
(yµ)2 + 1

))
×

(
1 ∧ (y − x)2

2t
+

√
t
(
y2 + t

(
(yµ)2 + 1

))
(y − x)2y2(

(y2 + t)t
)3/2√

1 + (y−x)2y2

t(y2+t((yµ)2+1))

)

=
(y2 + t)3/2y4e−(y−x)

2/(2t)

√
t
(
y2 + t

(
(yµ)2 + 1

))
(t+ yx)

×

(
(y2 + t)5/2e−(y−x)

2/(2t)

√
ty4

(
1 + (y−x)2

t

) +

t+yx
x(y−x)e

−(y−x)2/(2t)

1 + (y − x)2 yx+t
yxt

+

(
1 ∧ (y − x)2

2t

)
(y2 + t)5/2

√
t

(y − x)2y4
+

(y2 + t)
√

y2 + t
(
(yµ)2 + 1

)
√
ty2

√
1 + (y−x)2y2

t(y2+t((yµ)2+1))

)
.

Let us denote the expression in the last brackets by J (y, x, t, µ). To prove the
theorem we need to show that

(5.10) J (y, x, t, µ) ≈ y2 + t

y
√
t

1 + t3/2

y3
+
√
t

y−x +
√
tµ√

1 + (y−x)2y2

t(y2+t((yµ)2+1))

.

Assume (y − x)2/t > 1. Then we have y2 > t, which implies

(y2 + t)5/2e−(y−x)
2/(2t)

√
ty4

(
1 + (y−x)2

t

) < 2
(y2 + t)3/2

√
ty2

√
1 + (y−x)2

t

< 2
(y2 + t)

√
y2 + t

(
(yµ)2 + 1

)
√
ty2

√
1 + (y−x)2y2

t(y2+t((yµ)2+1))

,

t+yx
x(y−x)e

−(y−x)2/(2t)

1 + (y − x)2
(
yx+t
yxt

) <

√
t

y−xy√
t (y−x)

2

t

(
y2 + t

y2

)
< 2

(y2 + t)
√

y2 + t
(
(yµ)2 + 1

)
√
ty2

√
1 + (y−x)2y2

t(y2+t((yµ)2+1))

,

(
1∧ (y − x)2

2t

)
(y2 + t)5/2

√
t

(y − x)2y4
< 2

(y2 + t)3/2√
ty2 y−x√

t

< 2
(y2+t)

√
y2+t

(
(yµ)2 + 1

)
√
ty2

√
1+ (y−x)2y2

t(y2+t((yµ)2+1))

,
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so we can estimate the expression J (y, x, t, µ) from above by its last component.
But for x, y, z > 0 we have

√
x2 + y2 + z2 ≈ x+ y+ z because l2- and l1-norms

are equivalent in R3. Hence√
y2 + t

(
(yµ)2 + 1

)
y

≈ 1 +
√
tµ+

√
t

y
,

and because (y − x)2 > t, the relation (5.10) holds true.
In the case (y − x)2/t ¬ 1 we have t + xy ≈ t + y2 and also (recall that

0 < x < y)

1 + (y − x)2
yx+ t

yxt
=

y

x
+

x

y
+

(y − x)2

t
− 1 ≈ y

x
.

Hence

J (y, x, t, µ) ≈ (y2 + t)5/2√
ty4

+
t+ y2

y(y − x)

+
(y2 + t)5/2√

ty4
+

(y2 + t)
√

y2 + t
(
(yµ)2 + 1

)
√
ty2

=
y2 + t

y
√
t

(
2(y2 + t)3/2

y3
+

√
t

y − x
+

√
y2 + t

(
(yµ)2 + 1

)
y

)
≈ y2 + t

y
√
t

(
1 +

t3/2

y3
+

√
t

y − x
+
√
tµ+

√
t

y

)
,

which again is equivalent to (5.10). �

6. APPENDIX

Here we gathered four lemmas which were used in the estimates carried out
in the previous section.

LEMMA 6.1. For 0 < a < b we have

1

12
¬

b∫
a

w
1+we

w/2dw

eb/2(1 ∧ b)
(
1 ∧ (b− a)

) ¬ 2.

P r o o f. Let us put I(a, b) =
∫ b

a
w

1+we
w/2dw and let a, b ¬ 1. For w ∈ (0, 1)

the function f(w) = ew/2/(1 + w) is decreasing, and hence for such w it follows
that
√
e/2 ¬ f(w) ¬ 1. Using these inequalities we get
√
e

2

b∫
a

w dw ¬
b∫
a

w

1 + w
ew/2 dw ¬

b∫
a

w dw = b2 − a2 = (b− a)(b+ a).
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Since 0 < a < b ¬ 1, we have b < b+ a < 2b, and this implies

1

2
eb/2b(b− a) ¬

√
e

2
b(b− a) ¬ I(a, b) ¬

b∫
a

w dw ¬ 2b(b− a) ¬ 2eb/2b(b− a).

Now let b > 1. We use the inequality 1− e−x ¬ 1 ∧ x, x ­ 0, and get

I(a, b) ¬
b∫
a

ew/2dw = eb/2(1− e−(b−a)/2) ¬ eb/2
(
1 ∧ (b− a)

)
.

For x ­ 0 it follows that 1 − e−x ­ x/(1 + x) ­ 1
2(1 ∧ x). Using this, the fact

that the function x→ x/(1 + x) is increasing and (a+ b)/2 ­ 1/2, we obtain

I(a, b) ­
b∫

(a+b)/2

w

1 + w
ew/2dw ­ (a+ b)/2

1 + (a+ b)/2

b∫
(a+b)/2

ew/2dw

­
1
2

1 + 1
2

2eb/2(1− e−(b−a)/4) ­ 1

12
eb/2

(
1 ∧ (b− a)

)
,

which completes the proof. �

LEMMA 6.2. For a, b, c > 0 and ac > 1 we have

(6.1)
∞∫
0

(a+ b+ v)3/2

(b+ v)3/2
e−cv dv ≈ (a+ b)3/2√

b(1 + bc)
.

P r o o f. Let us denote the integral in the assertion by I(a, b, c). Substituting
v = s/c we obtain

(6.2) I(a, b, c) =
1

c

∞∫
0

(
(a+ b)c+ s

)3/2
(bc+ s)3/2

e−s ds.

For bc ­ 1 we get

I(a, b, c) =
1

c

(
a+ b

b

)3/2∞∫
0

(
1 + s/

(
(a+ b)c

))3/2(
1 + s/(bc)

)3/2 e−s ds ≈ 1

c

(
a+ b

b

)3/2

,

which is equivalent to (6.1). For bc < 1 we split the integral in (6.2) as follows:
1
c

∫ 1

0
+1

c

∫∞
1

= I1 + I2. Then

I2 ≈
√
c(a+ b)3/2.

In I1 we substitute s = bc t and get

I1 ≈ b
1/(bc)∫

0

(
a+b
b

)3/2
+ t3/2

(1 + t)3/2
e−bct dt ≈ b

(
a+ b

b

)3/2

+
1

c
,
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and hence

I1 + I2 ≈
1

c

(
bc

(
a+ b

b

)3/2

+ 1 + (bc)3/2
(
a+ b

b

)3/2)
.

From the assumptions bc < 1 and ac > 1 it follows that

bc

(
a+ b

b

)3/2

> (bc)3/2
(
a+ b

b

)3/2

> 1,

which completes the proof of the lemma. �

LEMMA 6.3. Let a, c > b > 0 and a < 2 if b < 1. Then we have

(6.3)
∞∫
0

(w + a)5/2

(w + b)2(w + c)
e−wdw ≈ a5/2

b(b+ 1)c
+

1

1 + c
.

P r o o f. Denote the integral in the assertion by F (a, b, c). It is clear that for
b ­ 1 we have F (a, b, c) ≈ a5/2/(b2c), which is equivalent to (6.3). For b < 1 we
split the integral into two parts:

F (a, b, c) ≈ a5/2
∞∫
0

1

(w + b)2(w + c)
e−wdw +

∞∫
0

w5/2

(w + b)2(w + c)
e−wdw.

The last integral can be approximated by 1/(1 + c) as follows:

1

1 + c
≈
∞∫
0

w3/2

(w + 1)2
w

w + c
e−wdw ¬

∞∫
0

w5/2

(w + b)2(w + c)
e−wdw

¬
∞∫
0

1√
w

w

w + c
e−wdw ≈ 1

1 + c
.

Moreover,

∞∫
0

1

(w + b)2(w + c)
e−wdw

=
1∫
0

+
∞∫
1

=
1

bc

1/b∫
0

e−budu

(1 + u)2
(
1 + b

cu
) +

∞∫
0

e−(w+1)dw

(w + b+ 1)2(w + c+ 1)

≈ 1

bc
+

1

1 + c
.

Hence for b < 1 (in this case a < 2 by assumption) we obtain

F (a, b, c) ≈ a5/2
(

1

bc
+

1

1 + c

)
+

1

1 + c
≈ a5/2

bc
+

1

1 + c
,

which is again equivalent to (6.3). �
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LEMMA 6.4. Let a > b > c > 0. Assume also that a ≈ b if a ­ 1. Then we
have

(6.4)
a∫
0

(w + b)3/2e−wdw√
w(w + c)

≈ (1 ∧ a) + b3/2√
c(1 + c)

.

P r o o f. Let us denote the integral in (6.4) by I(a, b, c). Assume now that
c ­ 1. Then we have a, b ­ 1 and it follows that

I(a, b, c) =
b3/2

c

a∫
0

(w/b+ 1)3/2e−wdw√
w(w/c+ 1)

≈ b3/2

c
.

It is equivalent to the assertion because

√
2b3/2√

c(1 + c)
>

b3/2

c
> b1/2 > 1.

In the case c < 1 we substitute w = cu. Then

(6.5) I(a, b, c) = c
a/c∫
0

(u+ b/c)3/2 e−cu√
u(u+ 1)

du.

For a ­ 1 we use the assumption that a ≈ b if a ­ 1. It follows that u+ b/c ≈ b/c

for u ∈ [0, a/c]. Hence

I(a, b, c) ≈ c

(
b

c

)3/2 a/c∫
0

e−uc√
u(u+ 1)

du ≈ b3/2√
c
,

which, as before, is equivalent to the assertion. For a < 1 the formula (6.5) gives
us the estimate

I(a, b, c) ≈ c
a/c∫
0

udu

u+ 1
+

b3/2

c

a/c∫
0

e−ucdu√
u(u+ 1)

.

The last integral is bounded by
∫ 1

0
e−udu√
u(u+1)

from below and by
∫∞
0

du√
u(u+1)

from

above. Moreover,

c
a/c∫
0

udu

u+ 1
= c

(
a

c
− ln

(
1 +

a

c

))
≈ a,

which completes the proof. �



222 A. Pyć et al.
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