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Abstract. The aim of this article is to study geometric F-semistable
and geometric F-stable distributions on the d-dimensional lattice Zd

+. We
obtain several properties for these distributions, including characterizations
in terms of their probability generating functions. We describe a relation be-
tween geometric F-semistability and geometric F-stability and their coun-
terparts on Rd

+ and, as a consequence, we derive some mixture representa-
tions and construct some examples. We establish limit theorems and discuss
the related concepts of complete and partial geometric attraction for distri-
butions on Zd

+. As an application, we derive the marginal distribution of
the innovation sequence of a Zd

+-valued stationary autoregressive process
of order p with a geometric F-stable marginal distribution.
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1. INTRODUCTION

Let d ­ 1 be a natural number. An Rd-valued random vector X is said to have
a strictly geometric semistable distribution if there exist p ∈ (0, 1) and α ∈ (0, 1)
such that

(1.1) X
d
= α

Np∑
i=1

Xi,

where (Xi, i ­ 1) is a sequence of iid Rd-valued random vectors, Xi
d
= X,

Np has the geometric distribution with parameter p, and (Xi, i ­ 1) and Np are
independent.

X is said to have a strictly geometric stable distribution if for every p ∈ (0, 1)
there exists α ∈ (0, 1) such that (1.1) holds.

Geometric stable and semistable distributions on Rd have been studied by sev-
eral authors. Klebanov et al. [11] introduced strictly geometric stable laws on the
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real line and Ramachandran [19] studied the larger class of univariate geometric
stable laws. Rachev and Samorodnitsky [18] conducted an in-depth study of geo-
metric stable distributions in Banach spaces while Kozubowski and Rachev [13],
[14] treated geometric stability in Euclidean spaces. Geometric semistability was
discussed in Mohan et al. [17] and Borowiecka [3]. In the area of applications,
geometric stable distributions arise as useful models in finance, reliability theory,
and queueing theory. We refer to the survey article by Kozubowski [12] for a fairly
exhaustive list of references on these topics.

Strictly geometric stable and semistable distributions are geometric infinitely
divisible, and thus infinitely divisible. If a random vector X has a strictly geometric
stable distribution, then there exists γ ∈ (0, 2) such that for any α, p ∈ (0, 1) for
which (1.1) holds we have p = αγ . We refer to γ as the exponent of the distribution
and to α as its order.

Strictly geometric stability and semistability relate to their classical counter-
parts through the following key characterization.

A distribution on Rd with characteristic function f(t) is strictly geometric
semistable for some p, α ∈ (0, 1) (resp., strictly geometric stable) if and only if
f(t) admits the representation

(1.2) f(t) = [1− ln f1(t)]
−1, t ∈ Rd,

where f1(t) is the characteristic function of a strictly semistable distribution on
Rd (resp., strictly stable distribution).

Let D be the closed unit ball on Rd and S the unit sphere on Rd. We denote
by B(R+) and B(S) the σ-algebra of Borel sets in R+ and S, respectively. For
E ⊂ R+ and B ⊂ S, we let EB = {ux : u ∈ E,x ∈ B}.

It follows by representation (1.2), Proposition 2.3 in Choi [7], and Theorems
14.3 and 14.7 in Sato [21] that a distribution on Rd is strictly geometric semistable
with exponent γ ∈ (0, 2) and order α ∈ (0, 1) if and only if its characteristic func-
tion f(t) has the representation

(1.3) f(t) =
[
1− ia · t+

∫
Rd

(
1 + iID(x) t · x− exp(i t · x)

)
Λ(dx)

]−1
,

where a ∈ Rd (with a = 0 if γ ̸= 1), Λ is the Lévy measure of a strictly semistable
distribution on Rd with exponent γ ∈ (0, 2) and order α ∈ (0, 1), and ID is the in-
dicator function of D. The measure Λ satisfies, for any B ∈ B(S) and E ∈ B(R+),

(1.4) Λ(EB) =
∫
B

µ(dx)
∫
E

d
(
−N(x;u)u−γ

)
,

where µ is a finite measure on S, N(x;u) is nonnegative, right-continuous in u,
and Borel measurable in x, N(x;u)u−γ is nonincreasing in u, N(x; 1) = 1, and
N(x;αu) = N(x;u).
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In the case of strict stability, the Lévy measure Λ in (1.4) simplifies to (see
Theorem 14.3 in Sato [21])

(1.5) Λ(B) =
∫
S

µ(dx)
∞∫
0

IB(ux)u
−1−γ du (B ∈ B(S)).

Bouzar [6] proposed discrete analogues of stability and semistability for distri-
butions on the d-dimensional lattice Zd

+ := Z+ × . . . × Z+, where Z+ :=
{0, 1, 2, . . .} (see also Krapavitskaite [15] and Bouzar [5] for the case d = 1).
These authors’ definitions are based on the Z+-valued multiple α ⊙F X , α ∈
(0, 1), of a Z+-valued random variable X . The operator ⊙F is due to van Harn
et al. [9] (see also Steutel and van Harn [22]) and is defined as follows:

(1.6) α⊙F X =
X∑
k=1

Yk(t) := ZX(t) (t = − lnα),

where Y1(·), Y2(·), . . . are independent copies of a continuous-time Markov branch-
ing process, independent of X , such that, for every k ­ 1, P

(
Yk(0) = 1

)
= 1. The

processes
(
Yk(·), k ­ 1

)
are driven by a composition semigroup of probability

generating functions (pgf’s) F := (Ft, t ­ 0):

(1.7) Fs ◦ Ft(z) = Fs+t(z) (|z| ¬ 1; s, t ­ 0).

For every k ­ 1 and t ­ 0, Ft(z) is the pgf of Yk(t), and the transition matrix
{pij(t)} of the Markov process Yk(·) is determined by the equation

(1.8)
∞∑
j=0

pij(t)z
j = {Ft(z)}i (|z| ¬ 1; i ­ 0).

Note that the process ZX(·) of (1.6) is itself a Markov branching process driven by
F and starting with X individuals (ZX(0) = X).

The multiplication ⊙F of (1.6) is extended to the multivariate setting as fol-
lows.

Let X = (X1, . . . , Xd) be a Zd
+-valued random vector, and α ∈ (0, 1). Then

(1.9) α⊙F X = (α⊙F X1, . . . , α⊙F Xd) =
(
ZX1(t), . . . , ZXd

(t)
)
.

The multiplications α⊙F Xj in (1.9) are performed independently for each j.
More precisely, we suppose the existence of d independent sequences

(
Y

(j)
k (t),

t ­ 0, k ­ 1
)
, j = 1, 2, . . . , d, of iid continuous-time Markov branching processes

driven by the semigroup F (see (1.6)), independent of X, such that

(1.10) ZXj (t) = α⊙F Xj =
Xj∑
k=1

Y
(j)
k (t) (t = − lnα).
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The operator α⊙F X of (1.9) was first introduced by Rao and Shanbhag [20]
for the binomial thinning semigroup F1 = (F

(1)
t , t ­ 0),

(1.11) F
(1)
t (z) = 1− e−t + e−tz (t ­ 0; |z| ¬ 1).

From the assumptions and a conditioning argument it follows that the pgf of
α⊙F X is shown to be

(1.12a) Pα⊙FX(z) = P
(
Ft(z)

)
,

where P (z) is the pgf of X, t = − lnα, and

(1.12b) Ft(z) =
(
Ft(z1), . . . , Ft(zd)

)
(z = (z1, . . . , zd); |zj | ¬ 1).

Unless noted otherwise, the notation (1.12b) for Ft(z) and z will be used through-
out the paper without further reference.

We have, by (1.7) and (1.12a),

(1.13a) α⊙F (β ⊙F X)
d
= (αβ)⊙F X (α, β ∈ (0, 1)).

Moreover, if X and Y are independent Zd
+-valued random vectors and α ∈ (0, 1),

then

(1.13b) α⊙F (X+Y)
d
= α⊙F X+ α⊙F Y.

A distribution on Zd
+ (or its pgf) is said to be F-semistable if its pgf P (z)

satisfies 0 < P (0) < 1 and

(1.14) P (z) =
[
P
(
Ft(z)

)]λ
(z ∈ [0, 1]d)

for some t > 0 and λ > 0.
A distribution on Zd

+ with pgf P (z), such that 0 < P (0) < 1, is said to be
F-stable if for every t > 0 there exists λ > 0 such that (1.14) holds.

Rao and Shanbhag ([20], pp. 160–161) introduced the notion of F-stability on
Zd
+ for the binomial thinning semigroup F1 of (1.11) (see also Gupta et al. [8]).

The aim of this article is to study geometric F-semistable and geometric F-
stable distributions on the d-dimensional lattice Zd

+. We obtain several properties
for these distributions, including characterizations in terms of their probability gen-
erating functions. We describe a relation between geometric F-semistability and
geometric F-stability and their counterparts on Rd

+ := R+ × . . . ×R+ and, as
a consequence, we derive some mixture representations and construct some ex-
amples. We establish limit theorems and discuss the related concepts of complete
and partial geometric attraction for distributions on Zd

+. The paper is organized as
follows. In Section 2 we discuss the property of geometric infinite divisibility on
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Zd
+ and state several characterizations. Geometric F-semistable and geometric F-

stable distributions on Zd
+ are introduced in Section 3. In Section 4, we establish

a relation between geometric (semi)stability for distributions on Zd
+ and geomet-

ric F-(semi)stability on Rd
+. In Section 5, we present limit theorems and discuss

the notions of complete and partial geometric attraction for distributions on Zd
+.

In Section 6, we derive, as an application, the marginal distribution of the innova-
tion sequence of a Zd

+-valued stationary autoregressive process of order p with a
geometric F-stable marginal distribution.

Many of the results in this paper are extensions of results obtained in the
univariate case by Bouzar [5] for a general semigroup of pgf’s F , and by Aly
and Bouzar [1] and Bouzar [4] for the binomial thinning semigroup F1 of (1.11).
In several instances, the proofs in the multivariate case are mere adaptations of
their univariate counterparts, and thus, wherever warranted, these proofs are either
sketched or omitted and the relevant references are provided.

In the remainder of this section we introduce some definitions and recall sev-
eral basic facts about the semigroupF = (Ft, t ­ 0). For proofs and further details
we refer to van Harn et al. [9] and Steutel and van Harn [22] and references therein.

Following Steutel and van Harn [22], Chapter V, Section 8, we impose the
following limit conditions on the composition semigroup F :

(1.15) lim
t↓0

Ft(z) = F0(z) = z, lim
t→∞

Ft(z) = 1.

The first part of (1.15) implies the continuity of the semigroup F and the
second part is equivalent to assuming that E

(
Y1(1)

)
= F ′1(1) ¬ 1, which implies

the (sub)criticality of the continuous-time Markov branching processes Y (j)
k (·) in

(1.10). We will restrict ourselves to the subcritical case (F ′1(1) < 1) and we will
assume without loss of generality that F ′1(1) = e−1 (see Remark 3.1 in van Harn
et al. [9]). In this case,

(1.16) F ′t(1) = e−t (t > 0).

By convention, and in compatibility with (1.15), we set

0⊙F X = 0 and 1⊙F X = X.

The infinitesimal generator U of the semigroup F is defined by

(1.17) U(z) = lim
t↓0

(
Ft(z)− z

)
/t (|z| ¬ 1)

and satisfies U(z) > 0 for 0 ¬ z < 1.
The related A-function is defined by

(1.18) A(z) = exp
{
−

z∫
0

(
U(x)

)−1
dx

}
(0 ¬ z ¬ 1).
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The functions U(z) and A(z) satisfy, for any t > 0,

(1.19a)
∂

∂t
Ft(z) = U

(
Ft(z)

)
= U(z)F ′t(z) (|z| ¬ 1)

and

(1.19b) A
(
Ft(z)

)
= e−tA(z) (0 ¬ z < 1).

Moreover, by (1.18), the function A(z) decreases from 1 to 0.

2. GEOMETRIC INFINITELY DIVISIBLE DISTRIBUTIONS ON Zd
+

DEFINITION 2.1. A Zd
+-valued random vector X is said to have a geometric

infinitely divisible distribution if for every p ∈ (0, 1) there exits a sequence of iid
Zd
+-valued random vectors (X(p)

i , i ­ 1) such that

(2.1) X
d
=

Np∑
i=1

X
(p)
i ,

where Np has the geometric distribution

(2.2) P (Np = k) = p(1− p)k−1 (k = 1, 2, . . .),

and Np and (X
(p)
i , i ­ 1) are independent.

It is easily seen that a Zd
+-valued random vector X with pgf P (z) has a geo-

metric infinitely divisible distribution if and only if for any p ∈ (0, 1) there exists
a pgf Gp(z) such that

(2.3) P (z) =
pGp(z)

1− (1− p)Gp(z)

or, equivalently, if and only if

(2.4) Gp(z) =
P (z)

p+ (1− p)P (z)

is a pgf for every p ∈ (0, 1).
We start out by stating a useful lemma. Its proof is straightforward.

LEMMA 2.1. Any compound-geometric distribution on Zd
+, i.e., any distribu-

tion with pgf

(2.5) P (z) =
{
1 + c

(
1−Q(z)

)}−1
,

for some constant c > 0 and some pgf Q(z), is necessarily geometric infinitely
divisible.
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Next, we give several characterizations of geometric infinitely divisible distri-
butions.

THEOREM 2.1. A Zd
+-valued random vector X with pgf P (z) has a geomet-

ric infinitely divisible distribution if and only if there exist a sequence of pgf’s(
Qn(z), n ­ 1

)
and a sequence of positive numbers (cn, n ­ 1) such that

(2.6) P (z) = lim
n→∞

(
1 + cn

(
1−Qn(z)

))−1
.

P r o o f. We start out with the “if” part. Let Pn(z) =
(
1+ cn

(
1−Qn(z)

))−1.
By Lemma 2.1 and (2.4), the function

G(n)
p (z) =

Pn(z)

p+ (1− p)Pn(z)

is a pgf for every n ­ 1 and 0 < p < 1. Thus Gp(z) = limn→∞G
(n)
p (z) exists. By

the continuity theorem, Gp(z) is a pgf that satisfies (2.4) for every 0 < p < 1. For
the “only if” part, if P (z) is the pgf of a geometric infinitely divisible distribution,
then Gp(z) of (2.4) is a pgf for any 0 < p < 1. It is easily shown that P (z) =

limp→0

(
1 + p−1

(
1−Gp(z)

))−1. �

THEOREM 2.2. Let X be a Zd
+-valued random vector with pgf P (z), 0 <

P (0) < 1. The following assertions are equivalent:

(i) X has a geometric infinitely divisible distribution.
(ii) P (z) admits the representation

(2.7) P (z) = [1− lnH(z)]−1,

where H(z) is the pgf of an infinitely divisible distribution on Zd
+.

(iii) X has a compound geometric distribution (with pgf given by (2.5)).
(iv) X satisfies the stability equation

(2.8) X
d
= B (X+ S)

for some Zd
+-valued random vector S and a binary random variable B, with val-

ues in {0, 1}, whose distribution is a mixture of a Bernoulli distribution and a
continuous distribution on (0, 1). The rv’s X, B, and S are assumed independent.

(v) For every p ∈ (0, 1), there exists a sequence of iid Zd
+-valued random

vectors (X(p)
i , i ­ 1) independent of a geometric random variable Np with param-

eter p (as in (2.2)), and with common pgf Qp(z), such that
∑Np

i=1X
(p)
i converges

in distribution to X as p→ 0.



230 N. Bouzar

(vi) There exists a sequence (bn,n ∈ Zd
+) such that bn ­ 0 for all nonzero

n and

(2.9) P (z) =
[
1 −

∑
n∈Zd

+

bnz
n1
1 . . . znd

d

]−1
with z = (z1, . . . , zd) and n = (n1, . . . , nd). In addition,

∑
n∈Zd

+
bn <∞.

P r o o f. A mere adaptation of the proof of the univariate result (Proposi-
tion 2.1 in Aly and Bouzar [1]), with an appeal to Theorem 2.1 and Lemma 2.1
above, establishes the chain (i)⇔(ii)⇔(iii)⇔(iv).

(i)⇔(v). Assuming (i), it is easily seen that (v) holds by letting X
(p)
i

d
= X for

every p ∈ (0, 1). For the converse we use an argument due to Rachev and Samorod-
nitsky [18]. For c ∈ (0, 1), let

(
Nc(j), j ­ 1

)
be iid random variables such that

Nc(j)
d
= Nc. A straightforward pgf argument shows that, for any 0 < p′ < p < 1,

Np′
d
= 1 +

Np∑
j=1

(
Nc(j)− 1

)
, c =

p′

p+ (1− p)p′
.

Note that 0 < c < p′/p. It follows that

(2.10)
Np′∑
i=1

X
(p′)
i

d
= X̃

(p′)
1 +

Np∑
j=1

Nc(j)−1∑
i=1

X
(p′)
ij ,

where X̃
(p′)
1 and {X(p′)

ij } are iid random vectors with common pgf Qp′(z). Let

Kp,p′(z) denote the pgf of
∑Nc(j)−1

i=1 X
(p′)
ij . Since, by (v), limp′→0Qp′(z) = 1, we

see by (2.10) (and again by (v)) that

lim
p′→0

pKp,p′(z)

1− (1− p)Kp,p′(z)
= P (z),

which in turn implies

Gp(z) = lim
p′→0

Kp,p′(z) =
P (z)

p+ (1− p)P (z)
.

By the continuity theorem, Gp(z) is a pgf for any p ∈ (0, 1), and thus (i) follows.
(ii)⇔(vi). Apply Theorem 2.1 in Horn and Steutel [10] to the pgf H(z). �

COROLLARY 2.1. The property of geometric infinite divisibility is closed un-
der weak convergence within the class of distributions on Zd

+.

COROLLARY 2.2. Any geometric infinitely divisible distribution on Zd
+ is nec-

essarily infinitely divisible.
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P r o o f. Let P (z) be the pgf of a geometric infinitely divisible distribution.
By Theorem 2.2 ((i)⇔(iii)) and (2.5), it follows that P (z) =

(
Pn(z)

)n, where

Pn(z) =
(
1 + c

(
1−Q(z)

))1/n for some pgf Q(z). It is clearly seen that Pn(z) is
the pgf of a compound negative binomial distribution. �

3. MULTIVARIATE GEOMETRIC F-SEMISTABILITY

DEFINITION 3.1. A Zd
+-valued random vector X is said to have a geometric

F-semistable distribution if there exist p ∈ (0, 1) and α ∈ (0, 1) such that

(3.1) X
d
= α⊙F

Np∑
i=1

Xi,

where (Xn, n ­ 1) is a sequence of iid Zd
+-valued random vectors, Xn

d
= X,

Np has the geometric distribution with parameter p (as in (2.2)), and (Xn, n ­ 1)
and Np are independent.

X is said to have a geometricF-stable distribution if for every p ∈ (0, 1) there
exists α ∈ (0, 1) such that (3.1) holds.

By definition, a distribution on Zd
+ is geometric F-stable if and only if it is

geometric F-semistable for every p ∈ (0, 1).
We state a useful characterization of geometric F-semistability that is easily

derived from Definition 3.1.

PROPOSITION 3.1. A Zd
+-valued random vector X has a geometric F-semi-

stable distribution for some p, α ∈ (0, 1) if and only if its pgf P (z) satisfies the
functional equation

(3.2) P
(
Ft(z)

)
=

P (z)

p+ (1− p)P (z)
(t = − lnα).

In the case of geometric F-stability, (3.2) holds for every p ∈ (0, 1) and some
α = α(p) > 0.

Since the i-th marginal distribution of a distribution on Zd
+ with pgf P (z) has

pgf Pi(z) = P (zi) with zi = (1, . . . , 1, z, 1, . . . , 1), z being the i-th coordinate,
it follows by Proposition 3.1 that the marginal distributions of a geometric F-
semistable (resp., geometric F-stable) distribution on Zd

+ are univariate geometric
F-semistable (resp., geometric F-stable).

LEMMA 3.1. The parameters p, α ∈ (0, 1) of a geometric F-semistable dis-
tribution on Zd

+ satisfy the condition 0 < α ¬ p < 1.

P r o o f. It suffices to prove the claim for d = 1. Let P (z) be the pgf of a
geometric F-semistable distribution on Z+ for some p, α ∈ (0, 1). By differenti-
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ating (3.2), we have

F ′t(z)P
′(Ft(z)

)
=

pP ′(z)(
p+ (1− p)P (z)

)2 (t = − lnα).

Now, by (1.19b) (note A(z) of (1.18) is decreasing), Ft(z) > z for all 0 ¬ z < 1.
Hence,

F ′t(z) = p
P ′(z)

P ′
(
Ft(z)

) 1(
p+ (1− p)P (z)

)2 ¬ p(
p+ (1− p)P (z)

)2 (0 ¬ z < 1).

Letting z ↑ 1, we infer, via (1.16), that F ′t(1) = e−t = α ¬ p. �

The property of infinite divisibility is stated next. The proof in the univariate
case (see Proposition 4.1 in Bouzar [5]) extends straightforwardly.

PROPOSITION 3.2. Geometric F-semistable and geometric F-stable distri-
butions on Zd

+ are geometric infinitely divisible, and hence infinitely divisible.

The following representation theorem links in fundamental fashion the con-
cepts of F-semistability and geometric F-semistability. Its proof is essentially the
same as the one given for the univariate version (see Theorem 4.1 in Bouzar [5]).

THEOREM 3.1. A distribution on Zd
+ with pgf P (z) is geometricF-semistable

for some p, α ∈ (0, 1) (resp., geometric F-stable) if and only if P (z) admits the
representation (2.7), where the function H(z) is the pgf of an F-semistable distri-
bution on Zd

+ that satisfies (1.14) with λ = 1/p and t = − lnα (resp., F-stable
distribution).

Additional representation theorems for geometricF-semistable and geometric
F-stable distributions on Zd

+ are given next.

THEOREM 3.2. A distribution on Zd
+ with pgf P (z) is geometricF-semistable

for some p, α ∈ (0, 1) if and only if, for any z = (z1, . . . , zd) ∈ [0, 1)d,

(3.3) P (z) =
[
1 +

( d∏
i=1

A(zi)
)γ/d

gγ,t
(
|lnA(z1)|, . . . , |lnA(zd)|

)]−1
,

where γ = ln p/ lnα ∈ (0, 1], A(z) is the A-function ofF (see (1.18)), and gγ,t(τ)
is a continuous function from Rd

+ to R+ such that

(3.4) gγ,t(τ + t) = gγ,t(τ) (τ ∈ Rd
+; t = − lnα; t = (t, . . . , t)).

P r o o f. Assume that P (z) is the pgf of a geometric F-semistable distribu-
tion for some p, α ∈ (0, 1). By Lemma 3.1, γ = ln p/ lnα ∈ (0, 1]. By Theorem
3.1, the function H(z) in (2.7) is the pgf of an F-semistable distribution on Zd

+
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with exponent γ and order t = − lnα. The representation (3.3) follows then from
Theorem 3.1 in Bouzar [6]. This proves the “only if” part. The “if” part is a direct
consequence of Theorem 3.1. �

THEOREM 3.3. A distribution on Zd
+ with pgf P (z) is geometric F-stable if

and only if, for any z = (z1, . . . , zd) ∈ [0, 1)d,

(3.5) P (z) =

[
1 +

( d∏
i=1

A(zi)
)γ/d

Qγ

(
ln

A(z1)

A(z2)
, . . . , ln

A(z1)

A(zd)

)]−1
for some γ ∈ (0, 1] and some nonnegative function Qγ(x) that is defined on Rd−1

if d ­ 2, and that reduces to a constant if d = 1.

P r o o f. It is essentially the same as that of Theorem 3.2 above, except that
we rely on the representation for F-stable distributions given in Theorem 3.2 in
Bouzar [6]. �

We will refer to γ ∈ (0, 1) in the representation (3.3) (resp., (3.5)) above as
the exponent of a geometric F-semistable (resp., geometric F-stable) distribution.
In the semistable case, we will also refer to α ∈ (0, 1) or, interchangeably, t =
− lnα > 0, as the order of the distribution. We note that in this case p = αγ .

It is important to note that the exponent of a geometric F-semistable distribu-
tion is unique in the following sense.

PROPOSITION 3.3. Let P (z) be the pgf of a geometric F-semistable distribu-
tion on Zd

+. Then there exists a unique γ ∈ (0, 1] such that γ = ln p/ lnα for any
p, α ∈ (0, 1) for which P (z) satisfies (3.2).

P r o o f. By Lemma 3.1 in Bouzar [6], the exponent γ of an F-semistable
distribution satisfies the equation λ = eγt for all pairs λ, t > 0 for which (1.14)
holds. By Theorem 3.1, this result is applicable to the pgf H(z) of (2.7). Since in
this case λ = 1/p and t = − lnα, the conclusion ensues. �

Let X = (X1, . . . , Xd) be a Zd
+-valued random vector. A Z+-valued random

variable Y is said to be a linear combination of the Xi’s if

(3.6) Y =
d∑

j=1

αj ⊙F Xj (with 1⊙F X = X)

for some α1, . . . , αd ∈ (0, 1]. The multiplications αj ⊙F Xj in (3.6) are performed
independently for each j (see equation (1.10) and the discussion preceding it).

By the assumptions and a conditioning argument, the pgf PY (z) of the linear
combination (3.6) is given by

(3.7) PY (z) = P
(
Ft1(z), . . . , Ftd(z)

)
(tj = − lnαj ; j = 1, . . . , d),

where P (z) is the pgf of X.
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THEOREM 3.4. A Zd
+-valued random vector X has a geometricF-semistable

(resp., geometric F-stable) distribution with exponent γ ∈ (0, 1] and order α ∈
(0, 1) (resp., exponent γ) if and only if the linear combination (3.6) is univariate
geometric F-semistable (resp., geometric F-stable) with exponent γ and order α
(resp., exponent γ) for every α1, . . . , αd ∈ (0, 1].

P r o o f. It suffices to establish the result for semistability. The “only if” part
follows easily from (3.2), (3.7) and the semigroup property (1.7). Assume that for
every α1, . . . , αd ∈ (0, 1] the linear combination (3.6) is univariate F-semistable
with exponent γ ∈ (0, 1] and order α ∈ (0, 1). Let P (z) be the pgf of X. By (3.2)
(in its univariate version) and (3.7), we have for any s1, . . . , sd > 0 and z ∈ [0, 1]

(3.8) P
(
Ft1+t(z), . . . , Ftd+t(z)

)
=

P
(
Ft1(z), . . . , Ftd(z)

)
p+ (1− p)P

(
Ft1(z), . . . , Ftd(z)

) ,
where t = − lnα and p = αγ . Choose z arbitrarily in [0, 1)d. By (1.18) and (1.19b),
the function φ(t) = Ft(0) is one-to-one from [0,∞) onto [0, 1). Its inverse is
φ−1(z) =

∫ z

0

(
1/U(x)

)
dx, z ∈ [0, 1). Therefore, there exists t ∈ [0,∞) such that

zj = Ftj (0), j = 1, . . . , d. By setting z = 0 in (3.8), we have shown that (3.2)
holds for any z ∈ [0, 1)d, and thus, by the principle of analytic continuation, for
any z such that |zi| ¬ 1. �

We conclude the section with a characterization of geometric F-stability in
terms of geometric F-semistability.

THEOREM 3.5. A Zd
+-valued random vector X has a geometric F-stable dis-

tribution with exponent γ ∈ (0, 1] if and only if X has a geometric F-semistable
distribution with exponent γ and two distinct orders α1, α2 ∈ (0, 1) such that
lnα1/ lnα2 is irrational.

P r o o f. The “only if” part is easily proved. Assume now that X has a ge-
ometric F-semistable distribution with two different orders α1, α2 ∈ (0, 1) such
that lnα1/ lnα2 is irrational. By Theorem 3.1, the function H(z) of (2.7) is the
pgf of an F-semistable distribution with orders α1 and α2. It follows by Corollary
3.2 in Bouzar [6] that H(z) is F-stable, which in turn implies, again by Theorem
3.1, that X is geometric F-stable. This proves the “if” part. �

4. A RELATION BETWEEN GEOMETRIC SEMISTABLE DISTRIBUTIONS ON Rd
+

AND THOSE ON Zd
+

We start out by recalling a useful result (see Lemma 3.3 in Bouzar [6]).

LEMMA 4.1. Let ϕ(u) be the Laplace–Stieltjes transform (LST) of a distribu-
tion on Rd

+, and A(z) the A-function of F (see (1.18)). Then, for any θ > 0,

(4.1) Pθ(z) = ϕ
(
θA(z1), . . . , θA(zd)

)
(z = (z1, . . . , zd) ∈ [0, 1]d)

is the pgf of a distribution on Zd
+.
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The following result establishes a relation between geometric F-semistable
(resp., geometric F-stable) distributions on Zd

+ and their continuous counterparts
with support on Rd

+.

THEOREM 4.1. A function ϕ(u) defined on Rd
+ is the LST of a geometric

semistable (resp., geometric stable) distribution on Rd
+ with exponent γ and order

α ∈ (0, 1) (resp., exponent γ ∈ (0, 1]) if and only if, for every θ > 0, Pθ(z) of (4.1)
is the pgf of a geometric F-semistable (resp., geometric F-stable) distribution on
Zd
+ with exponent γ and order α (resp., exponent γ).

P r o o f. The “only if” part readily follows from Proposition 3.1 and its coun-
terpart for the LST of a semistable distribution on Rd

+. For the “if” part, assume
that ϕ(u) is an LST with the property that there exist α ∈ (0, 1) and γ ∈ (0, 1] such
that, for any θ > 0, Pθ(z) of (4.1) satisfies (3.2) with t = − lnα and p = αγ . Se-
lect u1, . . . , ud ­ 0 and choose θ > max1¬i¬d ui. Let us define zi = A−1(ui/θ),
i = 1, . . . , d. Letting u = (u1, . . . , ud) and z = (z1, . . . , zd), we have, by (4.1)
and (1.19b),

ϕ(αu) = Pθ

(
Ft(z)

)
,

which, combined with (3.2), yields

ϕ(αu) =
Pθ(z)

p+ (1− p)Pθ(z)
=

ϕ(u)

p+ (1− p)ϕ(u)
.

This implies that ϕ(u) is the LST of a geometric semistable distribution. �

A geometricF-semistable distribution on Zd
+ can only arise from a continuous

counterpart on R+ via equation (4.1).

THEOREM 4.2. A Zd
+-valued random vector X has a geometricF-semistable

distribution with exponent 0 < γ ¬ 1 and order α ∈ (0, 1) if and only if its pgf
P (z) admits the representation (4.1) (for some θ > 0), where ϕ(u) is the LST of a
geometric semistable distribution on Rd

+ with exponent γ and order α.

P r o o f. The result is a direct consequence of Theorem 4.1 above and Corol-
lary 4.1 in Bouzar [6]. �

Let S be the unit sphere on Rd. We define S+ = S ∩Rd
+ and we denote by

B(R+) and B(S+) the σ-algebra of Borel sets in R+ and S+, respectively. For
E ⊂ R+ and B ⊂ S+, we let EB = {ux : u ∈ E,x ∈ B}.

Adapting the canonical representation (1.3) to LST’s, we see that a distribution
on Rd

+ is geometric semistable with exponent γ ∈ (0, 1] and order α ∈ (0, 1) if and
only if its LST admits the representation

(4.2) ϕ(τ) =
[
1 +

∫
Rd

+

(
1− exp(τ · x)

)
Λ(dx)

]−1
(τ ∈ Rd

+),
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with a Lévy measure Λ that satisfies (1.4) (where N(x;u) is defined over S+×R+

and B is restricted to B(S+)).

COROLLARY 4.1. A distribution on Zd
+ is geometric F-semistable with ex-

ponent γ ∈ (0, 1] and order α ∈ (0, 1) if and only if its pgf P (z) admits the repre-
sentation (3.3) with the function gγ,t(τ) given by

(4.3) gγ,t(τ) = exp

(
γ

d

d∑
i=1

τi

) ∫
Rd

+

(
1− exp

(
− θ

d∑
i=1

e−τixi
))

Λ(dx),

where Λ is the Lévy measure (as in (4.2)) of a semistable distribution on Rd
+ with

exponent γ and order α = e−t, τ = (τ1, , . . . , τd), and θ > 0.

P r o o f. The “only if” part follows from Theorems 3.1 and 4.2 above, and
Corollary 4.3 in Bouzar [6]. The “if” part is easy to verify. �

In the univariate case (d = 1), the function gγ,t of (4.3) reduces to

(4.4) gγ,t(τ) = eγτ
∞∫
0

(
1− exp(−θe−τx)

)
Λ(dx) (τ ­ 0)

for some θ > 0. The measure Λ is given by

(4.5) Λ(E) =
∫
E

d
(
−N(u)u−γ

)
(E ∈ B(R+)),

where N(u) is nonnegative and right-continuous in u, N(u)u−γ is nonincreasing,
N(1) = 1, and N(αu) = N(u) with α = e−t.

The results are similar in the case of geometric F-stability.

THEOREM 4.3. A Zd
+-valued random vector X has a geometric F-stable dis-

tribution with exponent 0 < γ ¬ 1 if and only if its pgf admits the representation
(4.1) (for some θ > 0), where ϕ(u) is the LST of a geometric stable distribution
on Rd

+ with exponent γ.

P r o o f. The proof is the same as that of Theorem 4.2, except that we call on
Corollary 4.2 in Bouzar [6], instead. �

By using Theorems 3.1 and 4.3 above, and Corollary 4.5 in Bouzar [6], we
obtain the following characterization of geometric F-stable distributions on Zd

+.

COROLLARY 4.2. Let 0 < γ ¬ 1 and d > 1. A distribution on Zd
+ is geomet-

ric F-stable with exponent γ if and only if its pgf P (z) admits the representation
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(3.5) and the function Qγ(x) satisfies (for any τ1, . . . , τd ­ 0)

(4.6) Qγ(τ2 − τ1, . . . , τd − τ1)

= exp

(
γ

d

d∑
i=1

τi

) ∫
Rd

+

(
1− exp

(
− θ

d∑
i=1

e−τixi
))

Λ(dx),

where Λ is the Lévy measure given by (1.5) (with µ being defined over B(S+)) of
a stable distribution on Rd

+ with exponent γ and θ > 0.

We conclude the section with some examples.

EXAMPLE 4.1. Let α ∈ (0, 1) and γ ∈ (0, 1). We denote by |a| the Euclidean
norm of a ∈ Rd. We define

(4.7) Sn(α) = {x ∈ Rd
+ : α−n ¬ |x| < α−n−1} (n ∈ Z).

From the well-known formula of the volume of a d-ball we have
∫
Sn(α)

dx =

Cdα
−nd (n ∈ Z) for some constant Cd > 0. We also have Rd

+ =
∪

n∈Z Sn(α).
Let f0 be a nonnegative bounded (Lebesgue) measurable function defined on

the interval [0, α−1). We define h(x) on Rd
+ by

(4.8) h(x) = αn(γ+d)f0(α
n|x|) (x ∈ Sn(α); n ∈ Z),

and the absolutely continuous measure Λ(·) on B(Rd
+) by

(4.9) Λ(B) =
∫
B

h(x) dx (B ∈ B(Rd
+)).

By using the partition
(
Sn(α), n ∈ Z

)
of Rd

+ and the formula for the volume
of Sn(α), it is a straightforward argument to show that Λ(αB) = α−γΛ(B) and
that

∫
min(x, 1)Λ(dx) <∞. Therefore, Λ(·) is the Lévy measure of a semistable

distribution on Rd
+ with exponent γ and order α (see Theorem 14.3 in Sato [21]),

which in turn gives rise to anF-semistable distribution on Zd
+ with exponent γ and

order α (via Theorem 4.2 and representation (4.1)).

EXAMPLE 4.2 (due to Sato [21]). Let α ∈ (0, 1), γ ∈ (0, 1], and x0 ∈ Rd
+.

We define the Lévy measure

(4.10) Λ(dx) =
∞∑

n=−∞
α−nγδαnx0(dx),

where δ(·) denotes the Dirac measure. As in Example 4.1, one can easily verify that
Λ(dx) gives rise to a semistable distribution on Zd

+ with exponent γ and order α.
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5. LIMIT THEOREMS

We start out with a limit theorem that characterizes geometric F-semistability
on Zd

+.

THEOREM 5.1. Let X be a Zd
+-valued random vector with pgf P (z) such that

0 < P (0) < 1. The following assertions are equivalent:
(i) X has a geometric F-semistable distribution with some exponent γ ∈

(0, 1] and order α ∈ (0, 1).
(ii) There exist a sequence of Zd

+-valued iid random vectors (Xn, n­ 1),
independent of geometric random variables (Npn , n­1), and real numbers (αn,

n­1) in (0, 1) such that αn ⊙F
∑Npn

i=1 Xi converges in distribution to X and

(5.1) lim
n→∞

αn+1/αn = lim
n→∞

(pn/pn+1)
1/γ = α

for some α ∈ (0, 1) and γ ∈ (0, 1].
(iii) There exist a pgf Q(z), a sequence of real numbers (αn, n ­ 1) in (0, 1),

and a sequence (kn, n ­ 1) in Z+, kn ↑ ∞, such that

(5.2) P (z) = lim
n→∞

[
1 + kn

(
1−Q

(
Ftn(z)

))]−1
(tn = − lnαn),

and

(5.3) lim
n→∞

αn+1/αn = lim
n→∞

(kn/kn+1)
1/γ = α

for some α ∈ (0, 1) and γ ∈ (0, 1].

P r o o f. (i)⇒(ii). For n ­ 1, let αn = αn, pn = αnγ , and Xn
d
= X. Clearly,

(5.1) holds, and since for every n ­ 1, X has a geometricF-semistable distribution
with exponent γ and order αn (see equation (3.3) and Proposition 3.3), (ii) ensues.

(ii)⇒(iii). Letting tn = − lnαn, we have by (ii)

P (z) = lim
n→∞

Q
(
Ftn(z)

)
Q
(
Ftn(z)

)
+ 1

pn

(
1−Q

(
Ftn(z)

)) ,
from which we easily deduce that limn→∞Q

(
Ftn(z)

)
= 1 and (noting that P (z)

̸= 0 on [0, 1]d since 0 < P (0) < 1)

lim
n→∞

1

pn

(
1−Q

(
Ftn(z)

))
=

1− P (z)

P (z)
.

Therefore,

P (z) = lim
n→∞

[
1 +

1

pn

(
1−Q

(
Ftn(z)

))]−1
.
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Letting kn = [1/pn], where [x] is the greatest integer function, by a straightforward
argument we see that (5.2) and (5.3) hold.

(iii)⇒(i). Assume that (5.2) and (5.3) hold and define

Pn(z) =
[
1 + kn

(
1−Q

(
Ftn(z)

))]−1
.

Note that Pn(z) is geometric infinitely divisible, and thus Pn(z) ̸= 0 (see Lemma
2.1 and Corollary 2.2). Let Hn(z) = exp{1− 1/Pn(z)}, n ­ 1. By Theorem 2.2,
Hn(z) is an infinitely divisible pgf and

lim
n→∞

Hn(z) = lim
n→∞

exp
{
kn

(
Q
(
Ftn(z)

)
− 1

)}
= exp{1− 1/P (z)}.

Since we again have limn→∞Q
(
Ftn(z)

)
= 1, it follows that

lim
n→∞

exp
{
kn

(
Q
(
Ftn(z)

)
− 1

)}
= lim

n→∞

[
Q
(
Ftn(z)

)]kn .
Therefore, by Theorem 4.2 in Bouzar [6], H(z) = exp{1 − 1/P (z)} is F-semi-
stable with exponent γ ∈ (0, 1] and order α ∈ (0, 1), and thus, by Theorem 3.1,
P (z) is geometric F-semistable with the same exponent and order. �

The next theorem gathers some characterization results for geometricF-stable
distribution on Zd

+.

THEOREM 5.2. Let X be a Zd
+-valued random vector with pgf P (z) such that

0 < P (0) < 1. The following assertions are equivalent:
(i) X has a geometric F-stable distribution with some exponent γ ∈ (0, 1].

(ii) There exist a sequence of Zd
+-valued iid random vectors (Xn, n ­ 1),

independent of geometric random variables
(
Np, p ∈ (0, 1)

)
(see (2.2)), and real

numbers
(
α(p), p ∈ (0, 1)

)
in (0, 1) such that α(p)⊙F

∑Np

i=1Xi converges in dis-
tribution to X.

(iii) There exist a sequence of Zd
+-valued iid random vectors (Xn, n ­ 1),

independent of geometric random variables (Npn , n ­ 1) with pn = 1/n, and real
numbers (αn, n ­ 1) in (0, 1) such that αn⊙F

∑Npn
i=1 Xi converges in distribution

to X.
(iv) There exist a pgf Q(z) and a sequence of real numbers (αn, n ­ 1) in

(0, 1) such that

(5.4) P (z) = lim
n→∞

[
1 + n

(
1−Q

(
Ftn(z)

))]−1
(tn = − lnαn).

In this case, we have necessarily limn→∞ αn = 0.
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P r o o f. The implication (i)⇒(ii) is easily seen to follow from the definition
of geometric F-stability by letting Xn

d
= X. Assuming (ii) and letting p approach

zero along the sequence pn = 1/n yields (iii).
(iii)⇒(iv). Let Q(z) be the common pgf of the Xn’s. We have, by (iii),

P (z) = lim
n→∞

Q
(
Ftn(z)

)
Q
(
Ftn(z)

)
+ n

(
1−Q

(
Ftn(z)

)) ,
where tn = − lnαn. By using the same argument as in the proof of (ii)⇒(iii) in
Theorem 5.1 (with 1/pn = n), it is shown that (5.4) holds. Now, if limn→∞ αn

̸= 0, then by a compactness argument, there would exist a subsequence αn′ of
αn such that limn′→∞ αn′ = α for some α ∈ (0, 1). It would follow by (5.4),
applied along the subsequence {n′}, and by the continuity of the semigroup F ,
that Q

(
Ft(z)

)
= 1, t = − lnα. This would imply that Ft(z) = 1 for any z ∈ [0, 1].

That is a contradiction, and thus limn→∞ αn = 0.
Finally, the proof of (iv) ⇒(i) is identical to the proof of (iii) ⇒(i) of Theo-

rem 5.1. In this case, we have kn = n and we would appeal to Theorem 4.3 instead
of Theorem 4.2 in Bouzar [6]. �

As in classical stability, a theory of attraction can be developed in connection
with the notions of F-stability and geometric F-stability.

A distribution on Zd
+ with pgf Q(z) is said to belong to the domain of (com-

plete) attraction of a distribution on Zd
+ with pgf P (z) if there exist a sequence

of iid Zd
+-valued random vectors (Xn, n ­ 1) with common pgf Q(z), a Zd

+-
valued random vector X with pgf P (z), and real numbers αn ∈ (0, 1), n ­ 1,
such that αn⊙F

∑n
i=1Xi converges in distribution to X. In this case, the sequence

(αn, n ­ 1) necessarily satisfies limn→∞ αn = 0. This can be seen by using the
same argument as in the proof of (iii)⇒(iv) of Theorem 5.2.

The domain of partial attraction of a distribution on Zd
+ is defined similarly. In

this case, the convergence in distribution is required to occur along a subsequence
(kn, n ­ 1), i.e., αn ⊙F

∑kn
i=1Xi converges in distribution to X.

The following result was essentially proved in Bouzar [6] (see Theorem 4.3 in
that paper).

THEOREM 5.3. A distribution on Zd
+ has a nonempty domain of attraction if

and only if it is F-stable.

PROPOSITION 5.1. A geometric F-stable distribution belongs to the domain
of attraction of an F-stable distribution.

P r o o f. Let (Xn, n ­ 1) be a sequence of iid Zd
+-valued random vectors

with a common distribution that is geometric F-stable with exponent γ ∈ (0, 1]
and order α ∈ (0, 1). Let Y be a Zd

+-valued random vector with pgf H(z) defined
by (2.7). By Theorem 3.1, Y has an F-stable distribution. For n ­ 1, let Pn(z)
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denote the pgf of αn ⊙F
∑n

i=1Xi with αn = n−1/γ . By (2.7) and Corollary 3.2
in Bouzar [6], Pn(z) satisfies

lnPn(z) = −n ln
(
1− lnH

(
Ftn(z)

))
= −n ln

(
1−

(
lnH(z)

)
/n

)
with tn = (lnn)/γ. Therefore, limn→∞ Pn(z) = H(z). �

The analogous result for the property of partial attraction follows from Theo-
rem 4.2 in Bouzar [6].

THEOREM 5.4. If the domain of partial attraction of a distribution (qn,n ∈
Zd
+) on Zd

+ contains a distribution for which the sequences (αn, n ­ 1) in (0, 1)

and (kn, n ­ 1) in Zd
+ satisfy (5.3) for some α ∈ (0, 1) and γ ∈ (0, 1], then {qn}

must be F-semistable with exponent γ and order α.

A distribution on Zd
+ with pgf Q(z) is said to belong to the domain of geomet-

ric attraction of a distribution on Zd
+ with pgf P (z) if there exist a sequence of iid

Zd
+-valued random vectors (Xn, n ­ 1) with common pgf Q(z), independent of

geometric random variables
(
Np, p ∈ (0, 1)

)
, a Zd

+-valued random vector X with
pgf P (z), and real numbers α(p) ∈ (0, 1), p ∈ (0, 1), such that α(p)⊙F

∑Np

i=1Xi

converges in distribution to X as p→ 0.
The domain of partial geometric attraction of a distribution on Zd

+ is defined
similarly. In this case, the convergence in distribution is required to occur along a
null sequence (pn, n ­ 1) in (0, 1), i.e., αn⊙F

∑Npn
i=1 Xi converges in distribution

to X as pn → 0.
The following result is a direct consequence of Theorem 5.2.

THEOREM 5.5. A distribution on Zd
+ has a nonempty domain of geometric

attraction if and only if it is geometric F-stable.

Likewise, we infer from Theorem 5.1 that

THEOREM 5.6. If the domain of partial geometric attraction of a distribu-
tion {qn} on Zd

+ contains a distribution for which the sequences (αn, n ­ 1) and
(pn, n ­ 1) satisfy (5.3) for some α ∈ (0, 1) and γ ∈ (0, 1], then {qn} must be
geometric F-semistable with exponent γ and order α.

THEOREM 5.7. A distribution on Zd
+ with pgf Q(z) belongs to the domain

of geometric attraction of a geometric F-stable distribution with pgf P (z) if and
only if it belongs to the domain of attraction of an F-stable distribution with pgf
H(z) = exp{1− 1/P (z)}.

P r o o f. First we prove the “only if” part. We have, by assumption, Theo-
rem 5.2, and (5.4),

H(z) = lim
n→∞

exp

{
n

(
1− 1

Q
(
Ftn(z)

))} (tn = − lnα(1/n)),
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which implies that H(z)=limn→∞
[
Q
(
Ftn(z)

)]n, since limn→∞Q
(
Ftn(z)

)
=1.

The converse is proved along the same lines. The details are omitted. �

One can show similarly that

THEOREM 5.8. A distribution on Zd
+ with pgf Q(z) belongs to the domain

of partial geometric attraction of a geometric F-semistable distribution with pgf
P (z) if and only if it belongs to the domain of partial attraction of anF-semistable
distribution with pgf H(z) = exp{1− 1/P (z)}.

6. A Zd
+-VALUED AUTOREGRESSIVE PROCESS OF ORDER p

The binomial thinning operator ⊙F(1) corresponding to the semigroup (1.11)
was used by several authors to construct Z+-valued autoregressive processes. Zhu
and Joe [24] and Aly and Bouzar [2] extended some of these models by using the
more general ⊙F operator. We refer to the survey articles by McKenzie [16] and
Weiß [23] for more on the topic. In this section we present briefly a generalized Zd

+-
valued autoregressive process of order p (F-INAR (p)) based on the ⊙F operator.
In particular, we will derive the marginal distribution of the stationary F-INAR (p)
process with a geometric F-semistable (stable) marginal.

DEFINITION 6.1. A sequence {Xn} of Zd
+-valued random vectors is said to

be an F-INAR (p) process if, for any n ∈ Z,

(6.1) Xn =
p∑

i=1

I(ξn = i)αi ⊙F Xn−i + en,

where αi∈ (0, 1), {ξn} is a sequence of iid random variables such that P (ξn= i)
= ci, i = 1, 2, . . . , p,

∑p
i=1 ci = 1, and {en} is the innovation sequence, a se-

quence of iid Zd
+-valued random vectors independent of {ξn}.

The generalized multiplication αi ⊙F Xn−i in (6.1), as defined in (1.9), is
performed independently for each i. More precisely, we assume the existence of
independent arrays (Y

(i,h)
j,n , j ­ 0, n ∈ Z), i = 1, 2, . . . , p, h = 1, . . . , d, of iid

Z+-valued rv’s, independent of {ξn} and {en}, such that for each i, the array’s
common pgf is Fti(z), ti = − lnαi,

(6.2) αi ⊙F prh(Xn−i) =
prh(Xn−i)∑

j=1

Y
(i,h)
j,n−i,

where prh(Xn−i) denotes the h-th coordinate of Xn−i.
In terms of pgf’s, it follows from (6.1) that

(6.3) PXn(z) =
( p∑

i=1

ciPXn−i

(
Fti(z)

))
Pe(z), ti = − lnαi.
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The autocorrelation structure of a stationary Zd
+-valued F-INAR (p) process

is given in the following proposition. The proof is based on a conditioning argu-
ment and is a mere adaptation of the one given in the univariate case (see Aly and
Bouzar [2], Proposition 5.2).

PROPOSITION 6.1. Let {Xn} be a Zd
+-valued stationary F-INAR (p) pro-

cess with mean µX and covariance matrix ΣX = {σX(h, l)}. Let µe and Σe =
{σe(h, l)} be, respectively, the mean and covariance matrix of the innovation se-
quence {en}. Let ci and αi (i = 1, . . . , p) be as in (6.1). Then:

(i) For any n ∈ Z,

(6.4) µX =
(
1−

p∑
i=1

ciαi

)−1
µe.

(ii) The autocovariance matrix function

Γ(k) = {γk(h, l)} = E
(
(Xn−k − µX)′(Xn − µX)

)
of {Xn} at lag k, k ­ 1, is given by

(6.5) γk(h, l) =

{∑p

i=1
ciαiγi(h, l) + σe(h, l) if k = 0,∑p

i=1
ciαiγk−i(h, l) if k ­ 1

(h, l = 1, . . . , d) with Γ(k) = Γ(−k), k ­ 1.
(iii) The autocorrelation matrix function R(k) = {ρk(h, l)} at lag k, k ­ 1,

is given by

(6.6) ρk(h, l) =
p∑

i=1

ciαiρk−i(h, l) (h, l = 1, . . . , d),

where ρ0 = 1, ρk = ρ−k, and ci and αi (i = 1, . . . , p) are as in (6.1).

Next, we determine the marginal distribution of the innovation sequence of a
stationary F-INAR (p) process with a geometric F-stable marginal distribution.
The proof is essentially the same as the one given for the univariate case (Proposi-
tion 5.5 in Aly and Bouzar [2]) and relies on a decomposition lemma for a specific
class of rational functions (see Lemma 5.4 in Aly and Bouzar [2]).

THEOREM 6.1. If {Xn} is a Zd
+-valued stationary F-INAR (p) process with

a geometric F-stable marginal distribution with pgf given by (3.5), then its inno-
vation sequence {en} admits the representation

(6.7) en
d
=

p∑
j=0

I(κn = j)βj ⊙F En,

where {κn} is a sequence of iid random variables such that P (κn = j) = c′j , j =

0, . . . , p,
∑p

j=0 c
′
j = 1, {En} is a sequence of iid random vectors, independent of

{κn}, such that for each n, En has the same distribution as Xn.
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It is possible to extend Theorem 6.1 to stationary F-INAR (p) processes with
a geometric F-semistable marginal distribution by imposing a commensurability
assumption on the numbers {− lnαi, i = 1, . . . , p}. However, the assumption puts
a significant restriction on the applicability of the result.
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