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1. INTRODUCTION

It is a pleasure to recognize the extensive contributions of Tomasz Rolski to ap-
plied probability, across a wide range of different topic areas. This paper connects
to his important work at the intersection of Markov processes (see, for example,
[16], [17], and [19]) and stochastic modeling. As will be seen below, the class of
models includes, as a special case, the waiting time sequence for the single-server
queue, a model to which Professor Rolski has made many important contributions
(see, for example, [5], [6], [18], and [14]).

This paper considers a discrete-time storage model in which Sn represents
the content stored in the reservoir at the beginning of the time period n. Flow
conservation implies that

Sn+1 = Sn + Zn+1 −On+1,

where Zn+1 is the inflow during the period (n, n+1], and On is the outflow during
the period (n, n+ 1]. In this paper, we study the non-linear storage model in which
(Zn : n ­ 1) is a sequence of non-negative independent and identically distributed
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random variables, and the outflow On follows the “power law” relation

On = aSb
n

for a and b positive. Under the above assumptions, S = (Sn : n ­ 0) is a Markov
chain taking values in R+.

Such non-linear “power law” dynamics have been widely studied in the hy-
drology literature, where discrete-time models are used almost exclusively; see,
for example, [13] and [4]. There is theoretical justification for using “power law”
dynamics for modeling both surface runoff (see [21]) and, as well, for model-
ing groundwater discharge (see [20]). A diffusion approximation for a network
of continuous-time reservoirs, each with “power law” dynamics, was investigated
in [9]. The discrete-time storage process with general release rule was studied in
[8], in which it was shown that for the “power law” release rule in the case where
EZ1 < a, there is a continuous dependence of the moments of storage and outflow
on b for small b. Sufficient conditions for the positive recurrence of autoregres-
sive processes, obtained from our model when b = 1, are discussed in [1], while
necessary and sufficient conditions for transience, null recurrence, and positive re-
currence can be found in [10].

Our main results in this paper are:
(i) necessary and sufficient conditions on the distribution of Z1 under which

S is a positive recurrent Markov chain (Theorem 2.1);
(ii) necessary and sufficient conditions on the distribution of Z1 under which

the stationary distribution of S has finite p-th moment (Theorem 2.2).
An important tool in our analysis is the use of (stochastic) Lyapunov func-

tions. Our Lyapunov function construction takes advantage of approximations ob-
tained from a related deterministic model which approximates the dynamics of
S when the chain takes on large values. Such an approach to the construction of
Lyapunov functions has also been used with great effectiveness in the queueing
context. Therein, the so-called “fluid” approximations provide great insight into
the construction of Lyapunov functions for the corresponding stochastic queue-
ing network; see, for example, [15]. We view the results of this paper as another
excellent illustration of the power of such methods.

The recurrence classification of storage processes has been investigated in con-
tinuous time in [11] and [3], among others. Harrison and Resnick [11] proved a
duality in recurrence between a storage process with a general release rule and
its associated risk process. Brockwell et al. [3] also investigated the recurrence
classification of storage systems with general release rule, together with specific
application to the case of “power law” models; however, their results differ from
ours in the following ways:

(a) Brockwell et al. [3] work with a continuous-time formulation, whereas we
work with a discrete-time formulation.

(b) Their main result on power law release rules (see p. 429) assumes that the
inflow distribution follows a stable law. When the exponent b is less than one, we
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only make hypotheses about moments and make no assumptions at all about the
functional form of the distribution.

(c) They have no analog to our recurrence result for b greater than one. For
b = 1, they have precisely our result (see p. 428).

(d) They do not examine necessary and sufficient conditions for finiteness of
moments for the stationary distribution.

This paper is organized as follows. Section 2 states the main results of the pa-
per, while Section 3 provides proofs of the more complicated arguments supporting
the results of Section 2.

2. THE MAIN RESULTS

Let us start by introducing the notation Px(·) = P (·|S0 = x) and Ex(·) =
E(·|S0 = x). For a probability distribution µ on R+, let

Pµ(·) =
∫
R+

µ(dx)Px(·)

and
Eµ(·) =

∫
R+

µ(dx)Ex(·).

Our first result is a “solidarity” statement that asserts that the long-run behavior of
S is, under suitable conditions, independent of the initial state x.

PROPOSITION 2.1. Let f : R+ → R be bounded and uniformly continuous.
Then:

(i) (Pnf : n ­ 0) is an equicontinuous family of functions.
(ii) For b ­ 1 and any two probabilities µ and ν on R+, Eµf(Sn)−Eνf(Sn)

→ 0 as n→∞.
(iii) If there exists x ­ 0 such that Px(lim infn→∞ Sn < ∞) = 1, then we

have Eµf(Sn)−Eνf(Sn)→0 as n→∞ for any two probabilities µ and ν on R+.

Part (i) implies that S is an e-chain, in the terminology of [15]. Note that part
(ii) applies even if Sn →∞ a.s. (and is therefore transient), whereas part (iii) can
apply even if S is null recurrent.

Recall that a probability distribution π on R+ is said to be stationary for S if
Pπ(S1 ∈ ·) = Pπ(S0 ∈ ·). Our next result states that if S has a stationary distri-
bution π, then that stationary distribution is necessarily unique, and Sn converges
weakly to π, regardless of the initial distribution.

PROPOSITION 2.2. Suppose that S has a stationary distribution π. Let µ be a
probability on R+ and let x ∈ R+. Then,

(i) Px(lim infn→∞ Sn <∞) = 1;
(ii) Pµ(Sn ∈ ·)⇒ Pπ(S0 ∈ ·) as n→∞;

(iii) π is necessarily the unique stationary distribution of S.
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Propositions 2.1 and 2.2 make clear that S is well behaved, in terms of its
long-run characteristics, once one establishes existence of a stationary distribution.
Thus, we now turn to studying the question of when S has a stationary distribution
(which must then necessarily be unique, by Proposition 2.2).

PROPOSITION 2.3. For c > 0, let τ(c) = inf{n ­ 1 : Sn ¬ c}. The Markov
chain S has a stationary distribution π if and only if there exists a c <∞ such that
Ecτ(c) <∞.

Proposition 2.3 shows that the key to the analysis of S is the study of the
finiteness of Ecτ(c). Since

(2.1) Ecτ(c) = 1 +
∫

(c,∞)

Pc(S1 ∈ dx)Exτ(c),

we need to analyze the behavior of Exτ(c) for large values of x.
We can now exploit an idea that has proved very effective in the analysis of

queueing networks. Specifically, we attempt to find a deterministic dynamical sys-
tem that approximates the behavior of Sn when Sn is large. In the queueing context,
such deterministic approximations are called “fluid models”. In our storage theory
setting, the deterministic “fluid” approximation to (Sn : n ­ 0), conditional on
S0 = x, will be the deterministic sequence

(
sn(x) : n ­ 0

)
, for which s0(x) = x

and
sn+1(x) + asn+1(x)

b = sn(x)

for n ­ 0. For c > 0, let tc(x) = inf{n ­ 0 : sn(x) ¬ c} be the first “hitting time”
of [0, c] for

(
sn(x) : n ­ 0

)
. Our hope is that Exτ(c) can be approximated by tc(x)

when x is large. For x ­ 0, let

h(x) =


x1−b/

(
a(1− b)

)
if 0 < b < 1,

log(1 + x)/ log(1 + a) if b = 1,

log log(e+ x)/ log(b) if b > 1.

PROPOSITION 2.4. For each c ∈ (0,∞),

lim inf
x→∞

tc(x)/h(x) ­ 1.

According to Proposition 2.4, tc(x) is at least as large as h(x) for x large.
Because

(
sn(x) : n ­ 0

)
is obtained from (Sn : n ­ 0) (conditional on S0 = x)

by setting all the inflows to zero, it follows that sn(x) ¬ Sn(x) for n ­ 0. Conse-
quently, tc(x) ¬ Exτ(c) for x ­ 0 and c > 0. In view of (2.1) and Proposition 2.3,
we may conclude that the existence of π implies that

(2.2) Ech(S1) <∞.

Our next result simplifies the moment condition (2.2).
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PROPOSITION 2.5. Ech(S1) <∞ if and only if Eh(Z1) <∞.

The following proposition shows that our deterministic dynamical system(
sn(x) : n ­ 0

)
does in fact provide good approximations for Exτ(c).

PROPOSITION 2.6. Suppose that Eh(Z1) < ∞. Then, there exists c < ∞
such that

lim sup
x→∞

Exτ(c)/h(x) ¬ 1,

so that
Exτ(c) ∼ h(x)

as x→∞, and
tc(x) ∼ h(x)

as x→∞, where we write a(x) ∼ b(x) as x→∞, whenever a(x)/b(x)→ 1 as
x→∞.

Our main theorem on recurrence classification for S follows easily from Propo-
sitions 2.1–2.6.

THEOREM 2.1. Suppose µ is a probability distribution on R+. Then:
(i) If 0 < b < 1, then S has a stationary distribution π if and only if

EZ1−b
1 <∞.

(ii) If b = 1, then S has a stationary distribution π if and only if

E log(1 + Z1) <∞.

(iii) If b > 1, then S has a stationary distribution π if and only if

E log log(e+ Z1) <∞.

If S has a stationary distribution π, then π is necessarily the unique stationary
distribution of S and

Pµ(Sn ∈ ·)⇒ Pπ(S0 ∈ ·) as n→∞.

We can also derive necessary and sufficient conditions for the finiteness of
stationary moments. This is our second principal result.

THEOREM 2.2. Suppose S has a stationary distribution π. Let p > 0. Then:
(i) If 0 < b < 1, then EπS

p
0 <∞ if and only if EZp+1−b

1 <∞.
(ii) If b = 1, then EπS

p
0 <∞ if and only if EZp

1 <∞.
(iii) If b > 1, then EπS

p
0 <∞ if and only if EZ

p/b
1 <∞.
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It turns out that as b ↓ 0, S has dynamics that converge to those of the waiting
time sequence of the single-server queue with deterministic interarrival times equal
to a. To prove this, we only need to show that the finite-dimensional distributions
of the process S converge to the waiting time sequence of the relevant single-
server queue. Let ϕa

b be the inverse of y 7→ y + ayb. Then ϕa
b → ϕa as b tends to

zero, where ϕa(x) = (x − a)+. To see this, first note that ϕa
b (1 + a) = 1. Since

ϕa
b is monotonically increasing, ϕa

b (x) > 1 for all x > 1 + a, but this means that
ϕa
b (x) ↑ ϕa(x). For a < x < 1 + a, ϕa

b (x) < 1, and so ϕa
b (x) ↓ ϕa(x) > 0. So for

x > a, ϕa(x) = x − a. The monotonicity and positivity of ϕa
b imply that of ϕa,

and so ϕa(a) = 0, because for any ε > 0, we have 0 ¬ ϕa(a) ¬ ϕa(a + ε) = ε.
Thus, ϕa(a) = 0 and ϕa(x) = 0 for all 0 ¬ x ¬ a. This shows that for all n ­ 0,
S ⇒W , where Wn+1 = (Wn + Zn+1 − a)+, n ­ 0.

The celebrated results of [12] show that EZp+1
1 < ∞ is necessary and suf-

ficient for finiteness of the p-th moment of the waiting time sequence. Thus, one
“extra” moment is needed. Theorem 2.2 shows clearly the continuous transition
from the autoregressive/linear dynamics setting (b = 1) in which no extra moments
on Z1 are needed to the classical queueing context, in which one extra moment of
Z1 is required. It is also worth noting that, subject to b being greater than one, the
specific value of b has no impact on recurrence (see Theorem 2.1), whereas the
specific value of b has a clear impact on the moment structure of S.

3. PROOFS

We assume throughout that P (Z1 > 0) > 0 because the case in which Z1 = 0
a.s. is trivial to treat.

P r o o f o f P r o p o s i t i o n 2.1. We shall employ a “coupling” argument
to prove this result. Given (Zn : n ­ 1) and x ­ 0, set S0(x) = x and

Sn+1(x) + aSn+1(x)
b = Sn(x) + Zn+1

for n ­ 0. Put S(x) =
(
Sn(x) : n ­ 0

)
and note that Px(S ∈ ·) = P

(
S(x) ∈ ·

)
.

If 0 ¬ x ¬ y, the monotonicity of S(x) in x implies that Sn(x) ¬ Sn(y) for n ­ 0.
Furthermore,

0 ¬ Sn+1(y)− Sn+1(x)

¬ Sn+1(y) + aSb
n+1(y)− Sn+1(x)− aSb

n+1(x)

=
(
Sn(y) + Zn+1

)
−
(
Sn(x) + Zn+1

)
= Sn(y)− Sn(x),

so
(
|Sn(y)− Sn(x)| : n ­ 0

)
is always a non-increasing sequence. It follows that

if f is uniformly continuous on R+, then

|Eyf(Sn)− Exf(Sn)| =
∣∣Ef

(
Sn(y)

)
− Ef

(
Sn(x)

)∣∣
¬ sup

δ¬|x−y|,z­0

(
|f(z + δ)− f(z)|

)
,
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which can be made arbitrarily small (uniformly in n) by choosing |x − y| small
enough. Hence (i) follows immediately.

For (ii), note that, for x, y ∈ R+,

|Sn+1(y) + aSb
n+1(y)− Sn+1(x)− aSb

n+1(x)| = |Sn(y)− Sn(x)|,

so that

(3.1) |Sn+1(y)− Sn+1(x)| =
1

1 + abξb−1n+1

|Sn(y)− Sn(x)|,

where ξn+1 lies in the interval between Sn+1(x) and Sn+1(y). Let ϕ(·) be the
inverse function to x+ axb, so that ϕ(x+ axb) = x. Note that, for z ­ 0,

Sn+1(z) + aSb
n+1(z) = S(z) + Zn+1 ­ Zn+1,

so that Sn+1(z) ­ ϕ(Zn+1). Hence, if b ­ 1, evidently ξb−1n+1 ­ ϕ(Zn+1)
b−1, so

that

|Sn+1(y)− Sn+1(x)| ¬
(
1 + abϕ(Zn+1)

b−1)−1|Sn(y)− Sn(x)|.

So, we may conclude that Sn+1(y)− Sn+1(x)→ 0 a.s. as n→∞ whenever

(3.2)
n∏

j=1

(
1 + abϕ(Zj)

b−1)−1 → 0 a.s.

as n → ∞. But P (Z1 ­ c0) > 0 for some c0 > 0, so ϕ(Zj)
b−1 ­ ϕ(c0)

b−1 in-
finitely often a.s., since b − 1 > 0. This implies that the product (3.2) goes to
zero a.s. It follows that, for x fixed and f bounded and uniformly continuous,

(3.3) Eyf(Sn)− Exf(Sn)→ 0

as n → ∞. By integrating (3.3) over y, the bounded convergence theorem then
implies that

Eµf(Sn)− Ex(Sn)→ 0

and
Eνf(Sn)− Ex(Sn)→ 0

as n→∞, proving (ii).
To prove (iii), we again use (3.1), and note that

Sn+1(x) ¬ ϕ
(
Sn(x) + Zn+1

)
.
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Consequently, for y ­ 0, ξn+1 ¬ ϕ
(
Sn(x) +Zn+1

)
+ |x− y|. Thus, for 0<b<1,

we have
|Sn+1(x)− Sn+1(y)|

¬
(
1 + ab

(
ϕ
(
Sn(x) + Zn+1

)
+ |x− y|

)b−1
)−1
|Sn(x)− Sn(y)|,

so that
(3.4)

|Sn(x)− Sn(y)| ¬
n−1∏
j=0

(
1 + ab

(
ϕ
(
Sj(x) + Zj+1

)
+ |x− y|

)b−1
)−1
|x− y|.

Let N1=inf{n­0 : Sn(x) ¬ c} and Nj+1 = inf{n > Nj : Sn(x)¬c} for j­0.
On {lim infn→∞ Sn(x) < c}, the Nj’s are finite a.s. Furthermore, on {Nj <∞},
we obtain

P

((
1 + ab

(
ϕ
(
SNj (x) + ZNj+1

)
+ |x− y|

)b−1)−1
¬

(
1 + ab

(
ϕ(c+ c0) + |x− y|

)b−1)−1|Z0, . . . , ZNj

)
= P

((
1 + ab

(
ϕ
(
SNj (x) + ZNj+1

)
+ |x− y|

)b−1)−1
¬

(
1 + ab

(
ϕ(c+ c0) + |x− y|

)b−1)−1|SNj

)
­ P (ZNj+1 ¬ c0|SNj ) = P (Z1 ¬ c0).

The conditional Borel–Cantelli lemma (see, for example p. 324 of [7]) therefore
implies that(

1 + ab
(
ϕ
(
SNj (x) + ZNj+1

)
+ |x− y|

)b−1
)−1

¬
(
1 + ab

(
ϕ(c+ c0) + |x− y|

)b−1)−1
infinitely often a.s. on {lim infn→∞ Sn(x) < c}. So,

P
(
Sn(x)− Sn(y)→ 0 as n→∞

)
­ P

(
Sn(x)− Sn(y)→ 0 as n→∞, lim inf

n→∞
Sn(x) < c

)
= P

(
lim inf
n→∞

Sn(x) < c
)
.

Sending c→∞, we conclude that Sn(x)− Sn(y)→ 0 a.s. as n→∞. As in
part (ii), we find that Eµf(Sn)− Eνf(Sn)→ 0 as n→∞ for all probabilities µ
and ν on R+, proving (iii). �
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P r o o f o f P r o p o s i t i o n 2.2. Suppose that

δ = 1− Px(lim inf
n→∞

Sn <∞) = Px( lim
n→∞

Sn =∞) > 0.

Choose c0 large enough so that Pπ(S0 > c0) < δ/4. Then

Pπ(Sn > 2c0 + x) ¬
∫

{y:y¬c0}
π(dy)Py(Sn > 2c0 + x) + Pπ(S0 > c0)(3.5)

¬
∫

{y:y¬c0}
π(dy)Py(Sn > c0 + |x− y|) + δ/4

¬
∫

{y:y¬c0}
π(dy)Py(Sn > c0) + δ/4

¬ Pπ(Sn > c0) + δ/4 ¬ δ/2.

On {limn→∞ Sn =∞}, we have

1

n

n−1∑
j=0

I(Sj > 2c0 + x)→ 1

as n→∞. Hence Fatou’s lemma yields

(3.6) lim inf
n→∞

Ex
1

n

n−1∑
j=0

I(Sj > 2c0 + x)

­ Ex lim inf
n→∞

1

n

n−1∑
j=0

I(Sj > 2c0 + x) ­ Px( lim
n→∞

Sn =∞) = δ.

But (3.5) shows that

1

n

n−1∑
j=0

ExI(Sj > 2c0 + x) =
1

n

n−1∑
j=0

Px(Sj > 2c0 + x) ¬ δ/2,

which contradicts (3.6), proving (i).
To prove part (ii), let f be bounded and uniformly continuous. If b ­ 1, then

Eµf(Sn) − Eνf(Sn)→ 0 for any two probabilities µ and ν as a consequence of
part (ii) of Proposition 2.1, whereas, if b < 1, then Eµf(Sn)−Eνf(Sn)→ 0 as a
result of part (i) of Proposition 2.2 (proved above) and part (iii) of Proposition 2.1.
Setting ν = π and using the stationarity of π establishes that Eµf(Sn)→ Eπf(S0)
for all bounded continuous f , proving that Pµ(Sn ∈ ·)⇒ Pπ(S0 ∈ ·) as n→∞.

Finally, for part (iii), suppose µ ̸= π is a stationary probability distribution.
Then, part (iii) (of Proposition 2.2) guarantees that Pµ(S0 ∈ ·) = Pµ(Sn ∈ ·) =
Pπ(S0 ∈ ·), showing that µ = π. �
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P r o o f o f P r o p o s i t i o n 2.3. Suppose first that Ecτ(c) < ∞. Because
Sn(x) < Sn(c) for 0 ¬ x ¬ c and n ­ 0, evidently Exτ(c)¬Ecτ(c) for 0¬x¬c,
so that

sup{Exτ(c) : 0 ¬ x ¬ c} = Ecτ(c) <∞.

Theorem 12.4.3 (part iv.) and Theorem 12.1.2 (part i.) of [15] then yield the ex-
istence of a stationary distribution π. For the converse, suppose that a stationary
distribution π exists. According to Proposition 2.2, π is necessarily the unique sta-
tionary distribution of S. The uniqueness of π ensures that S is an ergodic station-
ary sequence under Pπ (p. 118 of [2]). Choose c large enough so that π([0, c]) > 0.
Then, Proposition 6.3.8 of [2] proves that

π([0, c]) =
1

Eπcτ(c)
,

where πc(·) = π( · ∩ [0, c])/π([0, c]). It follows that Eπcτ(c) <∞. This ensures
the existence of x ∈ [0, c] for which Exτ(c) < ∞. Suppose now that ∥Z1∥ =
sup{x ­ 0 : P (Z1 ¬ x) < 1} =∞. Then

∞ > Exτ(c) ­
∫

(c,∞)

Px(S1 ∈ dy)Eyτ(c)

guarantees the existence of y > c for which Eyτ(c) < ∞. But the monotonic-
ity of Sn(·) implies that Ecτ(c) ¬ Eyτ(c) for y ­ c, so that Ecτ(c) < ∞. If
∥Z1∥ < ∞, note that Sn(x) < s∗n(x), where

(
s∗n(x) : n ­ 0

)
satisfies the recur-

sion s∗0(x) = x and s∗n+1(x) + as∗n+1(x)
b = ∥Z1∥+ s∗n(x) for n ­ 0. It is easily

seen that limn→∞ s∗n(x) = (∥Z1∥/a)1/b. Let us put c = (∥Z1∥/a)1/b + 1. Since(
s∗n(c) : n ­ 0

)
hits the interval [0, c] in a finite number of iterations, τ(c) is

bounded above by a finite deterministic quantity, proving that Ecτ(c) <∞. �

P r o o f o f P r o p o s i t i o n 2.4. Because sn(x) decreases monotonically
and deterministically to zero as n → ∞, it follows that tc1(x) = tc2(x) + O(1)
as x → ∞ (for c1, c2 positive). Thus, it is sufficient to establish, for each ϵ > 0,
the existence of c = c(ϵ) such that lim infx→∞ tc(x)/h(x) ­ 1 − ϵ. Assume first
that b ∈ (0, 1). Fix x and set sn = sn(x). Put yn = (sn + asbn)

1−b. For z ­ 0,

(1 + z)1−b ¬ 1 + (1− b)z.

Hence

yn − yn−1 = (sn + asbn)
1−b − (sn−1 + asbn−1)

1−b

= s1−bn−1 − (sn−1 + asbn−1)
1−b

= s1−bn−1
(
1− (1 + asb−1n−1)

1−b)
­ s1−bn−1

(
1− 1− (1− b)asb−1n−1

)
= −(1− b)a.
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Set c = 1. It follows that

ytc(x) − y0 ­ −(1− b)atc(x),

so that

tc(x) ­
(x+ axb)1−b − (1 + a)1−b

(1− b)a
,

from which we conclude that

lim inf
x→∞

tc(x)/x
1−b ­ [(1− b)a]−1.

If b = 1, we find that sn=(1+ a)−nx, so that if c=1, tc(x)­ log x/ log(1+a) for
x > 1, proving the required result.

Finally, for b > 1, we let yn = log log(e+ sn + asbn). For ϵ > 0,

log(e+ x)

log(e+ z + azb)
­ 1

b
(1− ϵ)

for z ­ z(ϵ). Put c = z(ϵ). Note that if yn−1 ­ c, then

yn − yn−1 = log log(e+ sn−1)− log log(e+ sn−1 + asbn−1)

= log

{
log(e+ sn−1)

log(e+ sn−1 + asbn−1)

}
¬ − log b+ log(1− ϵ).

It follows that, for x > c,

ytc(x) − y0 ­
(
− log b+ log(1− ϵ)

)
tc(x),

so that

tc(x) ­
log log(e+ x+ axb)− log log(e+ c+ acb)

log b− log(1− ϵ)
.

This lower bound is easily seen to imply the required result. �

P r o o f o f P r o p o s i t i o n 2.5. Recall that ϕ(·) is the inverse function to
x+ axb. For b < 1, ϕ(x) ∼ x as x→∞, whereas for b=1, ϕ(x)=x/(1 + a). Fi-
nally, for b > 1, ϕ(x)∼(x/a)1/b as x→∞. Note that Ech(S1)=E(h ◦ ϕ)(c+Z1).
Given the asymptotics for ϕ and the monotonicity of both ϕ and h, we need
to check that E(c + Z1)

1−b < ∞ if and only if EZ1−b
1 < ∞ (for 0 < b < 1),

whereas for b = 1, we must verify that E(c+ Z1) <∞ if and only if EZ1 <∞.
Finally, for b > 1, we must show that E log log

(
e +

(
(c + Z1)/a

)1/b)
< ∞ if

and only if E log log(e + Z1) < ∞. All three cases can be easily established by
elementary arguments. �
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P r o o f o f P r o p o s i t i o n 2.6. We use appropriately defined (stochastic)
Lyapunov functions to prove the result. For b ∈ (0, 1), let v(x) = (x + axb)1−b.
Then,

v
(
S1(x)

)
− v(x)

= (x+ Z1)
1−b − v(x)

= x1−b(1 + Z1/x)
1−b − x1−b(1 + axb−1)1−b

= x1−b
(
1 + (1− b)Z1/x+ o(1/x)

)
− x1−b

(
1 + a(1− b)xb−1 + o(xb−1)

)
→ −a(1− b)

as x→∞. Furthermore,∣∣v(S1(x)
)
− v(x)

∣∣ ¬ x1−b
(
11−b + (Z1/x)

1−b)− x1−b = Z1−b
1 ,

so that the dominated convergence theorem proves that

Ev
(
S1(x)

)
− v(x) = Exv(S1)− v(x)→ −a(1− b)

as x→∞. Given ϵ > 0, it follows from Theorem 11.3.4 of [15] that there exists
c(ϵ) such that

Exτ
(
c(ϵ)

)
¬ v(x)(1 + ϵ)

a(1− b)

for x > c(ϵ). Choose c = c(1). Note that for x > c(ϵ), Exτ(c) ¬ Exτ
(
c(ϵ)

)
+

Ec(ϵ)τ(c), proving that

lim sup
x→∞

Exτ(c)/v(x) ¬ (1 + ϵ)/
(
a(1− b)

)
.

Since ϵ > 0 was arbitrary, this proves the required result for b < 1. For b = 1,
choose v(x) = log(1 + x). Then,

v
(
S1(x)

)
− v(x) = log

(
1 + (x+ Z1)/(1 + a)

)
− log(1 + x)

= log

{
1 + (x+ Z1)/(1 + a)

1 + x

}
→ − log(1 + a)

as x→∞. In addition,∣∣v(S1(x)
)
− v(x)

∣∣ = log

{(
1

1 + a

)(
1 + x+ Z1

1 + x

)
+

a

1 + a

}
¬ log

(
1 + Z1 + a/(1− a)

)
¬ log(1 + Z1) + log

(
1 + a/(1− a)

)
.
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The dominated convergence theorem again applies as x→∞, and the same argu-
ment as for b < 1 proves the required result.

Finally, for b > 1, choose v(x) = log log(e+ x+ axb). Here,

v
(
S1(x)

)
− v(x) = log log(e+ x+ Z1)− log log(e+ x+ axb)→ − log b

as x→∞. Also,

∣∣v(S1(x)
)
− v(x)

∣∣ = log

{
log(e+ x+ Z1)

log(e+ x+ axb)

}
¬ log

{
log(e+ x+ axb) + log(e+ Z1)

log(e+ x+ axb)

}
= log

(
1 + log(e+ Z1)

)
= 1 + log log(e+ Z1).

As above, the dominated convergence theorem applies as x→∞, completing the
proof. �

P r o o f o f T h e o r e m 2.2. For b = 1, we use the fact that

π(·) = P
( ∞∑
i=0

(1 + a)−iZi ∈ ·
)
,

so that

EπS
p
0 = E

( ∞∑
i=0

(1 + a)−iZi

)p
.

But
(∑∞

i=0(1 + a)−iZi

)p ­ Zp
0 , proving the necessity of the moment condition.

For sufficiency, we use the bound

( ∞∑
i=0

(1 + a)−iZi

)p ¬ ∞∑
i=0

(1 + a)−ipZp
i

when 0 ¬ p ¬ 1; and when p > 1, use the bound

( ∞∑
i=0

(1 + a)−iZi

)p ¬ (
1 + a

a

)p ∞∑
i=0

(
1− 1

1 + a

)
(1 + a)−iZp

i .

The sufficiency for b = 1 follows immediately from these bounds. To see how
to obtain the bound for p > 1, define the random variable Y to be equal to Zi with
probability (

1− 1

1 + a

)(
1

1 + a

)i

,

and observe that, by Hölder’s inequality, (EY )p ¬ EY p.
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For the sufficiency proof for b < 1, we let v(x) = (x + axb)p+1−b and note
that conditional on S0 = x,

x−p[v(S1)− v(x)] = x−p[(x+ Z1)
p+1−b − (x+ axb)p+1−b]

= x−pxp+1−b[(1 + Z1/x)
p+1−b − (1 + axb−1)p+1−b]

= x1−b
[(
1 + (p+ 1− b)(Z1/x) + o(1/x)

)
−
(
1 + a(p+ 1− b)xb−1 + o(xb−1)

)]
= −a(p+ 1− b) + o(1)

as x→∞. The inequality (1+ x)a ¬ 1+ (a∨ 1)xa, valid for x ­ 0, a ­ 0, yields
the bound

x−p|v(S1)− v(x)| ¬ x1−b|(1 + Z1/x)
p+1−b − 1|

¬ x1−b(Z1/x)
p+1−b((p+ 1− b) ∨ 1

)
,

so the dominated convergence theorem applies, and hence

Exv(S1)− v(x) = −a(p+ 1− b)xp + o(xp)

as x→∞. Hence, there exists c <∞ such that

Exv(S1)− v(x) ¬ −a
2
(p+ 1− b)xp

for x ­ c. Since

EπS
p
0 = lim

N→∞

1

N

N∑
j=0

ExS
p
j ,

Theorem 14.2.2 of [15] implies that EπS
p
0 <∞.

For the necessity, note that if Zi = 0 a.s., the above analysis continues to hold
for v

(
Sn(x)

)
replaced by v

(
sn(x)

)
, so that

v
(
s1(x)

)
− v(x) ­ −a(p+ 1− b)xp + o(xp)

as x→∞. Hence, there exists c1 <∞ such that π[0, c1] > 0 and

v
(
s1(x)

)
− v(x) ­ −2a(p+ 1− b)xp

for x ­ c1. It follows that so long as sn−1(x) ­ c1, we have

v
(
sn(x)

)
− v

(
sn−1(x)

)
­ −2a(p+ 1− b)sn−1(x)

p.

Since the above inequality holds for n ¬ tc1(x), summing the above inequalities
over n ¬ tc1(x) gives

v
(
stc1 (x)(x)

)
− v(x) ­ −2a(p+ 1− b)

tc1 (x)∑
j=0

sj(x)
p.
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So, for non-negative Zi’s, the domination of
(
sn(x) : n ­ 0

)
by

(
Sn(x) : n ­ 0

)
leads to

E
τ(c1)−1∑
j=0

Sj(x)
p ­

tc1 (x)−1∑
j=0

sj(x)
p ­ v(x)− v(c1)

2a(p+ 1− b)
.

Since the set [0, c1] is recurrent, by Theorem 10.4.7 of [15], the measure

π◦c1(·) =
∫

[0,c1]

π(dx)Ex

∞∑
j=1

1{·; τ(c1) ­ j}

is invariant, supported on [0, c1], and satisfies π◦c1(A) = π(A) for all Borel A ⊆
{x : τx([0, c1]) < ∞}. So the recurrence of the chain and the uniqueness of π
imply that π = π◦c1 , whence

EπS
p
0 = Eπ◦c1

Sp
0 =

∫
[0,c1]

π(dx)
∞∑
j=1

Ex[S
p
j ; τ(c1) ­ n]

=
∫

[0,c1]

π(dx)Ex

τ(c1)∑
j=1

Sp
j =

∫
[0,c1]

π(dx)Ex

τ(c1)−1∑
j=0

Sp
j ,

where the last equality follows from the invariance of π. Hence, if πc1 is the re-
striction of π to [0, c1], which is well defined since τ(c1) <∞, we have

EπS
p
0 = Eπc1

τ(c1)−1∑
j=0

Sp
j · π[0, c1],

so that

EπS
p
0 ­

∫
[0,c1]

π(dx)ExES1

τ(c1)−1∑
j=0

Sp
j

­ π[0, c1] · E0

(
v(S1)− v(c1)

2a(p+ 1− b)

)
I(S1 ­ c1)

= π[0, c1] · E
(
Zp+1−b
1 − v(c1)

)
I
(
Z1 ­ ϕ(c1)

)
,

proving the necessity of the moment condition.
The proof for b > 1 is similar. Here, we set v(x) = (x + axb)p/b. Note that

conditional on S0 = x,

x−p[v(S1)− v(x)] = x−p[(x+ Z1)
p/b − (x+ axb)p/b]

¬ x−p[2p/b(xp/b + Z
p/b
1 )− ap/bxp(1 + x1−b/a)p/b]

¬ 2p/bx−p(b−1)/b + 2p/bx−pZ
p/b
1 − ap/b + o(1),



352 P. W. Glynn et al.

so that in the presence of the moment condition EZ
p/b
1 < ∞, we may use the

dominated convergence theorem to conclude that there exists c < ∞ such that
x−p

(
Exv(S1) − v(x)

)
¬ −ap/b/2 for x ­ c. The sufficiency then follows as for

b < 1. The proof of necessity uses the current choice of v(·) analogously to the
argument employed for b < 1, and is therefore omitted. �
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