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Abstract. This paper* is concerned with a study of a one-
dimensional bilinear differential model for stochastic processes in
continuous time. We provide conditions for second - order and strict+ .
sense stationarities of the state process. We obtain a linear represen-
tation of the state process, derive the optimal linear filter, and
investigate its asymptotic behaviour. We consider the problem of
parameter estimation for. the autonomous version of the model. By
the use of the quadratic variation of the process we compute the

_diffusion coefficient parameters. In the reduced model, under the
additional assumption that the parameters of the diffusion coefficient -
are known, we use the maximum likelihood method and the method
of moments in order to estimate the drift coefficient parameters. We
prove consistency and asymptotic normality of the estimates.

1. Introduction. Bilinear deterrmmstlc models for dynamical systems in

* discrete_time (see, e.g., [6]) and in continuous time (see, e.g., [4]) have been
intensively studied. Analogous stochastic models have also been considered

in time series analysis (see, e.g., [5]) and in theory of stochastlc differential
equations (see, e.g., [2]).

In this paper we try to develop a probabilistic and statistical study of a
one -dimensional stochastic model which is given by a bilinear differential
equation (in the Itd sense) of the form

(l.vl) dX, = [A() X, +a(t)]dt +[B@®) X, +b(t)]dW,, t=0, X, = X(0),
where W = (W,; ¢ > 0)'is a standard brownian motion in R defined on some
basic probability space (@, &, ()0, P), the deterministic functions 4, a,

* Work done during a stay of M. Musiela in Laboratoire I. M. A. G. Grenoble.
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B, and b are measurable and satisfy for every T > 0 the conditions
T : T T T
j]A(t)Idt < o0, j]a{t)ldt < 00, le(t)lzdt < oo, jlb(t)lzdt < o0,
0 0 0 0

and the initial state X (0) is a random variable, defined on (2, </, P), which
is independent of W and admits an expectation m(0) and a variance K (0).

Section 2 is devoted to the analysis of the state process (X,;t > 0) of
model (1.1). We compute its mean and covariance functions, we obtain a
linear representation of (X,;t > 0) with respect to a wide-sense Wiener
process (cf. [11]), afid we give also conditions for second -order and strict -
sense stationarities in model (1.1) (cf. [7]).

In Section 3, by the use of the linear representation and results in [11],
we provide the equations for the optimal linear filter of (X,;¢ > 0);
moreover, under the assumption that the state process is second -order
stationary, we study the behaviour and the stability of the filter error.

In Section 4 we deal with the problem of parameter estimation in the
autonomous version of the model when a strict -sense stationary solution
exists, the state process being observed in continuous time. We use a two -
step procedure (cf. [1], [3], and [8]): first the diffusion coefficient parameters
are estimated by the use of the quadratic variation of the observed process
and then the maximum likelihood method and the method of moments
provide consistent and asymptotically normal estimates of the drift coefficient
parameters (cf. [107).

2. Properties of the state process. In this section we summarize the
properties of the state process generated by model (1.1) which will be used in
the next parts. For more details we refer to [9], § 2, 3A and 4A.

A. Moments and linear representation. The existence and uniqueness of
the solution process (X, ; t > 0) of equation (1.1) is ensured by general results
on stochastic differential equations (see, €.g., [11], Ch. 4) and the conditions
listed in Section 1. By the Itd formula (see, e.g., [2], Theorem 842, [91,

Theorem 2.1) the process (X;t=20) i glven by

X = ¢,1X(0)+j¢;‘[a(s)——B(s)b(s)]ds+(j)'q?;lb(s)dﬂg}, t=0,
where C
&, = exp {;[ [A(s)—%Bz(s)]ds+iB(s)dW;}, t=>0.
Denote by (!P,; t 2 0) the mean function of (@,;t > 0), i.e.

t
Y, =exp {[A(s)ds}, t>0.
i 0
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The second -order structure of (X,; ¢t > 0) is described in the following
LeMMA 2.1. The mean function (m, = EX,, t > 0) is given by

2.1 m, = ¥,[m(0)+ } P la(s)ds], t>0.
[4]

The covariance function (K(t, s) = E[X,—m)(X,—m)], t > 0, s > 0) is equal
to

22 K(t, )=V P, 'K,, t>s,

where the variance function (K, = K(t, 1), t = 0) is expressed by

23) K, = exp {| 24()+ B2@)du} (KO +

+ 3'exp {— j'[ZA(u)+Bz(u)]du} [B(s)ms+b(§)]2ds}; t=0.
[H] 0. .

Proof. Formula (2.1) follows immediately from (1.1). The derivation of g

equations (2.2) and (2.3) can be based on the representation

X,—m =¥V, t20,
where

dv, = {B()V;+ ¥, 1[B(t)m,+b(t)]}dW,, t20, V,=X(0)—mO0).

By simple computations we get

(249 EWV) =K(O+ }{B'z(u)E(VfH ‘I’Jz[B(u)mu+b(u)]z}du,
2 .
t=s=0.

Setting ¢ = s, multiplying by ¥2, and noting ¥YZEV? = K,, we obtain
K, = P{KO+ qu *[B*WK, +(Bm, +b@} ldu}, s> 0.

This leads to (2.3) and, moreover, together with (2. 4), shows that Y 2E(Y, V)
= K,,; t=>s. Finally, (2.2) holds since K(t, s) = ¥, ¥,;E(V, V).
Following the ideas presented in [11], Ch. 15, we provide now a linear
representation of the state process (for a detailed proof see [9], § 3A).
LeEMMA 2.2. There exists a wide-sense Wiener process W* = (W;*; t > 0)
in R which is uncorrelated with X(0) and such that the state process (X;; t

* = 0) admits the representation

25)  dX, =[A(@)X,+a(@)])dt + |
+[BOK,+{BOm+b(O}*]?dW?, 120, X, = X(0).

|
|
|
|
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Proof. It is easy to verify that Lemma 2.1 ensures that the assumptions
of Theorem 152 in [11] are satisfied for the process (X,; t = 0); then
representation (2.5) holds. Moreover, from the proof of Theorem 15.2 in [11]
‘we can see that W* is uncorrelated with X(0).

B. Second-order and strict -sense stationarities. A characterization of
second - order stationary of the state process is given in

LeMMA 2.3. The process (X,; t = 0) generated by model (1.1) is second -
order stationary tf and only if either it is deterministic with X(0) = m(0) a.s.
and A()m(0)+ a(t) = B(t)m(0)+b(t) =0 a.e. or there exist two constants A
and_a such that -~

(2.6) Am(0)+a =0

and the following conditions hold for almost every t > 0: -
@.7) | A=A, alt)=a,
(2 8) [24 +B%()]K(0)+ [B(t)m(0)+b()]*> = 0.

Moreover, if conditions (2.6)-(2.8) are satisfied, then the covariance Junction of
(X,; t 2 0) is given by

(29" K(t, s)=ei"9K(©), t=0,s>0.

Proof. If K(0) =0 (ie. X(O) m(0) .as), then (X, ; t > 0) is second - order
stationary if and only if m, = m(0) and K, =0, t > 0. In view of (2.1) and
(2.3) this is true if and only if

j'[A(s)m(O)+a(s)]ds = j ¥ 2[B(s)m(0)+b(s)]%ds =0, >0,
0 0

or, equivalently,
A@)m(0)+a(t) = B(t)ym(0)+b(t) =0 ae.

Let us now consider the case where K(0) > 0. It is clear from Lemma 2.1
that conditions (2.6)-(2.8) ensure second-order stationarity and that (29)
holds. Conversely, if (X,; t > 0) is second -order stationary, then K, = K(0) .
and K(t, s) =R(t—s), t 20, s = 0. Then (2.2) implies that for t > s '

}A(u)du _ Log X9

&K

from which it follows that there exists a constant A such that A(t) = A ae.
Consequently, ¥, =e ¢ >0, and since m, = m(0), t > 0, formula (2.1) leads -
to a(t) = — Am(0) a.e. Moreover, since K, = K(0), t > 0, formula (2.3) implies
that (2.8) holds a..

Examples 2.1. (a) If A()=A<0;, a()=a, B(t)=(—24)"2 b(t)




A differential model for stochastic processes 95

= A" 'Bat >0, then for m(0) = —a/A and every K(0) the process is second -
order stationary.
(b) If A(t) = A, a(t) = a, B() =B, b(t) = b, t > 0, with 24+ B*> < 0, then
for :
a (Ab— Ba)*
m(Q) === and K(0) =m
the process is second -order stationary.
(@ A@M®=4<0, a() =0, Bt) =(—24)"? sin¢, b(t) = (—=24)"* cost,
t > 0, then for m(0) = 0 and-K(0) = 1 the process is second -order stationary.
Remark 2.1. If the state process generated by (1.1) is second -order
stationary with K(0) > 0, then from Lemmas 2.2 and 2.3 we infer that there

_ exist a wide -sense Wiener process W* and a constant 4 < 0 such that

dX, = A[X,~m(0)]dt +(—24K(0)'*dW*, ¢ >0, W, = X(0).
Now we consider the autonomous version of moqhel (r.1):
| .
(2.10) dX, =(AX,+a)dt +(BX,+b)dW,, t=0, X,=X(0).

We study the problem of existence of a strict - sense stationary solution with
first two moments. First, let us eliminate the deterministic case. In view of
Lemma 2.3 we know that the solution process of (2.10) is strictly stationary
with K(f) =0 if and only if Am(0)+a = Bm(0)+b =0 and X(0) = m(0) as.
Now let us work with K(0) > 0 and, taking into account Lemma 2.3, assume
that 24+ B2 < 0. In fact, when B =0, in order to avoid the trivial case
(C0) A=a=B=bh=0, ie. X, =X0), t=0,

we shall assume _

(&) B=0, A<0, b#0.

Moreover, when B # 0, since the deterministic case is eliminated, we have
(C2) B#0, 24+B*<0, Ab+#aB.

We are able to prove the following , S

LEMMA 24 In case (C1) or (C2) there exists a unique invariant probability
distribution p% for the Markov process generated by (2.10). In case (C1) 2k
is the gaussian distribution N(—a/A, b*/2|A|), and in’ case (C2) it is the
distribution of a random variable of the form

{sign U~ !(b/B—a/A)—b/B},

where U has the gammd-distribution

2 2
r 1——‘:, B .
B2’ 2|A| |b/B—a/A]|

1
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Moreover, if X(0) is distributed along u:%, then the state process (X,; t > 0) is
a second - order (stationary) process with

(Ab—aB)? A=
=5 g =20,t20.
Az|2A+Bz|e. , 820,t20
Proof. In case (C1) we can write

d(X,+a/A) = A(X,+a/A)dt+bdW,, >0, X, = X(0).

Sitice, as is well known, an Ornstein - Uhlenbeck process “admits a unique
mvarlant probablhty measure which is also gaussian, the result holds.
“In case (C2) we can write

X,=Z—b/B, t>0, -

(2.11) m,E_%, K(t, s) =

dZ, = (AZ,+3)dit+BZ,dW, t>0, Z, = X(0)+b/B,

and
d=a—-bA/B #0.

Let us assume that a is positive. From the formula
t
(2.12) - Z, =9 {Zy+afd;'ds}, t=0,
) 0

it is clear that if a stationary probability distribution for (Z,; t > 0) exists,
then it is necessarily concentrated on JO, co[. It is easy to show (using, for
instance, the results of [7], § 13) that ]0, co[ is a non-singular interval of
positive recurrent type for the Markov process generated by (2.12) and,
therefore, that a unique stationary distribution confined on ]0, oo[ for this
process exists. Moreover (see, €.g, [13], p. 274, or [16], Example F), this
distribution admits a density f which satisfies the Pearson equation

f(z)_ 2 (A—BY)z+a
f@ B -

and then is of the form
| - 23 1
Kz34872-1 exp {—B—Z ;}, z>0.

It follows that the stationary distribution for (Z,; ¢ > 0) is that of a random
variable U1, where U has the I'(1—-24/B? B?*/2a)-distribution. Moreover,
simple computations show that, since 24+ B2 < 0,

b a (Ab—aB)?

EU '=2-2  vayt=2279%
4 4224+ B7

-~
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Finally, coming back to (X,; t > 0), we obtain easily the announced result.
Similar arguments lead to the result for @ <O0. '

3. Optimal linear filtering of the state process. In this section we con-
sider the linear filtering problem (in the sense of [11], Ch. 15) for the state
X, of the process generated by (1.1) by the use of observations on [0, £] of
the process (Y;; ¢t = 0) which is given by

A% =[A,OX + 0,0+ B0, >0, Y=Y ().

Here W= (W,; t > 0) is'a'standard brownian motion in R independent of W, -
the functions A,, a,, B; satisfy analogous conditions as A4, a, B, respectively,
and the initial state Y(0) is a square -integrable random variable such that
(X(0), Y (0)) is independent of (W, W). We assume also that B, (¢) # 0 for all
t>0. -

A. Equations for the optimal linear filter. We have the following

Turorem 3.1. The optimal linear filter X, of the state X, from the
observation (Y,; 0 < s < 1) is given by

dX, = [A(t))?,+a(t)]dt+y,;—%8{d};—[Al(t))?,+a1(t)]dt}, >0,
31y j, = 2400+ E2 - {;18}2;& t>0,
with A v
R = m(0)+Cov (X(0), Y(0)) Cov* (Y(0), Y(O)[Y(©)—EY(0)],
Yo = K(0)~Cov?(X(0), Y(0)) Cov* (Y(0), Y(0),
52 = BX)K, +[BO)m+b(H)])% 130,
while »

7, =E(X,—X)%, t>0.

Proof. Taking into account Lemma 2.2, we obtain the result directly By
the use of Theorem 15.3 in [11].

B. Behaviour of the filter error. Let (37; t > 0) denote the solution of (3.1)
when y, = x, ie. 7 = E(X,—X,)*> when

K(0)—Cov2(X(0), Y(0)) Cov* (Y(0), Y(0) = x = 0.

Then the. following holds:

THEOREM 3.2. Assume that the state process (X,; t=>0) is non-
deterministic second - order stationary and that the equation for the observation
is autonomous with A, # 0. Then

7 — Prob. Math. Statist. 4 (1)




98 . A. Le Breton and M. Musiela

(i) under (CO), for t =2 0,
o JIUx+(A/B)*]"" if x>0,
=0 if x=0,
and, for every x =0,
lim |yF = 0.
ttoo
-~ (ii) under (C1) or (C2) o
YT~ Pelx—7%) exp {—24,1} -
¥ = , t=20,x=20,
T T (x = 7)—(x—7®) exp {— 24,1}

where .. .
Bz Bz A2 1/2
V= '_;(A+/1*): Y= -—;(A—/'l*), Ay = A2+2|A|K(0)—-; :
Al Al Bl

Moreover, for every x < y¥,

lim 197 = y*
ttoo

and, for every x = y¥,
lim |7 = y*.
ttoo )

Proof. Under (CO0) the results are obvious. Under (C1) or (C2), since
AZ
¥2= —24K(©0) and 2Ay*+2|A|K(0)—§;(y*)2 =0,
1

either x = y* and then y7 = y*, t > 0, or x # y* and then the function (y;; ¢
> 0) satisfies
i _
— AT By 2(y))* + 2497 — 24K (0)

1, t=20, y§=x.

In that case, if F(y) is an integral of the expression
| {—A7B{?y*+24y—24K(0)} 7", -

then we have F(y,) = t+const. We can easily compute F(y) and then invert
the last equation in order to obtain (y7; t = 0) in the form stated in the
theorem. The last assertion is a simple consequence of that form.

Remarks 3.1. (a) Theorem 3.2 precises Theorem 16.2 from [11] in the
one -dimensional case.
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(b) The stability property hm y¢ = y* still holds (cf. [9], Theorem 3.7) if

model (1.1) is autonomous and such that a second - order stationary solution
exists even if the state process (X,; t = 0) itself is not assumed to be second—
order stationary.

4. Parametric estimation in the automomous model. In this part of the
paper we want to demonstrate how the two -step procedure (cf. Section 1)
works-in model (2.10) and also to compare the method of moments with that
of maximum likelihood for estimating the drift coefficient parameters. We
assume that the state process of (2.10) is observed in continuous time and we
are interested in estimation of all the parameters a, A4, b, and B or some
functions of these parameters.

Let C(R,, R) be the canonical space endowed with the o- algebra %’
= g{m,; s > 0} generated by the coordinate functions =, s > 0. Let P52 ,
the distribution of the state process of (2.10) when the distribution of X(0) is
v and let P22, be the restriction of PP, to the o-algebra %;
=g{n,; 0<s< T}. Then the statistical space under study when we observe
the process from 0 to T is

(C(R+’R)s ‘@T: 1T va,A’ (V a, A b B)EA})

where A is some subset of the set 2 x R* while 2 is the set of probability
measures on R.

A. First step: parameter estimation in the diffusion coefficient. By the use
of the quadratic variation of the observed process we can identify the
diffusion coefficient of the model before we estimate the parameters in the
 drift coefficient. We know that if ((z)(¢): ¢ > 0) is the quadratic variation of
the canonical process, then the following equalities hold for every t€]0, T1,
(v, a, A, b, ByeA:

2N
rX(t) = hm Z (n,,,zn M- 1yy2M)° = j (b+B1: )2ds P2 -as.

So we are able to compute, by the use of the observation of the state process
on a finite time, the functions of parameters b and B on which the
distribution of the process is dependent. First, since B =0 if and only if
(¢~ <{m)(t); t > 0) is a constant function, we can identify whether B =0 or
not. Now, when B = 0, we can compute b? by the formula b =t~ 1 {(n)(1).
Snmlarly, when B # 0, since the formula

;(b+3n, 24s = (x)(@), te]0, T,
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holds TPZ,, 4-as. for every v, a, and 4, we can, for instance, first compute
b/B by solvmg the equation

, ‘ ty ) .b t b
- ) - <7T>(tz)]§z‘+2[<“>(t1) J meds —(m>(ea) [ mds] g +

2 1
+[{n)(ty) [ m2ds—<m)(ty) [n2ds] =0

o 7o

and then compute B2 by the formula

- o (L o

BZ = : 7 < >( 1) ' - )

b2*B~%t; + [ n2ds+2bB™ ! (mds . __
0 ) 0

. Consequently, we are allowed to assume that the diffusion coefficient is
known because it would eventually have been computed previously (with
probability one) on some finite time interval.

B. Second step:. parameter estimation in the drift coejj‘ic:em In the fol-
lowing we are concerned with the reduced statistical model

(C(R+’R) @Ts 1TPvaA’ (V a, A)E@})

where © is some subset of ZxR?% and b and B have been cancelled in
P2, (and will be in P2 ,) since these parameters are now fixed known.
Since we deal with the case where the model admits a stationary second -
order distribution, we consider a parametrization of (2.10) given in terms of
“the natural parameters of the corresponding process. Taking into account the
discussion in Section 2B, when 24+ B2 < 0, it is better to set

&, _(b+Bm?
A’ 2-B%’
and then to write model (2.10) in the '_for'm

4.1) dx, —ﬂ(m-x,)dt+(b+BX,)JW,, 120, Xo= X(0),

B =‘—A, m=.

with g > B%/2. A second- order statlonary solutlon of (4.1) has mean and
covariance functions given by :

m=m, K({,s)= aze"’""', t>0,5>0.

A strict -sense stationary solution of (4.1) coiresponds to v = Vp.m» Where vy,

b _g is given in Lemma 2.4. When we consider the case B # 0, we shall
assume that m+b/B > 0 (since the case m+b/B < 0 is quite similar) and,
moreover, that .4 is a subset of the set 2(b/B) of probability measures on R
which are concentrated on ]—b/B, oo[. Finally, rather to look for estimates
of a and 4 we shall try to estimate §, m, and o2. Then we are concerned with
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the statlstlcal model

(42) . (C(R+’R) QTs {TPvﬂm’ (V ﬂ m)e‘f})

where % is some subset of 2 xR% xR (1n fact;, of 2(b/B)x]1B?%/2, oo[ x
]1—b/B, oo[ when B#0), rP,;, (resp. P,z standing for P, pm-p
(resp. P, gm, - ﬂ)
An immediate consequence of Glrsanov s Theorem (see, e.g., [11]) is that
if v is absolutely continuous with respect to some fixed probability measure
vo, then the statlstxcal space (4.2) is dominated by Ton 0,0 With-the likelihood
functlon , :

ArPopm Hvo.v(”o) exp {Lr(B, m)},
‘ dTPvO,O,O . -
where
, v ' '
. Hvo.\'(x) = d_vo(X), . .xER’
and

T T . .
Lr(B,m) = fﬁ(m—ﬂg)(b+3nz)'“zdﬂ:-%fﬁz(m—ﬂx)z(bﬂ-*ﬂ:}"zdt,

the stochastic integral being deﬁned with respect to Ton.O 0
We can write

Lr(B, m) = mSo(T) S, (T)—ﬂ—mzzom+ﬂ2m11m—ﬁ—lzm,

where
I(T) = (nj(b+Bm)~%dt, j=0,1,2,
0 Lo .
and the stochastic integrals
© O §(D= Inf(b+Bn.) Zdn,, J=01,
are exphmtly glven by

S(T) { “mp-me] ' . if B=0,
° B™'[(b+Bro)* —(b+BnT) 1]+B[b10(7*)+311(m if B#0,
and
271 b2 [nE—n—b2T] - | if B=0,
T/2+B~2[Log (b/B+ny)— Log (b/B+mo)] —
B 2b[(b+Bny) ' —(b+Bny)~']-
" —b[bly(T)+BI,(T)] if B+#0.

$,(T) =
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Then, if v is known, it is easy to see that the maximum hkehhood
estimate of (B, m) is given by

. _So(D1(T)-5, (N1, (T)
So(D I, (T)—58,(T) I, (T)’

s _So(NI(T)- Sl(T)Io(T)_

b = WL M-I (D)

The asymptotic properties of these estimates are described: in. the followmg'

TueoreM 4.1. The estimate (By, iy) given by (4.3) is strongly consistent
and is asymptotically normal, i.e. with respect to P,g, we have '

lelllm (ﬁT» rﬁT)g. (ﬂ’ M), T

. 172 ﬁT ﬁ ) -1 0_1 —lx——l'm !
m, T [(m,)h(mﬂ_N(o’[ m ﬂ] Aﬂ.m[ 0 ﬂ]) ’

where

4.3)

x(b+Bx)"' ][ x(b+Bx)"')
5[ (b+Bx)~1 ][ (b+Bx)"! J Vp.m (-

Proof. If I¥(B, m) stands for the gradient of L (B, m), we can write
vem =" 5 s Ll o)t
Er G, m) [ o 8)Usem] "L [t

Similarly, if I'? (8, m) denotes the matrix of second -order partial derlvatlves
of Lp(B, m), we have

_ [-1 m|[LM LM][-1 0
4"(%’(”’"’".'[ 0 ﬁ][llm Iom][ m ﬁ]+
+[ .0 . So(ﬂ"ﬁ""oﬂ(ﬂ"‘ﬁlr(n].
So(T)—pmlo(T)+BI, (T) 0 -

Usual arguments in the maximum likelihood method will provide the
announced results if we prove that, with respect to P, ;.
44 lim TP B, m=0,

T2+ .

. - a.s. . _1 - _1 0
(4.5). r]—]»TmT LI (g, @_-. _.[ 0 ;']Aﬂ',,,[ m ,8_]= Iy,

4.6) im T-Y2I9(8, m) 2 N, T;,).

T+
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Let us first note that
@47)  lim T I(T) = [xi(b+Bx) 2dvy(x) < +0, j=0,1,2,

T-+x

because of Lemma 2.4 and of the ergodic properties of the process under
study that it ensures (cf. Theorem 4.1 in [12]). Now let us notice that we can
write

@8  dn, = B(m—mn)dt+(b+Bn)dW, >0,

where (W:, t= 0) is some brownian motion with respect to Pv fom- .1t follows -

that

@9)  ST) = Bl ()~ Ly (T)+ [ w6+ Br) ™ dW,  j=0;1.

Then, using Lemma 17.4 of [11] and taking into account (4.7) for j = 0 2,
we obtain

lim TS, = fml(T) =l (D] = 0, j=0, 1,

which .implies (4.4) and (4.5). _
In order to prove (4.6), because of (49) we have only to show that

lim T‘”zj'[ :I(b+Bn,)"1dW N0, Ap ).

T—o+m

This fact follows from (4.7) and the results of [14] or [15].

Remarks 4.1. (a) These results can be applied, for instance, in the case
where v = 8, for given x(0) (with x(0) > —b/B in the case B # 0). When v
is not known, it is clear that we can still use the estimate (Br, My) defined by
(43); in that case it can be considered as an approximate maximum
likelihood estimate (see [1] and [9] for the classical stationary Gauss-
Markov case). : : -

(b) We can use the consistent estimate

52— (b+ 1y B)?
T 2%, -B

for the parameter ¢2. It is possible to obtain the asymptotic distribution for
By, Wz, 6%) (see [9] for explicit formulas of the asymptotlc covariance in
cases B=0 and B # 0).

Now we use the method of moments for parameter estimation. Let iy
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and % be defined on (4.2) by

T
fip = T™1J,(T) = T™* [ mydt,
0
(4.10)
T
&7 =T ' J,(T)—m} = T~ [ (m,—Fir)*dr.
o
_ We have the following

THEOREM 4.2. The estimate (fiir, G3) given by (4.10) is strongly consistent
and the estimate Wiy is asymptotically normal with

lim T"2(fip—m) = N (0, 2°/f).

T—-+w

Moreover zf B=0or if B#0 and p> 3B*/2, we also have

m 9 7
S T

where
B 1/B 0
Yom=| 2[B(mB+b)—pm] 2 ]
L B(2B-B? 28— B?
and ‘
b+ Bx b+ Bx
Agm={ x(b+Bx)]|:x(b+B )] Dpm ().

Proof. The ergodic properties of the process under study prov1de the
consistency of the estimate since :

(411) lim TN (X dvpu(x) < +o0, i=1,2

Now, let us look at iy —m and a'T—rr2 by the use of representatlon (4.8)
and the fact that :

b2+2m(ﬂm+bB)

2 02 _
c°+m”° = 26—B°

it is easy to prove that

”2 mMr—m
@12 T (0'1" ")

(2

B~ T~V (my—my) | ] +
=1 1 1 2 bB 7 1
28— B? _'IT/Z[E‘Z’_E%'F ‘Q%t_)(no-nr)]'*‘ mrl;l'm T2 (nT To)
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1/B 0 7 '
. 1 T
[2(ﬁm+bB) dptm 2 | L 3-[ b+ Br, ]dW,.
pep-B) p 2p-p |7 olm(b+Em)

Moreover, E, ;5 , standing for the expectation with respect to P, p,n, setting
n;, = vﬂm(nz) i=1,2, we have

ml —m=e ﬂt(m1 o—m)
and

= +%) = exp (284 BY1) [K(O— (m+37)+

+2(fm+bB)(my,o—m) iexp {(B—B?s}ds].

Then :
lim myr = m?+a?,
T—++wo
which implies _ ‘
(4.13) lim Ev'p,mlT‘llz(n';,—n‘TM =0, i=1,2.

T+

Formula (4.12), together with (4.11), (4.13); and the results of [14], ensures
that

lim T2(fip—m) 2 N (0, B2 f(b+Bx)* dvgn (),

T+

where

f (b+ Bx)? dvg (x) = b*+ B (m*+6%)+ 2bBm = 262 B.
R o ' .

Mofeover, if B=0 or B#0 and B> 3B?/2, then by the inequality

C fx*dvg(x) < + 0
the ergodic. property |

dm T~ 1j'nfdt Ix’dv,,,,,(x)< +00, j=1,2,3,4,

T—=+w

holds. Then, by the same arguments, the last assertion in the theorem holds
because

) {2(ﬁm+b3)_rﬁr+m}n._s.2[B(mB+b)—Bm],
B2-B) B | B(B-BY

T+ x
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Remarks 4.2. (a) It is easy to see that in the case B = 0 the asymptotic
variance of #iy is the same as that of /; and in the case B # 0 the first one is
greater than the second one.

(b) We can use the consistent estimate

(b+ Biii)?
Br = £ 2

for the parameter B. It is still possible to obtain the asymptotic distribution
“for (ﬁ,,mr, ar) (see [9] for explicit formulas of the asymptotic covarlances)
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