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Abstract. This paper* is concerned with a study of a one- 
dimensional bilinear differential model for stochastic processes in 
continuous time. We provide conditions for second-order and strict - 
sense stationarities of the state process. We obtain a linear represen- 
tation of the state process, derive the optimal Linear filter, and 
investigate its asymptotic behaviour. We consider the problem of 
parameter estimation for the autonomous version of the model. By 
the use of the quadratic variation of the process we compute the 
diffusion coefficient parameters. In the reduced model, under the 
additional assumption that the parameters of the diffusion coefficient 
are known, we use the maximum likelihood method and the method 
of moments in order to estimate the drift coefficient parameters. We 
prove consistency and asymptotic normality of the estimates. 

I 
I 
I o. Bilinear deterministic models for dynamical systems in 

- discrete time (see, eg, [6]) and in continuous time (see, e.g., [4]) have been 
intensively studied. Analogous stochastic models have also been considered 
in time series analysis (see, e.g., [5]) and in theory of stochastic differential 
equations (see, e.g., [2]). 

In this paper we try to develop a probabilistic and statistical study of a 
one-dimensional stochastic model which is given by a bilinear differential 
equation (in the It6 sense) of the form 

(1.1) dXt = [A(t) X, + a(t)] dt + [B(t) Xt + b(t)] d w, t 2 0, X, = X(O), 

where W = (w; t 2 0) is a standard brownian motion in R defined on some 
basic probability space (8, d,  (dt),,,, P), the deterministic functions A, a, 
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By and b are measurable and satisfy for every T > 0 the conditions 

and the initial state X(0) is a random variable, defined on (a, d, P), which 
is independent of W and admits an expectation m(0) and a variance K(0). 

Section 2 is devoted to the analysis of the state process (X,; t 2 0) of 
model (1.1). We compute its mean and covariance functions, we obtain a 
linear representation of (X,; t 2 0) with respect to a wide-sense Wiener 
process (cf. [ll J), aiid-we give also conditions for second -order and strict - 
sen% stationarities in model (1.1) (cf. [7]), 

In Section 3, by the use of the linear representation and results in [Il], 
we provide the equations for the optimal linear filter of (X,; t 3 0); 
moreover, under the assumption that the state process is second-order 
stationary, we study the behaviour and the stability of the filter error. 

In Section 4 we deal with the problem of parameter estimation in the 
autonomous version of the model when a strict -sense stationary solution 
exists, the state process being observed in continuous time. We use a two - 
step procedure (cf. [I], 13 1, and [8]): first the diffusion coefficient parameters 
are estimated by the use of the quadratic variation of the observed process 
and then the maximum likelihood method and the method of moments 
provide consistent and asymptotically normal estimates of the drift coefficient 
parameters (cf. [lo]). 

2. hoperties of the state process. In this section we summarize the 
properties of the state process generated by model (1.1) which will be used in 
the next parts. For more details we refer to [91, 9 5 3A and 4A. 

A. Moments and linear representation. The existence and uniqueness of ' 

the solution process (X, ; t 2 0) of equation (1.1) is ensured by general results 
on stochastic differential equations (see, e.g., [ll], Ch. 4) and the conditions 
listed in Section 1. By the It6 formula (see, e.g., [2], Theorem 8.4.2, 191, 
Theorem 2.1) the process (X,; t 2 0) is given by . - 

t t 

-- x , = ~ ~ , { X ( O ) + j @ ; ~ [ a ( s ) - ~ ( s ) b ( s ) ] d s + ~ @ ; ' b ( s ) d W , ) ,  t 2 0 ,  
0 0 

where 

Denote by (Yt ; t 2 0) the mean function of (at ; t 3 0), i.e. 
t 

Y,  = exp (J  ~(s)ds) ,  t 3 0. 
0 
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The second-order structure of (X , ;  t 3 0)  is described in the following 
LEMMA 2.1. The mean &action (m, = EX,, t 3 0)  is given by 

The covariance function (K ( t ,  s) = E [ X ,  - 4) (X, - m,)] , t 3 0, s 3 0) is eyuil 
to 

(2.2) - K(t, s) = YtY; lK, ,  t as, - - -_ 
where the uvaiance function-(K, = K ( t ,  t), t 3 0) is expressed by 

t 

(2.3) Kt = exp (I +B2(u)Jdu) {K(O)+ - - 
0 

1 S .  

+ j exp ( - J 12A(u)+B2(u)ldu) [B(s)s)+ b(s1I2ds], t 3 0. 
0 0 .  

P r o o f .  Formula (2.1) follows immediately from (1.1). The derivation of 
equations (2.2) and (2.3) can be based on the representation 

X, -m,=?P ,K ,  tact, 
where 

By simple computations we get 

Setting t = s, multiplying by Yi, and noting lp; E e  = Ky , we obtain 
S 

K s = Y , " { ~ ( ~ ) + ~ Y ~ 2 [ B 2 ( u ) K , + [ ~ ( u ) m u + b ( u ) ) 2 ] d u ) ,  s 2 0 .  
0 

- - 
This leads to (2.3) and, moreover, together with (2.4), shows that Y; 'E(T.; V,) 
= K,, t 2 s. Finally, (2.2) holds since K ( t ,  s) = 'P; YsE(F.; V,). 

FoIIowing the ideas presented in [ll], Ch. 15, we provide now a linear 
representation of the state process (for a detailed proof see [9], § 3A). 

LEMMA 2.2. There exists a wide - sense Wiener process W* = (K* ; t 2 0) 
in R which is uncorrelated with X(0)  and such that the state process ( X , ;  t 
2 0) admits the representation 
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Proof  It is easy to verify that Lemma 2.1 ensures that the assumptions 
of Theorem 15.2 in [ll] are satisfied for the process (XI; t 3 0); then 
representation (2.5) holds. Moreover, from the proof of Theorem 15.2 in [ll] 
we can see that W* is uncorrelated with X(0). 

B. Second-ordm and strict-sense stationarities. A characterization of 
second -order stationary of the state process is given in 

LEMMA 2.3. The process (X,; t 3 0) generated by model (1.1) is second- 
order stationary if-and only if either it is deterministic with X(0) = m(0) a.s. 
aid A(t)m(O)+a(t)-= B(t)rn(O)f b(t) = 0 a.e. or thme exist two constants A 
and a such that . . 

(2.6) Arn(0) + a = 0 - 
and the following conditions hold for almost every t 3 0: 

Moreover, @" conditions (2.6) - (2.8) are satis$edy then the covariance finction of 
(Xr; t 3 0) is given by 

Proof. If K(0) = 0 (i.e. X(0) = m(0) i.s.), then (XI ; t 2 0) is second -order 
stationary if and only if 4 = m(0) and K, = 0, t >, 0. In view of (2.1) and 
(2.3) this is true if and only if 

I t 

~ [ A ( ~ ) . t ( O ) + a ( s ) ] d s = ~ P ~ ~ [ ~ ( s ) r n ( O ) + b ( s ) ] ~ d s = O ,  t h o ,  
0 0 

or, equivalently, 

A(t)m(O)+a(t) = B(t)m(O)+b(t) = 0 a.e. 

Let us now consider the case where K(O) > 0. It is clear from Lemma 2.1 
that conditions (2.6) - (2.8) ensure second - order stationarit y and that (2.9) 
holds. Conversely, if (XI ; t 2 0) is second -order stationary, then Kt = K(0) 
and K(t, s) = R(t-s), t 2 0, s 2 0. Then (2.2) implies that for t 3 s 

1 R(t -s) 
j ~ ( u ) d u  = Log - 
8 K (0) 

from which it follows that there exists a constant A such that A(t) = A a.e. 
ConsequentIy, !PI = blt, t 2 0, and since m, = m(O), t 2 0, formula (2.1) leads 
to a(t) = - Arn(0) a.e. Moreover, since Kt = K(O), t 2 0, formula (2.3) implies 
that (2.8) holds a.e. 

Examples 2.1. (a) If A(t)=A < 0 ,  a(t)=a,  B(t) =(-2~)l / ' ,  b(t) 
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= A-lBn t 2 0, then for m(0) = - a/A and every K(0) the process i s  second - 
order stationary. 

(b) lf A(t) E A, u(t) = a, B(t) = B,  b(t)  s b, t 3 0, with ~ A + B ~  < 0, then 
for 

a (Ab -Bu)' 
r n ( O ) = - -  and K(O)= 

A '  A2 12A + B21 
the process is second -order stationary. 

(c) If A(t) = A < 0,  a(t) 0,  B(t) = (- 2~)'" sin t ,  b(t) = (- 2A)'l2 cost, 
t 2 0 ,  then for 4 0 )  = 0 andK(0)  = 1 the process is second -order stationary. 

Itemark 2.1. If the state process generated by (1.1) is second -order 
stationary with K(O) > 0,  then from Lemmas 2.2 and 2.3 we infer that there 
exist a wide - sense Wiener process W* and a constant A < 0 such that 

Now we consider the autonomous version of model (1.1): 

(2.10) d X , = ( A X , + a ) d t + ( B X , + b ) d y ,  t B 0 ,  k o = X ( 0 ) .  

We srudy the problem of existence of a strict -sense stationary solution with 
first two moments. First, let us eliminate the deterministic case. In view of 
Lemma 2.3 we know that the solution process of (2.10) is strictly stationary 
with K ( t )  r 0 if and only if Am(O)+ a = Bm(O)+ b = 0 and X(0) = m(0) a.s. 
Now let us work with K(0) > 0 and, taking into account Lemma 2.3, assume 
that 2 A + B 2  ,< 0. In fact, when B = 0, in order to avoid the trivial case 

we shall assume 

Moreover, when B # 0, since the deterministic case is eliminated, we have 

We are able to prove the following - 

LEMMA 2.4. In case (C l )  or (C2) there exists a unique invariant probability 
distribution p2f: for the Markov process generated by (2.10). In case (Cl) &: 
is the gaussian distribution N(-a/A, b2/21At), and in cme (C2) it is the 
distribution of a random variable of the form 

(sign U - ' (b/B - a/A) - b/B), 

where U has the gamma - distribution 
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Moreover, i f X ( 0 )  is distributed along p:;:, then the state process (X,; t 2 0)  is 
n second-order (stationary) process with 

a (Ab - U B ) ~  
(2.11) - -  K ( t , s ) =  

A 
eAl'-"1, s 2 0, t 3 0. 

A2(2A+ B ~ I  . 

P r o  of. In case ( C l )  we can write 

d ( X ,  +a/A) = A(Xt  +a/A)dt+ bd&, t 2 0 ,  Xo = X(0). 

Silice, as is well known, an Orstein -Uhlenbeck process admits a unique 
invariant probability-measure which is also gaussian, the result holds. 

+ -  . 
In case (C2) we can write 

X i = & - b / B ,  t 2 0 ,  
"- . -..- . 

where 

dZt = (AZ, + q d t  + B Z t d K ,  t 2 0, Zo = X(O)+ b/B, 

and 

a'= a-bA/B # 0. 

Let us assume that ii is positive. From the formula 

it is clear that if a stationary probability distribution for ( 2 , ;  t 2 0) exists, 
then it is necessarily concentrated on 10, oo[. It is easy to show (using, for 
instance, the results of [7], 4 13) that 10, a[ is a non-singular interval of 
positive recurrent type for the Markov process generated by (2.12) and, 
therefore, that a unique stationary distribution confined on 10, co[ for this 
process exists. Moreover (see, e.g., [13], p. 274, or [16], Example F), this 

.distribution admits a density f which satisfies the Pearson equation 

" ., . . 

a_nd then is of the form 

It follows that the stationary distribution for (2,; t 2 0) is that of a random 
variable U- l, where U has the T(1- 2A/B2, B2/2q - distribution. Moreover, 
simple computations show that, since 2A + B2 < 0, 

b a Eu-'=--- (Ab - a ~ ) ~  
B A' 

Var U-I =- 
A 2 ) 2 ~  + B21 ' 
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Finally, coming back to (Xt; t 2 0), we obtain easily the announced result. 
Similar arguments lead to the result for ii < 0. 

3. Optimal !;mar filtering of the state process. In this section we con- 
sider the linear filtering problem (in the sense o; [If], c h .  15) for the state 
Xt of the process generated by (1.1) by the use of observations on LO, t ]  of 
the process ( x ;  t 3 0) which is given by 

. 
Here w =  (R; -t 3 0) is -a-standard brownian motion in R independent of W,  
the functions A,,  a,, B1 satisfy analogous conditions as A, u, B, respectively, 
and the initial state Y(0) is a square-integrable random variable such that 
(X(O), Y(0)) is independent of (W, @). We assume also that B,(t)+ 0 for all 
t > 0. 

A. Equations for t j e  optimal linear .filter. We have the following 
THEOREM 3.1. The optimal linear Jfilter 2, of the state X, f i . 0 ~  the 

observation (x; 0 < s 6 t) is given by 

with 

while 
y t = ~ ( x t - 8 J Z ,  t 2 0 .  

Proof.  Taking into account Lemma 2.2, we obtain theresult directly by 
the use of Theorem 15.3 in [I l l .  

B. Behviour of the filter error. Let (y:; t >, 0) denote the solution of (3.1) 
when yo = x ,  i.e. y: = E(X,-8,)2 when 

K(0)-Cov2 (X(O), Y (0)) Cov' (Y (0), Y (0)) = x 2 0. 

Then the following holds : 
THEOREM 3.2. Assume that the state process (X,; t 3 0) is non- 

deterministic second -order stationary and that the equation for the observation 
is autonomous with Al + 0.  Then 

7 - Prob. Math. Statist. 4 (1) 
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(i) under (CO), for t 2 0, 

and, for euery x 2 0, 

lim 1 y: = 0 .  
t f m  

(ii) under (C1) or (C2) 

Y * ( ~ - - - Y * ) - Y * ( ~ - Y * )  e x ~ : - a * t ) ~  0, $,, 
- . -  Y:' (x-7,)-(x-y*) exp ( -2;1 , t )  

- 
where - - 

Moreover, for every X < yay 

and, for every x ye, 

lim 1 y: = y*. 
t t m  

Proof. Under (CO) the results are obvious. Under ( C l )  or (C2), since 

A: 2: r -2AK(O) and 2Ay*+21AIR(0)-z(y.)' = 0, 
I 

either x = y* and then = y*, t 0 ,  or x # y* and then the function (y:;  t 
2 0) satisfies 

In that case, if F Q  is an integral of the expression 

then we have F(y,) = t +const. We can easily compute FCy) and then invert 
the last equation in order to obtain (y:; t 2 0) in the form stated in the 
theorem. The last assertion is a simple consequence of that form. 

Remarks 3.1. (a) Theorem 3.2 precises Theorem 16.2 from [ l l ]  in the 
one - dimensional case. 
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(b) The stability property lim y j  = y* still holds (cf. [B], Theorem 3.7) if 
t t m  

model (1.1) is autonomous and such that a second -order stationary solution 
exists even i f  the state process (X,; t 2 0) itself is not assumed to be second - 
order stationary. 

metric estimation is the leatommow mdd. In this part of the 
paper we want to demonstrate how the two-step procedure (cf. Section 1) 
works in model (2.10) and also to compare the method of moments with that 
of maximum likelihood for estimating the drift coefficient parameters. We 

% I  assume that the state process of (2.10) is observed in continuous time and we 
are interested in estimation of all the parameters a, A, b, and B or some 
functions of these parameters. - - 

Let C(R+, R) be the canonical space endowed with the a-algebra ii? 
= aCns; s 3 0) generated by the coordinate functions z,, s 2 0. Let ef,, be 
the distribution of the state process of (2.10) when the distribution of X(0) is 
v and let be the restriction of e;$, to the a-algebra 3, 
= s(q; 0 < s d q. Then the statistical space under study when we observe 
the process from 0 to T is 

where A is some subset of the set B x P  while 9 is the set of probability 
measures on R. 

A. First step: pnrameter estimation in the digusion cocjjjcient. By the use 
of the quadratic variation of the observed process we can identify the 
diffusion coefficient of the model before we estimate the parameters in the 
drift coefficient. We know that if ( (n) ( t ) :  t  2 0) is the quadratic variation of 
the canonical process, then the following equalities hold for every t €10, TJ, 
(v, a, A, b ,  B) E A:  

2N t 

(n>(t) = Jim C ( z i t l t~ -  qi- llt,2m)2 = j(b + B ~ , ) ~ d s  - a.s. 
m++ 02 i=  1 0 

- -- 

So we are able to compute, by the use of the observation of the state process 
on a finite time, the functions of parameters b and B on which the 
distribution of the process is dependent First, since B = 0 if and only if 
(t-  l <n)( t ) ;  t  > 0) is a constant function, we can iden* whether B = 0 or 
not. Now, when B = 0, we can compute b2 by the formula bZ = t - l  ( z ) ( t ) .  
Similarly, when B # 0, since the formula 
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holds ,e$', -a.s. for every v, a, and A, we can, for instance, first compute 
b/B by solving the equation 

and then compute B2 by the formula 
-- - -  

i . - 
I ~2 = '1 '1 

<a>(t,) 

bZB-"tl + j x,"ds+2b~-'  j n,ds. 
I 

0 0 

Consequently, we are allowed to assume that the Musion coefficient is 
known because it would eventually have been computed previously (with 
probability one) on some finite time interval. 

B, Second step: parameter estimation in the drift coejjcient. In the fol- 
lowing we are concerned with the reduced statistical model 

where 8 is some subset of PX R2, and b and B have been cancelled in 
&;:, (and will be in e:ZA) since these parameters are now fixed known. 
Since we deal with the case where the model admits a stationary second - 
order distribution, we consider a parametrization of (2.10) given in terms of 
the natural parameters of the corresponding process. Taking into account the 
discussion in Section 2B, when 2A+B2 < 0, it is better to set 

and then to write model (2.10) in the form 

with B > B2/2. A second-order stationary solution of (4.1) has mean and 
covariance functions given by 

e 

m, K(t, s) = g2e-flf'-"l , t a O , s > O .  

A strict -sense stationary solution of (4.1) coiresponds to v = v ~ , , ,  where vbDm 
= p)t,-B is given in Lemma 2.4. When we consider the case B # 0, we shall 
assume that m + b / B  > 0 (since the case m + b / B  < 0 is quite similar) and, 
moreover, that Jlr is a subset of the set 9 ( b / B )  of probability measures on R 
which are concentrated on ] -b/B, a[. Finally, rather to look for estimates 
of a and A we shall try to estimate #?, m, and a2. Then we are concerned with 
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the statistical model 

(4.21 (CW+ , @, a=, (TP,,~,,; ( v ,  8, m ) ~ @ ) ,  

where %' is some subset of 9 x x R (in fact, of 9'(b/B) x ]B2/2, a[ x 
I - b/B, m[ when 3 # O), TPv,B,m (resp. Pv,B,m) standing for TPv,pm - 
Iresp. P v , ~ m : - p ) .  

An immediate consequence of Girsanov's Theorem (see, e.g., [ll]) is that 
if v is absolutely continuous with respect to some fixed probability measure 
v,, then the statistical space (4.2) is dominated by Pvo,O,o with the likelihood 
function -. - 

where 

and 
T T 

m) = ~fi(m-x,)(b+~z,)-~dn,-~~fl~(m-~)~(b+B~,)-~dt, 
0 0 

the stochastic integra1 being defined with respect to TPvo,o,o. 
We can write 

where 
T 

I j ( q  = nj(b+ ~ z ~ ) - ' d t ,  j = 0, 1, 2, 
0 

and the stochastic integrals 
T 

Sj (T )  = j *(b+ BnJ- ' d q ,  j = 0, 1, 
0 -. - 

are explicitly given by 

and 

2 - I  b-' [n;-xg-b2 Tj if B = 0, 
T/2 + B -  ' [ h g  (b/B + nT) - Log (b/B 4- no)] - 

S, (79 = -3-2 b [(b+Bno)-l - ( b + 8 n T ) - l ] -  

-bCbjo(V+BIl  (TI1 if B # O .  
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Then, if v is known, it is easy to see that the maximum likelihood 
estimate of (/I, m) is given by 

The asymptotic properties of these estimates are described- in the following 
THEOREM 4.1. The hstimate ((BT, GT) given by (4.3) is strongly consistent 

and is asymptotically normal, ia. with respect to Pvmg,,, we h u e  

where 

Proof. If &)(By m) stands for the gradient of m), we can write 

Similarly, if I!;) (8, m) denotes the matrix of second -order partial derivatives 
of &(P, m), we have 

Usual arguments in the maximum likelihood method will provide the 
announced results if we prove that, with respect to P,,p,,, 

- 1  m 
(4.5) lim T-I E:)(p, m) = - 

T++Ql 
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Let us first note that 

(4.7) lim T-'I , (T)  = x j ( b + ~ x ) - ~ d v ~ , , ( x )  < + co, j = 0 ,  1, 2, 
T-*+ m 

because of Lemma 2.4 and of the ergodic properties of the process under I 

study that it ensures (cf. Theorem 4.1 in [12]). Now let us notice that we can I 

write 

-. I 

where (R; t 2 0)  is some-brownian motion with respect to Pvmb,,,. It follows 
that I 

T 

(4.9) s,{T) = j r n l J ( ~ ) - f i ~ ~ + ~ ( T ) +  J n ; ' ( b + ~ ~ , ) - ~ d q ,  j = 0;l. 
0 

Then, using Lemma 17.4 of [l l j  and taking into account (4.7) for j = 0, 2, 
we obtain 

which implies (4.4) and (4.5). 

In order to prove (44 ,  because of (4.9) we have only to show that 

This fact follows from (4.7) and the results of [14] or [15]. 
Remarks 4.1. (a) These results can be applied, for instance, in the case 

where v = ddOb for given x(0)  (with x(0)  > -b/B in the case B # 0). When v 
is not known, it is clear that we can still use the estimate (DT, ST) defined by 
(4.3); in that case it can be considered as an approximate maximum 
likelihood estimate (see El] and [9] for the classical stationary Gauss- 
Markov case), - - 

(b) We can use the consistent estimate 

for the parameter a2. It is possible to obtain the asymptotic distribution for 
(BT, hiT, c?;) (see [9] for explicit formulas of the asymptotic covariance in 
cases 5 = 0 and B # 0). 

Now we use the method of moments for parameter estimation. Let 5, 
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and 5; be defined on (4.2) by 
T 

zT = T - I J , ( T )  = T - I  j q d t ,  
0 

(4.1 0) 
T 

-2 aT = T - ' J ~ ( T ) - @  = T-' S ( ~ - f i ~ ) ~ d t .  
0 

We have the following 
THEOREM 4.2. The estimate ( f i T ,  8;) given by (4.10) is strongly consistent 

and bhe estimate &--& asymptotically normal with 

lim T1t2 (fi, - m) 2 N (0, h2//?). - - . "  - T++ m 

Moreover, if B = 0 or if B # 0 and f l >  3B2/2, we also have 

and 

where 

B (2s - B2) 28- B2 

Proof. The ergodic properties of the process under study provide the 
consistency of the estimate since 

Now, let us look at iii, - m and a'; - a2 : by the use of representation (4.8) 
and the fact that - .. 

it is easy to prove that 



A diflerential model far stochastic processes 

Moreover, E,,p,, standing Br the expectation with respect to Pv,b,m, setting 
mimt = E,,b,,(<), i = 1, 2, we have 

ml,,-rn = e-@'(ml,,-m) 
and - - - 

Then 
lim m2,, = rn2 + u2, 

T++ m 

which implies 

(4.1 3) lim EY,B,AI I T- l t2  ( E L  -n&)l = 0, i = 1, 2. 
T + +  m 

Formula (4.12), together with (4.1 I), (4.13), and the results of [14], ensures 
that 

lim T1I2 (riT - m) 2 N (0, fl-' l ( b  + ~ r ) ' d v ~ , , , ( x ) ) ,  
T++m 

where 

(b + BX)' dv@,,,, (x) = b2 + B2 (m2 + g2) + 2bBm = 2c2 8. 
I 

Moreover, if 3 = 0 or B # 0 and 8 > 3B2/2, then by the inequality 

1x4 dvb,,(x) < + co . . - -  

the ergodic property 

holds. Then, by the same arguments, the last assertion in the theorem holds 
because 
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Remarks  4.2. (a) It is easy to see that in the case B = 0 the asymptotic 
variance of is the same as that of f ir  and in the case B # 0 the first one is 
greater than the second one. 

(b) We can use the consistent estimate 

for the parameter 8. It is still possible to obtain the asymptotic distribution 
for (P,,iET, 5;) (see [9J for explicit formulas of the asymptotic covariances). 

.. . 
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