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Abstract. The weak convergence of a consistent estimator of a
monotonic dependence function of two random variables X and Y is
studied. The estimator is treated as a random element of D[0, 1]
and of L,([0, 1], 1), where A stands for the Lebesgue measure. Its
asymptotic distribution is derived for the two spaces in the following
cases: independence-of X-.and Y, distributions contiguous to inde-
pendence, and dependence -of X and Y. Except for the case of
independence the asymptotic distributions depend strongly on the
marginals of X and Y. Therefore, the asymptotic distribution of rank
counterpart of the estimator is also considered. The obtained results
extend the possibility of practical applications of the measure of
monotonic dependence and its consistent estimator.

1. Introduction. Consider a two - dimensional random vector (X, Y) with
continuous marginal distributions and finite expectations. A functional
measure of monotonic dependence pyy(p), pe(0, 1), was introduced and
discussed in detail in [11] and [9]. Under ‘the above assumptions the
monotonic dependence function uyy(p) is defined as :

e r () = {uiy (® i uxy(p) 20,
el pry () i uEr(P <0,
where
pxy(® =[EX]Y > y)-EXJ/[E(X| X > x,)—EX]
and :

bxy(P) = —plxy (D),
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while x, and y, denote the p-th quantiles of X and Y, respectively. The
function pyy(p) can be estimated via u,(p), the analogue of uyy(p) for the
sample distribution. Kowalczyk [9] proved that, for every fixed pe(0, 1),
Un(P) > pxy(p) ae. The practical usefulness of the measure of monotonic
dependence is conditioned by the possibility of calculation of asymptotic
distributions of u, under various circumstances. The most important of them
are: independence of X and Y, alternatives contiguous to independence, and
dependence of X and Y. The availability of the asymptotic distributions and
their properties usually give the basis for construction of optimal_ tests and
confidence. regions. In this paper we deal with the first of the mentioned
problems and study the asymptotic distributions of u,, , a consistent es-
timator of uyy.
If (X,,Y),...,(X,, Y,) is a sample, then p;(p) = L,(p)/M,(p), for

L) = 3 XL < yp]—~p)+(p—[npl—1) Y XI[Y =y,

i=1 i=1

Mp) = ¥, XU [X, < x,,] D+ 50— [np),
i=1

and x,,, y,, are the p-th quantiles of the empirical marginal distributions
chosen as the k-th order statistics for k = [np]+ 1. The function I [A] stands
for the indicator of the set A. We put additionally L,(1) = L,(1~) and M,(1)
= M,(1—). The estimator u, of uyy can be defined analogously.

The asymptotic behaviour of p,, where p, is treated as a random
element of D[O0, 1], is (under independence of X and Y) given by the
following three results (see [1]).

Lemma L1. If X and Y are independent and EX? < + oo, then
L/n'%a,) B W°,

where @, stands for a consistent estimator of the standard deviation of X while

“W?° denotes the Brownian bridge on D[0, 1].

The convergence of M, is established by
LemMA 1.2. If the quantiles of X are uniquely detérmined, then

niM,Bf in D[O, 1],

where f(p) = EX(I[X < x,]—p).
THEOREM 1.1. Assume X and Y are mdependent EX? < + o0, and the
quantiles of X are uniquely determined. Then

n'?urjo, B u*  on D[e, 1—&],
where £€(0, 1/2) and u* is a Gaussian process such that

Ep =0, Eu pf =p(1—q)/f(®f(@ for p<q,pqele, 1—el.
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In Section 2 of this paper we prove, using a central limit theorem in
D[0, 1], that a suitably normalized L, converges to a Gaussian process
under dependence of X and Y.

In Section 3 we study the asymptotic behaviour of L, in D[0, 1] under
sequence of distributions alternative to the hypotiesis of independence of X
and Y. As in [2], [3] and }13], [14] the sequence of alternatives is

be=

P’1'= P,,,

1

where dP,/dP, = 1+n~Y2a, while P, is a fixed product distribution of X
and Y, and {a,},>, is a convergent sequence of measurable functions having
the property {a,dP, = 0 for every n > 1. We prove that if {P}} is contiguous
to {P3}, then L,/(n'/?q,) converges under P} to the Brownian bridge shifted
by a deterministic function a*(p) (a*(1) = a*(0) = 0).

Sections 4 and 5 contain results analogous to those obtained in Sections
2 and 3 but concerning the convergence in L,([0, 1], ). We obtain a’ more
convenient limiting distribution of L, under the hypothesis of dependence of
X and Y. '

Practically, in all the already-mentioned cases the asymptotic distrib-
ution has parameters strongly dependent on the distribution of the vector
(X, V). Thergfore, and also partly for the sake of completeness, in Section 6
we study the asymptotic behaviour of p, where instead of (X;, ) we put
their respective ranks. This ensures independence of the limiting distributions
on the marginals of X and Y.

In the sequel, without additional reference, we shall deal with the random
element

n

Ly R(p)=n"12 _Zl Xi(I[Y: < ypul—p)
which, practically in all of the considered situations, fulfills the condition L. /n
—R, 5 0. The asymptotic results will be formulated for L,, the numerator of
uy . If the distribution of (X, V) is fixed, then by Lemma 1.2 the limit of
can be established as in Theorem 1.1. In the case of contigions alternatives
one can prove an analogue of Lemma 1.2 and obtain the limit of x4, in a
similar way. =

2. The weak convergence of L, in D[0, 1] under dependence of X and Y.
Without loss of generality we assume EX =0, for if EX =m, we have

Ry(p) =11 3. (Gy=m)(ULY, < 3yd =B +mn™ 2 T (UL < 3] =),

i=1

where the last term equals mn ~“*([np]—1—np) and converges to 0 in
D[O, 1].

6 — Prob. Math. Statist. 4 (1)




Therefore we have
- (23) . R,—V,50 on D[0,1].
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Let ¢, be a random element in P[0, 1] defined by @.(p) = F(y,,n) for
pe[0, 1) and put ¢,(1) = 1. Here F stands for the distribution function of Y.
We also define a function K on [0, 1] by

K(p)=EX(I[Y <F '(p)]-p)

and we denote by Kog, the superposition of K and ¢,. The main resuit of
this section is the following

TueoREM 2.1. Assume EX* < +o0 ami suppose that Y has uniquely
determined. quantzles rThen

n12L —n'?Koe,2 T in D[O, 1],
where T is a Gaussian. random element of D[O, 1] such ihat'P(Te C[o0, 1))
=1, ET, =0 for all pe[0, 1], and ET, T, is given by
(2.1) E{X(I[Y < y,]-pP—K@} (XULY <y ]-9)— K(q)}

The assertion of the theorem w111 follow from lemmas given below.
Observe that for pe{0, 1] we have

R.(p) = VD) +n [, (p)—p] ) X,

i=1

where

22 Vi =7 3 X% < P ouo)] - 0.0).

The monotonicity of ¢, and the com)ergence of ¢,(p)—p to 0 in pro-
bability for every pe[0, 1] imply
LemMA 2.1. If the quantiles of Y are uniquely determmed, then

@, 5 @ on D[0, 1], ~ where ¢(p) =

To find the asymptotic distribution of ¥, we shall .apply the standard
random change of time argument. Let us first notice that V,(p) = T,[¢.(p)]

for

Q4 L) =2 Y XY < y,]-p)-
: i=1

| Therefore, from Lemma 2.1 and [4], p. 145, we infer that if T, converges to a

limit on D[0, 1], so does V,. Next, let us notice that 7, is a normalized sum
of independent identically distributed random elements - Z(p)
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= X,(ILY; < y,]—p) defined on D[0, 1]. To derive the asymptotic distrib-

ution of T, we shall use an appropriate central limit theorem (CLT).
Recall that a D-valued random element Z distributed as Z, is said to

satisfy the CLT if there exists a D -valued random element T such that T is

the limit in distribution of the sequence n~1/2 Z (Z,~EZ,). Let U stand for

Z—EZ and let #(T) denote the law of T Sufﬁc:ent condmons for U to
satisfy the CLT are given by
THEOREM 2.2 (see [6]). Let EU?(t) < oo for all te[0, 1]. Assume that there
exist nondecreasing continiious functions G* and F* on [0, 1] and numbers -
a > 1/2 and B > 1 such that for all 5, t, u (0 < s <t < u < 1) the following two
conditions hold: '
() E[lUW-U@®] < [G*@)-G*®)T,
(i) ELUW—-U®P[U@0-U@E]* < [F*w)-F* ()P
Then U satisfies the CLT in D[0, 1] and %(T){C[0, 1]} =1.
~ The random element Z(p)—EZ(p) fulfills conditions (i) and (i) with F*
and G* proportional to the identity function and with a = 3/4 and g = 3/2,
respectively. To verify this, one multiplies all terms under the expectations
and applies the Holder inequality to the random variable XI[y, <Y < y,]
for t <u, t, ue[0, 1]. Indeed, for ae(1/2, 1) we have

[EXI[y, < Y < yJI < [EIX]Y 97 % u— 1.

The above gives the following result which together with Lemma 2.1 implies
the assertion of Theorem 2.1.

Lemma 22. If EX* < + oo, then T,—ET,B T, where T is a Gaussian
process such that P(TeC[0,1])=1, ET,=0 for pe[0, 1], and ET,T, ts
given by (2.1).

Remark 2.1. Observe that parameters of the Gaussian distribution given
in the theorem depend on the distribution: of (X, Y). Under the independence
of X and Y the asymptotic distribution of L,/(n'/%a,) is free of this drawback.

- 3. The weak convergence of L, in D[0, 1] under alternatives contiguous to
independence. Assume P, is a product distribution on R? and let the
sequence of distributions {P}} be defined as n-products of P,, where

dP,/dP, = 1+n‘”2

It is assumed that the measurable functions a, are uniformly bounded and
converge pointwisely to some function a(x, y) and {a,dP, =0 for all n> 1.

By Theorem 2.1 of [13], the sequence of product measures P} = .X P, is

A contlguous to P§ = X P,. This kind of alternatives ({P}}) was conmdered
i=1
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among others, by Chibisov [5],Behnen [2], [3], and Neuhaus [14]. For the
sake of completeness we recall some facts about contiguity (see [7], [8], and
[12)).

Let & be an arbitrary space and =/, a sequence of o -fields of subsets of
Z. For each n let @, and Q,, be two probability measures defined on &/,. The
sequence {Q,} is said to be contiguous to {Q,} if, for every sequence A4, of
o/, -measurable sets, Q,(4,) — 0 implies Q.(4,) = 0. The condition of con-
tiguity is equivalent to ecach of the following statements:

~{a) A sequence {T,} of </,-measurable random variables converges in
Q - probability to O -if-it converges to 0 in Q,.

“{b) For every £ > 0 there are an n(g) < + o0 and d(g) > 0 such that if n
2 n(e) and A,e/,, then the inequality Q,(4,) < 6{¢) implies Q;(4,) <e.

Lemma 3.1. Let N, be a sequence of measurable mappings from (%, o,) to
* a measurable space (¥ ,#B). If a sequence {Q,} is contiguous to {Q,}, then the
respective sequence of probability measures induced by distributions of N, on
(%, %) are also contiguous.

The lemma is a direct consequence of (a).

Let (Z, ,) =(Z, &) and let Z be a metric space with Borel ¢ -field o/
such that every probability measure on &/ is tight. Suppose {Q,} is con-
tiguous to {Q,}. The following lemma is well known and can be easily
proved by the application of (b).

LeEMMA 3.2. Under the above assumptions the tightness of {0,} implies the
tightness of {Q;}-

The remaining part of this section is the following generahzatlon of
Lemma 1.1:

TueoreM 3.1. If all the quantiles of Y are umquely determined and EX* <
+ 00, then under P] we have

L/(n'?6,) 3 T* on D[O, 1],

where T* is a Gaussian process with continuous sample paths and with
_ moments : e _

ET*= Epo X(ILY<yp]—P)a(X, Y)}, ET"‘ T* =p(l—¢q) for p<

Proof. Recall that under P} the element L,/(n'/?0,) has the same limiting
distribution as R,/(n'/*e,), where R, is given by (1.1). Moreover, similarly as
1in (2.3), we have R,—V, -0 in P% -probability. This is due to the contiguity
of {P7} to {P}} and to Lemma 2.1. Since V,(p) = T,[@.(p)] for T, given by
(24), the random change of time argument implies a further reduction.
Therefore, we shall now study the limiting distribution of 7, under the
contiguous alternatives {P7}. _

By Lemma 2.2 the sequence T, converges in distribution under Pj. It is
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then tight. Lemma 3.2 yields tightness under Pj. To consider the conver-
gence of finite -dimensional distributions of 7, under P} let us fix p1 <p,
. < pk, p;€[0, 1], and define random vectors

- W= [X (I[Y < ypl] —p1)s - Xi(I[Y; < .ka]—pk)]'
vThen (Th(p1)— ET(pl) T.(p)— ET(p,‘)) coincides with

Z,=n"11? E —EW).

i=1

If ¢z (¢) stands-for the _ghaxacteristic function of Z,, then
@2,(8) = {E exp [n~V2i(s, W, —EW,)]}"

__,=”‘1—(2n)'1E(t, W, —EW,)*+o(n”1)}" , o
={1-2n) ' [(W,—EW,, (1 +n"2a,)dPy+o(n” o1
={1—n"[27! {(W,—EW,, 1)*dP,—

— (203" [(W, —EW,, 0)2a,dPo]+o(n™)}"
The last expression tends to exp {(— 1/2)E(W, —~EW,, t)*}, where the expec-
tation is taken under P,; and this is the characteristic function of the k-

dimensional normal distribution with mean zero and covariance matrix with
the i j-th element given by :

E[XUTY < y,]-)] [XUTY <y, 0- p,)]
=EX?p(l—p) fori<j.

4. The weak convergence of n V2L, in L,([0, 1], 1) under dependence.
The results proved in this section are analogous to those obtained in Section
2. We study the convergence of the random clement L,(p), p€[0, 1], in the
Hilbert space L,([0, 1], 1), where A stands for the Lebesgue measure. It
turns out that in the present case one obtains a more convenient formula,
from the practical point of view, for the limiting distribution under depend-
ence of X and Y. As before we apply a CLT to the random element

T(P) =n"12 Z X(ILY; <yp] -

Let Z(p) = X, (I [Y%; < y,]—p). Then Z(p)—EZ(p) is a random element of
L,([0, 1], A) and if EX? < + oo, then by [15], Chap. IV, there exnsts a weak
limit of the expression

w1 Y (Z)-EZ(@) in Ly((0, 11, )

and it is a Gaussian process T with expectation zero and covariance kernel
(2.1). Hence, as an analogue of Theorem 2.1, we shall prove
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THEOREM 4.1. Assume EX? < + 00 and suppose that the quantiles of Y are
uniquely determined. Then

n~ 2L _n2EZ, BT in Ly([0, 1], ).

Proof. Let || || denote the norm in L,([0, 1], 4). The theorem will follow -
if we prove

@41 "L~ RJI+IIR,~ Tl 50.
We have | ‘

n Y20, —R,=n"Y2Y XI[Y,=y,,](np—[np]—1).
i=1
Therefere R -

B _ . 1
lIn™ Y2 L,— R n™* {[ Xy, (np—[np] — )] dp
: 0

. 1
SnlfXi,dp=n"%Y X}
(4] .

i=1

where i(p, n) is the index of the ([np]+1)-st order statistics of Y;, ..., ¥,.
Clearly, the last expression converges to 0 with probability 1. The second
term of (4.1) converges to 0 by the following argument:

IR, — TlI* = I{n’”’ Z XULY, <y, ]-I[Y < yp..])} dp

<(2n) Z X IF(Y)—Fu(Y),
. i=1 .
where F is the distribution function of ¥ and F, is the empirical distribution
for the sample Yi, ..., ¥,. Since sup |F (x)—F,(x)| converges to 0 in pro-

bability, we obtain the convergence of ||R,— T;J|. This completes the proof
CoroLLARY 4.1. Under the assumptions of Theorem 4.1, if in addition X and

~ Y are independent, then the process T has the covariance kernel of the Brownian

brzdge multiplied by EX2.

5. The weak convergence of n~ 2L, in L,([0, 1], 1) under alternatives
contiguons to independence. As in Section 3 we consider sequences of pro-
bability measures {Pj]} given by n-fold products of the probabilities P,,
where dP,/dP, = 1+n~'%a, and P, is a product distribution on R2. Since
arguments used to prove our basic result' do not differ much from those
presented in Section 3, we shall simply state the result.

THEOREM 5.1. Let the quantiles of Y be uniquely determined and EX?* <

+00 under P,. Suppose o, is a positive consistent estimator of the standard
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deviation of X. Then under P} the sequence n~'?o, * L, converges weakly in

L,([0, 1], A) to a Gaussian random element T*, where
ET*(p) = Ep (XU [Y < y,]—P)a(X, Y},
ET*(p) T*(9) =p(1—q) for p<q.

6. The weak comvergence of ,, in D[0, 1] under independence and alter-

natives contiguous to independence. To avoid influence of marginal distrib-
utions on py y(p) and on the distribution of u, a grade monotone dependence
function and its consistent estimator pu,, were introduced in_[10]. This
estimator, being a function of ranks R,, ..., R, of Xy, ..., X, and Sy, ..., §
of Y, ..., Y, is defined as follows:

Uen(P) = Lo(P)/M,o(p), pe(©,1),
whe:e

Ln(p) = 3. (Refn+ D)1 [S, < [np]-+ 1] p/2-+ Ry (= [+,

M,.(p) = ([np) +1)(2np—[npl)2(n+1)—np/2,

while k(p) is that element of 1,...,n for which S, =[np]+1. Since

M,,(p)/n —>(p—1)p/2 as n— oo, we shall concentrate on the asymptotic
distribution of L,,, where for p=1 we put L, (p)=0
TueoreM 6.1. Under the independence of X and Y we have
12/m2L,BWwW°® in D[O, 1],

where W° stands for the Brownian bridge on D[O, 1].

Proof. Let us first note that Ry, (np—[npl)(n+1)n"? 50 in D[O, 1].
Then observe that under the independence of X and Y the finite - dimensional
distributions of the process

61) R (p) =n~1?2 Z R(I[S; < [np1+1]—pYn+1)

coincide with the correspondmg finite - dlmens:onal dlstnbutlons of the sim-
pler proc&ss -

62 ' n-IIZ_IZW;I(RE/(Hl)—_l/z);

Therefore, we can consider the asymptotic distribution of (6.2) instead of (6 1) |
and our theorem follows from Theorem 24.1 of [4].

Let W* be a Gaussian process on D[0, 1] such that
EWIW} = p(l—q) ~ for p<g,
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~while U = G(X), V =F(Y), and let G and F stand for the marginals of X

and Y, respectively. The asymptotic behaviour of (12/n)*2L,, under P! is
given by

THEOREM 6.2. Under {P}} we have
(12/m2L,, B W* in D[O, 1].

Proof. By Theorem 6.1 the distributions of (12/n)'/2L,, are tigh{ under
{P3}, and hence by Lemma 3.2 they are tight under {P}}. To prove that
finite-dimensional distributions of (12/m)"/2L,, (or, equivalently, of 12"2R,,,)

converge, we use the result of Ruymgaart [16] on asymptotic normality of
some rank test statistics.
Recall that

R,.(p) =n~12 Z Ri(I [S np]—p)/(n+1)

and introduce
Z,(p)=n"1*Y ULV, < pl-p),
i=1

where U; = G(X)), V,=F(Y), i=1,

In particular, by Ruymgaart [16], for every fixed pe[0, 1], R,.{p)- Z,,(p)
tends to O in Pj and, consequently, in Pj-probability. Since by Theo-
rem 3.1 we have the convergence of Z,—Ep: Z, in D[0, 1] under P}, the

above implies the convergence of the finite-dimensional distributions of
R,~EpZ, This completes the proof. .
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