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P ~ ~ ~ L A ~ O N  ERROR OPERATOR 
FOR EELBERT SPACE VALUED STATIONARY 

. . 
S ' F O C ~ S ~ C  PROCESSES 

Abstract. In the paper a characterization of interpolation error 
operator for Hilbert space valued staiionary stochastic processes is 
obtained. 

1. Hntmdwdoa kt Z be the set of integers and let X, = (X;, . .., X3, 
n E Z, be a q-variate stationary stochastic process over Z. Suppose that all 
random variables X,, n # 0, are known. Then the linear predictor of X o  is 
given by the formula 

where M, 6 -(XI : n # 0, i = 1, . . . , y] , P ,  denotes the orthogonal projec- 

tion operator onto M, and PM (XI, . . . , X4) = (PM X1, . . . , PM Xq). An im- 
portant problem in the prediction theory of such processes is to obtain a 
formula for the interpolation error matrix 

A complete solution of this problem for q = 1 was given by A. N. 
Kolmogorov in 1941. In 1960 Masani [4] extended Kolmogorov's result to 
the case of minimal full rank q-variate processes and later (1967) Salehi [8] 
proved that for any q-variate minimal process (q < oo) we have 

where Fa is the absolutely continuous part of the spectral measure of the 
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process and J is a range of Z,. Finally, in 1976, Makagon and Weron [3J 
obtained a full description of the space J = range I,. 

In the present paper a characterization of the interpolation error operator 
for Hilbert space valued stationary processes is given. 

2. BPelidmies. Let H and K be complex Hilbert spaces. Unless other- 
wise stated, the following conventions and notation will remain fixed in this 
paper : 

L(H,  K) - the set of all linear and continuous operators from H into K ; 
L+ ( H )  - the set of all selfadjoint operators TE L(H, H) such that (TTk, x) 

2 0 for every x  ~B-;-we write T 3 S if T - S E L+ (H), T, S E L ( H ,  H) ; 
NIT) - the null space of an operator T, i.e., 

- 
N(7) = ( x E H :  Tx = O ) ,  T E L ( H ,  K); 

g(T) - the range of T, i.e, W (T )  = (y EK: y = Tx, X E  H) ; 
T" - the generalized inverse operator of an operator T E L ( H ,  K), i.e., 

a linear mapping from g(T) onto N(T)1 such that T# y = x if and onIy 
if ?k = y and XEJV(T)L (we observe that T* is cbsed because T# 
= ( ~ l ~ ~ W ) - l ;  
PM - the orthogonal projection operator onto M; 
MI - the orthogonal complement of M ; - 
sp L - the minimal cIosed linear subspace containing the set L; 
G - a discrete Abefian group; 
I' - the dual group of 6 ;  
( g ,  y )  - the value of Y E T  at a point ~ E G ;  
B(r) - the Borel a-algebra of r ;  
x - the normed Haar measure of r; 
L'(I', x,  K) - the HiIbert space of all K -valued x -square (Bochner) 

integrable functions on T ;  
C - the set of all complex numbers. 

2.1. Definition. A function X = (X,: g E G] from G into L(H, K) is said 
to be an H - valued stationary stochastic process (SSP)  if its correlation X$ X, 

- - 
= K (g - h) depends only on g  - h. 

If X is an W -valued SSP, then there exists a unique Borel regular Lt (H) - 
valued measure (countably additive in the weak operator topology) such that 
for every x E H  

(K (g) XY x) = j ( g ,  Y > (F ( d ~ l  x ,  x). 
F 

F is called the spectral measure of the process X. By the spectral density of 
the process X wet mean an L+ (H) -valued function F f ( . )  on T such that, for 
every x EH, (F' (-) X ,  X) is x - integrable and 
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If H is separable and F' exists, then it is unique up to the x-a.e. equality. 

22. LEMMA. Let H be a separable Hilbert space and k t  F be the spectral 
density of an H-tlalued SSP X. Then 

(1) [F(-)I1/" XE L~ (r, X ,  H) for every x EH; - 
(2) sp { ( g , - ) ~ ' ( ~ ) ~ l ~ ~ :  ~ E G , x E H )  = ( ~ E L ~ ( ~ , x , E I ) :  f(y)~g(Ff(y)y)) 

x - a.e.1; 
(3) for every x - masurable function f : r + H such that f (y) E 9 ( F ' ( y ) ' f z )  

x - ax, -the function q(y) = [~'(y)lI~] # f (7) is 3~ - measurable. 
Proof. The-first part follows from the definition of F' and the construc- 

tion of an operator square. root (see, e.g., [ 5 ] ,  p. 183). 
To prove (2) it suffices to show that the right-hand side (RHS) of (2) is 

included in the left one (LHS) (the converse inclusion is trivial). Suppose that 
f ERHS and f 1 LHS and let {x,: k = 1,2 ,  . . .] be a countable dense set in 
H. Then for every k = 1, 2, . . . and g E G we have 

Hence there exists a set A ~ a ( r )  such that x(A) = 0 and 

f ( )  1 9 (F'()12) = y )  for every Y $A + 

Thus f = 0 x-a.e. since f ERHS. 
Part (3) is a special case of Lemma 2.7 (2) in [2]. 
For any H-valued SSP X and A c G we put 

The following lemma was observed by Rosanov (see [7]): 

23. LEMMA. Let H be separable and let X be an H - valued SSP. Suppose 
that the spectral density F' of the process X exists. Then the mapping Vdefined 
by the formla 

V(X,x)(.) = (g, .)F'(.)112~, X E H ,  ~ E G ,  - 

extends to an isometry fiom M ( X )  onto 

. L ( F ) ~ ( ~ E L ~ ( ~ , ~ , H ) : ~ ( ~ ) E L % ( F ' ( ~ ) ) ~ - a . e . 1 .  

Moreover, 

V ( N G - ~ , , ( ~ )  = {f E L(F) : F'(y)lt2 f (y) = const x -ax.) .  

Proof. From Lemma 2.2 it follows that Y = (5:  g E G), where 

(%x)(-) 2 (0, -> F'(.)ll2x, L2(C xw, H)), 
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is an H-valued SSP with the same spectral measure as the process X. 
Moreover, M(&3 = L(F). A simple calculation shows that the mapping V 
defined by V(X,x}  = 'Y, x extends linearly to an isometry from M (AJ onto 
M ( V .  To prove the remaining part of the lemma it suffices to observe that 
f E V (MG- (ol(X)) if and only if 

for every ~ E G -  [O) and XEH. The last equality holds if and only if 
F' (y)112f(y) = const .. x - - - a.e. 

3; The main theorem. Let X be an H -valued SSP over an Abelian group 
G, A c G, and let g be a fixed element of G. Then the predictor Xi of Xg 
and the prediction error operator Z,A are defined by the folio%ing formulas: 

x,A = Pn41(X) Ifg and Z: = (X, - X,A)* (Xg - xi). 

First, we describe the prediction error operator using the Yaglom idea 
(cf. [9], p. 175). For convenience we introduce the following definition: 

3.1. Definition. Let d be a subset of LC (H). An operator TE L+ (H) is 
said to be the maximal element of d (we write T = maxd) if T E ~  and T 
2 S for every S E d. 

1 12. LEMMA. Suppose that X is an H - valued SSP over an Abelian group G, 
- ! A c G, and g E G. k t  dt be the set of all operators T E L(H, K) such that 

I (9 9(T) c N ~ ( X ) ,  

(ii) T * T = X , * T  

and kt 

9; "T* T :  T E ~ ; ) .  

Then 2; = max 9;. Moreotler, if Z,A = T* T and T E  di, then T = X, - X,A. 

Proof. First, we note that X,-X: satisfies- (i) and (ii). Hence 

Zt E 9;. Let now T E  df. Since (%*)* T = Xg* T = T* T, we have 

Thus is the maximal element of 9:. Moreover, Z; = T* Tif and only if 
T =  q. 

I 
i We will be interested only in the case whence G is a discrete Abelian 

I group, A = C - {O), and g = 0. For simplicity we write 
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33. LEMMA. Suppose that H is separable, X is an H - valued SSP, and that 
F' is its spectral density. Then S E 9 $ - [ O 1  (see Lemma 2.2) if and only if 

I S .G L(H, H )  and for every x E H :  
I 

0) Sx E 9 (F' ( y )  ' I 2 )  x - ax., 

(i) j (IF' ( ~ ) # ] l / ~  SX, [ F ~ ( ~ ) ~ / ~ ] #  S X )  x (dy) = (SX, X) . 
r 

Proof. Let 9, denote the set o f  all operators S E L(H, H) for which (i) 
and (ii) are satisfied. First we show that .92-'O1 c go. k t  V denote the 
isomorphism defined in -Lemma 2.3. Suppose that S = T;T, where 

I T E Then 

(Sx,  y) = (T* Tx, y) = (Xz Tx, y) = (VTx, VX, y) - 

= j ((VTx) (Y), F' (yI1'")x (4) 
r 

= 1 (F' (Y)~'~ (VTX)(Y)¶ Y)X ( d ~ )  
r 

= (F'(y)lI2(VTx)(y), y) x - a.e. 

since V Tx E v (N,- (X)) and, by 2.3, F' (y)l12 ( V n )  ( y )  = const x - a.e. Thus 
I Sx = F ' ( ~ ) ' ~ ~ ( v ~ ) ( ~ )  x -a.e. and (i) is satisfied. From the above equation it 
1 follows that 
I 

(VTx)(y) = [Ff (y )1 /2 ]  # Sx x - a.e. 

Therefore 

It remains to prove that 9, c 9z-{O]. Let S E go. Then S 2 0 and from 
Lemmas 2.3 and 2.2 we deduce that [F'(y) f /2]#  SX is a function defined x -  
a.e.' and belonging to L(F) for every x E H (for the definition of L(F) see 
Lernrna 2.3). Let us note that by the Closed Graph Theorem a mapping R 
defined by the formula -- - 

is continuous. In fact, let x, + x, in H and [ F ' ( . ) ~ I ~ ] #  SX, + g(-) in 
L ~ ( T ,  X ,  H). Without loss of generality one can assume that 

[ F ' ( ~ ) ~ I ' ]  " Sx, -, g ( y )  x - a.e. 

By (i) there exists a set A EB(I') o f  x-measure zero such that 
SX, E 9(F'(y)1/2)  for all n = 0, 1, . . . and 

g ( y )  = lim [ ~ ' ( y ) ' / ~ ] #  SX, 



provided y # A. Since Sx,  4 Sx,, and [F'(y)'l2]# is a closed operator for every 
E r, we obtain g ( y )  = [F' ( y ) l J 2 J L  Sxo for every y # A .  Since F' ( y ) l f 2 ( ~ x )  (7) 

= Sx w -a.e, Lemma 2.3 implies that 

Moreover, we have 

(2) (R* Rx,  x) = j J([F'(y)1/2J# Sx)I2 ~ ( d y )  = (SX ,  X) (i.e., R* R = S), 
r 

(3) (R' Rx9 Y) = ( ( ~ 3  Y) = (Ff(~)lrz(Rx) y) 
- 

. - 
= ~ ( I R X )  ( 1 1 1 9  F ' ( Y ~ ~ / ~ Y ) x I ~ Y )  

r - -  
= (Rx, V X o  y) = ( I  VXo)* Rx, y) x - a.e. 

h i  u$ put T = V-' R, where V  is the isomorphism defined in Lemma 2.3. 
Then, by (1) - (31, we have T E  d f - ( O \  and hence T* T.= R* R = S E 

Now we state the main result of this paper. 

3.4. THEOREM. Let X = {X, : g E G) be an H - valued SSP over a discrete 
Abelian group G cad let F be its spectral maure .  Suppose that H is separable 
and tke process X has the operator spectral density F' (with respect to x). 
go be the set of all those operators SEL+(H)  for which 

Sx E 9 ( ~ ' ( y ) ~ f ~ )  x - a.e. 
and 

for every x E H. 
Then the prediction error operator Co and the predictor *o are given by 

the following formulas : 

(1) ZO = max B,, . .-. . - 

12) 80 x = v-'(F(.)' '~ x - [F' (.)1/2]# zo x), x E H .  

Proof. Part (1) follows immediately from Lemmas 3.2 and 3.3. To prove 
(2) it suffices to observe that if T = V-I  R, where (Rx ) ( - )  = [F' ( .)l l2 1' Co X, 

x E H, then according to the proof of Lemma 3.3 we have T E  d $ - { O 1  and 
T* T =  ZO. Thus, b y  Lemma 3.2, T = X o -  8,, which completes the proof. , 

4.1. First, let us note that for a finite - dimensional Hilbert space Theorem 
3.4 contains the results stated in the Introduction. Suppose H = Cq (q < m). 
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Then, by Theorem 3.4, E0 is the maximal element of the set go of all q x q  
Hermitian non - negative matrices S for which 

(i) W(S) c 9(F'(y)lt2) = B?(F'(~)) x - a.e., 

(ii) S = j SF'(y)# Sw (dy) 
r 

(here A' denotes the generalized inverse matrix of a matrix A in the sense of 
Penrose; for its properties we refer to [6]). In that case one can find an 
explicit - form of Co . - 
42, COROLLA& . . {cf. -[8] and [3], Theorem 4.5). Assume that (X, 

= (Xi, . . . , Xi) : g E G) is n q - omitate stationary stochastic process over G and 
let F' be its spectral demity. Let J be the space of all x E C4 (the elements - of U? 
are regarded as column vectors) such that 

x E W (F' (y)) x - a.e., j x* F'(y)" xx (dy) r oo . 
r 

Then 

2 0  = [~PJF'(Y)* PJx(~Y)I'. 
r 

Proof, Write ' 

30  = [I~JF'(Y)' P~ x(~Y)]# 
r 

and observe that, according to the results of [6] ,  So satisfies (i) and (ii) of 4.1. 
In fact, we have 

(i) ~ ( S O ) = M ( ~ ~ J ~ ' I Y ) # P J ~ ( ~ Y ) ) L  r 

(ii) So = soSo# So = So (1 PJ ~'(y) '  PJ dx)So = ISo F' (y )#  So x(dy). 

We shall prove that So 3 S for every S satisfying (i) and-1ii)-of 4.1. Since 

s = [J Paa F1(Y)# P.@Is, d ~ ] #  = [r?m (j PJ F f  (Y)' PJ d x )  P4S)I' 

= [P,,, s,# P,(s,I # Y  

the proof will be completed if we show the following fact: 
If So is a q x q  Hermitian non-negative (complex) matrix and M is a 

subspace of g(S,), then So 2 (P, S,# 
To see this we put S = (Py so# P,)' and T = (Stt2)# S. Since 

W (S) = 92 (PM So# P,) c M and S' = P ,  Sc P,, 
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we have 

= S-S(P,S,# P,)S = S - S S # S  = 0. 

Thus 
so = (Sy2) (SA'~) = ((SAI2 - T )  + TI* [(SAI2 - T )  + T-j 

= (SA1' - T)* (s;"- T )  + T* T* T = SS$ S = S. 

Finally, we state a generalization of Theorem 3.4 to the case of processes 
without spectral densities. The following proposition will take place of 
Le'mma 2.3 in our considerations. 

43. PR~POSITION ([I], see also [Z]). Let X be an H-valued SSP ouer G 
with the spectral measure F and let H2,p denote the set of all H - ualued 
measures m on a(r) such that 

~ ( A ) E ~ ? ( F ( A ) ~ / ~ )  for mery d s g ( r ) ,  

sup llV(~)'~']' m(A)l12 llmll: < m, 
u€.F A n  

where 9 is the set of all finite Bore1 partitions of r.  the^ 

(a) ( H Z , P ,  II-IM is a HiIbert s p c e ;  
(b) the mapping U dejned by 

U ( X , x ) I A )  = j<g, y ) F ( d y ) x ,  ~w-3, 
A 

extends linearly to an isometry from M ( X )  onto H Z , P ;  
(c) for euery A c G 

d f -  
u(NA(X) )  = { ~ E H ~ , ~ :  6i@) = J(g, Y) rn(dy) = 0 for all ~ E A ) .  

r 

Using this proposition and the same arguments as in Theorem 3.4 one 
can show the following 

4.4. THEOREM. Suppose that X is an H-ualued SSP- with the spectral 
measure F .  Then E ,  is the maximal element of the set go qf all operators 
S EL+ ( H )  for which 

Sxx(d) E w ( F ( A ) ' / ~ )  for every A E (0, 

SUP C I ( [ F ( A ) ~ / ~ ] #  S X X ( A ) ~ ~ ~  = (SX, X )  
den 

for every X E  H .  
We point out that according to the results of El] (or [2]) a Hilbert space 

H in Theorems 3.4 and 4.4 can be replaced by any linear topological space 
(under adequate definitions of [F' ( . ) ]1 f2  and Hz,,). 
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