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INTERPOLATION ERROR OPERATOR
FOR HILBERT SPACE VALUED STATIONARY
- STOCHASTIC PROCESSES

BY

ANDRZEJ MAKAGON (WrocLaw)

Abstract. In the paper a characterization of interpolation error
operator for Hilbert space valued stationary stochastic processes is
obtained.

1. Introduction. Let Z be the set of integers and let X, = (X}, ..., X9,
neZ, be a g-variate stationary stochastic process over Z. Suppose that all
random variables X,, n # 0, are known. Then the linear predictor of X, is
given by the formula

Xy = PMO(X)X05 A

where M, = sp{Xi:n#0,i=1,...,q), Py denotes the orthogonal projec-

tion operator onto M, and Py (X', ..., X9 =(Py X', ..., Py X9. An im-
portant problem in the prediction theory of such processes is to obtain a
formula for the interpolation error matrix

Zo S [(Xh— X, Xb— Xp)1-1

A complete solution of this problem for g =1 was given by A. N.
Kolmogorov in 1941. In 1960 Masani [4] extended Kolmogorov’s result to
the case of minimal full rank g-variate processes and later (1967) Salehi [8]
proved that for any g-variate minimal process (g < oo) we have

1% (dF*\* *
=|—|P t) P,dt
Z‘0 |:27|:£ J(dt) () J ]s

where F* is the absolutely continuous part of the spectral measure of the
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process and J is a range of X,. Finally, in 1976, Makagon and Weron [3]
obtained a full description of the space J = range X,.

In the present paper a characterization of the interpolation error operator
for Hilbert space valued stationary processes is given.

2. Preliminaries. Let H and K be complex Hilbert spaces. Unless other-
wise stated, the following conventions and notation will remain ﬁxed in this
paper:

- L(H, K) — the set of all linear and continuous operators from H into K ;
LY (H).— the set of all selfadjoint operators TeL(H, H) such that (Tx, x)
>0 for every xeH; we write T> S if T—SeL*(H), T, SeL(H, H);

N (T) — the null space of an operator T, ie,

N(T)={xeH: Tx =0}, TeL(H,K);

R(T) — the range of T, ie, #(T)={yeK: y = Tx, xeH};

T* — the generalized inverse operator of an operator TeL(H, K), ie,
a linear mapping from #(T) onto A (T} such that T* y = x if and only
if Tx=y and xe/V (T)L (we observe that T* is closed because T*

= (TN (T)l) _

P, — the orthogonal projection operator onto M;

ML — the orthogonal complement of M;

spL — the minimal closed linear subspace containing the set L

G — a discrete Abelian group;

I' — the dual group of G;

{g, y> — the value of yerI' at a point geG;

#(I') ~ the Borel g-algebra of I';

» — the normed Haar measure of I';

I*(I, x, K) — the Hilbert space of all K-valued x-square (Bochner)
mtegrable functions on I';

C — the set of all complex numbers.

21. Deflnltlon A function X = {X,: geG} from G into L(H, K) is said
to be an H -valued stationary stochastic process (SSP) lf 1ts correlatlon XX,
= K(g—h) depends only on g—h.

If X is an H -valued SSP, then there exists a unique Borel regular L* (H)-
valued measure (countably additive in the weak operator topology) such that
for every xeH

(K@x, x)= ; g, > (F () x, x).

F is called the spectral measure of the process X. By the .épectral density of
the process X we mean an L' (H)-valued function F’(-) on I such that, for
every xeH, (F'(*)x, x) is x-integrable and

(F(d)x, x) = [(F' () x, x)(dy).
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If H is separable and F’ exists, then it is unique up to the x-a.e. equality.

2.2. LeMMA. Let H be a separable Hilbert space and let F’ be the spectral
density of an H-valued SSP X. Then
(1) [F'(")]"*xeL*(T, x, H) for every xeH;
(2)}sp g, YF()*x: geG, xeH} = {fel(I, %, H): f()eA(F () |
x-ael; |
(3) for every x-measurable function f: I' > H such that f(y)e Z(F (»"/?)
% -a.e. the function o(y)=[F (y)V*1* f(y) is x-measurable.
Proof. The first part follows from the definition of F’ and the construc-
tion of an operator square.root (see, e.g., [5], p. 183). ' ;
" To prove (2) it suffices to show that the right - hand side (RHS) of (2) is
included in the left one (LHS) (the converse inclusion is trivial). Suppose that
feRHS and f ] LHS and let {x,: k=1, 2,...} be a countable dense set in
H. Then for every k=1, 2,... and geG we have

;(g, P> (F ()2 %0, f ()2 (dy) = 0.

Hence there exists a set 4e4(I') such that x(4) =0 and

fOLRF ) =AF ) for every y¢4.

Thus f =0 x-a.e. since f eRHS.
Part (3) is a special case of Lemma 2.7 (2) in [2].
For any H-valued SSP X and A = G we put

My(X)=sp{X,x: xeH,ged}, M(X)=M,(X),
 N4(X) = M(X)© M4 (X).

The following lemma was observed by Rosanov (see [7]):

23. LeMMA. Let H be separable and let X be an H -valued SSP. Suppose
that the spectral density F’ of the process X exists. Then the mapping V defined
by the formula '

VX,%)() = <g, SF(W2x,  xeH,geG; -
extends to an isometry from M (X) onto ' B
LR L {fel(I', », H): feR(F () x-ael.
Moreover, A
V(Ng-0;(X)) = {feL(F): F'(»)"2f (y) = const x-a.e.}.
Proof. From Lemma 2.2 it follows that ¥= {Y,: geG}, where
(%9() = <g, > F()'x, LeL(H, X(T, x, H)),
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is an H-valued SSP with the same spectral measure as the process X.
Moreover, M(Y) = L(F). A simple calculation shows that the mapping V
defined by V(X,x) = Y,x extends linearly to an isometry from M(X) onto
M(Y). To prove the remaining part of the lemma it suffices to observe that
f€V(Ng-0(X)) if and only if

;(g, P> (F 21 (), X)x(dy) = (f, V(X,x) =(V"f, X,x) =

for every geG—{0} and xeH. The last equality holds 1f and only if
F’(y)”zf(y)—const % -a.€. .

“3; The main theorem. Let X be an H - valued SSP over an Abelian group
G, A<= G, and let g be a fixed element of G. Then the predictor X;' of X,
and the prediction error operator Z4 are defined by the following formulas

Xg PMA(X) Xg and X;l = (Xg. X:)* (Xg X;‘)'
First, we describe the prediction error operator using the Yaglom idea

(cf. [9], p. 175). For convenience we introduce the following definition:

3.1. Definition. Let o be a subset of L* (H). An operator TeL' (H) is
said to be the maximal element of of (we write T =max &) if Tes/ and T
= S for every Sess.

3.2. LEMMA. Suppose that X is an H -valued SSP over an Abelian group G,
AcG, and geG. Let o} be the set of all operators TeL(H, K) such that

(i) R(T) = N4(X),
(i) T*T=X}T
and let

4 df

PALIT*T: Ted}.

‘Then 3 = max 9. Moreover, if A = T* T and Te o2, then T = X,~ X2.

Proof. First, we note that Y¥* £ Xg—X;‘ satisfies- (i) and (ii). Hence
Zle ;. Let now Tesfy. Since (Y,)*T=X#T=T*T, we have
= (Y"‘)* Y =(%'-T+ T)*((};‘— N+ T)=(Y -T* '-T)+T*T
>T*T.

Thus E“ is the maximal element of ,@““. Moreover, 2" = T*Tif and only if
T= Y“

We will be interested only in the case whence G is a discrete Abelian
group, A = G—{0}, and g = 0. For simplicity we write

Xo = X((];_{o} and ZO = Zg_{o).
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33. LeMMA. Suppose that H is separable, X is an H -valued SSP, and that
F' is its spectral density. Then Se 2§ ® (see Lemma 2.2) if and only if
SeL(H, H) and for every xeH:

@ Sxe Z(F'()'?) - ae,
(i) [(LF ®*1"> 8x, [F'(»)"/*1* Sx)=(dy) = (Sx, x).
r
Proof. Let 9, denote the set of all operators SeL(H, H) for which (i)
and (i) are satisfied. First we show that 2§~ = 9,. Let V denote the

isomorphism defined in-~Lemma 2.3. Suppose that S = 'T*T, where
Tesf/§1%, Then

(Sx, y) = (T* Tx, y) = (X3 Tx, y) = (V'Tx, VX))
= {(VTO @), F (7)'*y)x(dy)

r . -
= ! (F '(?)"Z(VTX)(?), )% (dy)

= (FG)"2(VT@), y) x-ae.

since VTxeV(Ng-y(X)) and, by 23, F'(y)/*(VTX)(y) = const x-a.e. Thus
Sx = F'())"*(VTx)(y) x-ae. and (i) is satisfied. From the above equatlon it
follows that

(VTx)(v) - [F'()"12]* Sx x-ae.

Therefore
(8x, ) =(VIx, VTj) = I[ (CF' ()"*]* Sx, [F' (y)"/*1* Sy) = (dy).

It remains to prove that 2, = 2§, Let S€ 2,. Then S > 0 and from
Lemmas 2.3 and 2.2 we deduce that [F’(y)!/%]* Sx is a function defined x -
a.e. and belonging to L(F) for every xeH (for the definition of L(F) see
Lemma 2.3). Let us note that by the Closed Graph Theorem a mappmg R
defined by the formula e

Hox > [F’(')”z]#SxeLz(F, x, H)
is continuous. In fact, let x,—x, in H and [F'(-)"*]*Sx,—g(") in
I*(I', », H). Without loss of generality one can assume that
[F (nY*1* Sx, = g(y) »-ae.

By (i) there exists a set Ae%(I) of x-measure zero such that
Sx,e R(F'(y)*/?) for all n=0,1, ... and

g(y) = lim [F' (y)"/2}* Sx,




62 A. Makagon

provided y ¢ A. Since Sx, — Sx, and [F’(y)/%]* is a closed operator for every
yeTl, we obtain g(y) = [F'(y)/*]* Sx, for every y¢A. Since F'(y)Y*(Rx)()
= 8x x-ae, Lemma 2.3 implies that

(4] R(R) = V(Ng-0)(X))-
Moreover, we have '

(@ (R*Rx, x) = !l_I[F '()'?1* Sxli*(dy) = (Sx, x) (i€, R*R =),

G)  (R*Rx,y) =(Sx,3) = (F 0)*(R%) 1), y)
= [(R%) ), F'0)'"*y)x(d)

=(Rx, VXoy) = ((VXO)"“ Rx, y) x-ae.

Let us put T =V~ 'R, where V is the isomorphism defined in Lemma 2.3.
Then, by (1)-(3), we have Te.o/§~ 1%, and hence T* T'=R*R =5 2§ ©,

Now we state the main result of this paper.

34. TueoreM. Let X = {X,: geG} be an H-valued SSP over a discrete
Abelian group G and let F be its spectral measure. Suppose that H is separable
and the process X has the operator spectral density F’ (with respect to x). Let
9o be the set of all those operators S e L* (H) for which

Sxe R(F'(N'?) x-ae.
and

(Sx; x) = ! (CF'()"21% $x, [F' (721" Sx)x (dy)

for every xeH. : -
~ Then the prediction error operator X, and the predictor X, are given by
the following formulas:

I8 S, =max Dy, ...
Q) Rox =V HF (YW2x—[F()2]* Z,x), xeH.

Proof. Part (1) follows immediately from Lemmas 3.2 and 3.3. To prove
(2) it suffices to observe that if T = V™! R, where (Rx)(*) = [F'(-)'*]* Z, x,
xeH, then according to the proof of Lemma 3.3 we bave Te.#§{* and
T* T=ZX,. Thus, by Lemma 3.2, T = X,—X,, which completes the proof.

4. Final remarks.

4.1. First, let us note that for a finite - dimensional Hilbert space Theorem
3.4 contains the results stated in the Introduction. Suppose H = C? (g < o0).
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Then, by Theorem 3.4, Z, is the maximal element of the set &, of all g xq
Hermitian non - negative matrices S for which

0) A(S) < R(F'()"?) = A(F' () x-ae,
(ii) S = [SF'(y)* Sx(dy)
r
(here A* denotes the generalized inverse matrix of a matrix 4 in the sense of

Penrose; for its properties we refer to [6]). In that case one can find an
explicit -form of 2?0

4.2. COROLLARY (cf. 81 and [3], Theorem 4.5). Assume that X,

=(X], ..., X)) :g€G} is a q-variate stationary stochastic process over G and
let F 2 be lts spectral density. Let J be the space of all xe C? (the elements of C*
are regarded as column vectors) such that o

xeR(F'() x-ae, [x*F () xx(dy) <.
Then i
Zo=[[PsF ()" Pyx(d)]”.
Proof. Write
So=[[PsF ()" Pyx(@n)]”

and observe that, according to the results of [6], S, satisfies (i) and (ii) of 4.1.
In fact, we have

O RS = ([P FO)* Pyx@)
= R([P,FO)* Pyx(dp) < J < R(F ) x-ae,
@)  So=5,585,= So([ P2 F' ()" Pydn)So = [ S0 F'()* Sox(d).

We shall prove that So S for every S satisfying (i) and (ii) of 4.1. Since

8 =[[Paw F'(1)* Paydx]” = [Pas) (| Py F ()* Py d) Pag)]”
= [Pas S5 Pas1”,

the proof will be completed if we show the following fact:
If So is a qxq Hermitian non-negative (complex) matrix and M is a
subspace of R(So), then So = (P S Pr)*.
To see this we put S =(PyS& Py)* and T =(5¥»)*S. Since
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we have
(S§2—T)* T = S§/>SY?* S—S55 S = Py, S—(SPy) SE (P S)
. = S—S(PySEPy)S=5—S5*5=0.
Thus
So = (SY)(S) = [SY> ~ 1)+ TI* [(S§>~ T)+ T]
=(S?=T)*(Sy*—T)+T*T> T*T=SS5 S =§.
- F 1nally, we state a generalization of Theorem 3.4 to the case of processes

without spectral densities. The following proposition will take place of
Lemma 2.3 in our considerations.

4.3. ProvrosrrioN ([1], see also [2]). Let X be an H-valued SSP over G
with the spectral measure F and let H,yp denote the set of all H -valued
measures m on (') such that

m(d)e R(F (4)'?) for euery Ae B,
sup Y NIF ()1 m (A% = il < oo,

¥ Aca

where & is the set of all ﬁnite Borel partitions of I'. Then

(@) (HyF, lI'llf) is a Hilbert space;
(b) the mapping U defined by

U(X,x)(4) = I g, > F(dy)x, AeB(),

extends linearly to an isometry from M(X) onto Hz Fo
(c) for every Ac G

U(N4(X) = {meH,: m(g) < I(g,wm(dv) 0 for all ge A}.

Using this proposition and the same arguments as in Theorem 34 one
can show the following

4.4. THEOREM. Suppose that X is an H -valued SSP- with the spectral

 measure F. Then Z, is the maximal element of the set @, of all operators

SeL* (H) for which
Sxx(d)e R(F(4)'?)  for every Ae B(I),
sup Y. [{LF(4)'%1% Sxx(4)||* = (Sx, x)
oc¥ Aeo
for every xeH.

We point out that according to the results of [1] (or [2]) a Hilbert space
H in Theorems 3.4 and 4.4 can be replaced by any linear topological space
(under adequate definitions of [F'(-)]/* and H,g).
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