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Abstract. A sequence {V,} of rv’s is asymptotically quasi-
deterministic (AQD) if there exist deterministic functions B, (n)
< B,(n) and a constant C > 0 such that g, (n) <V, < ﬂz (n) except
for finitely many n with probability 1 and

lim sup (B, (m)— B () < C.

n-ow

A few surprising examples of AQD sequences are given.

1. Introduction. In 1975 P. Erdds and the author of the present paper *
investigated [1] the length of the longest head-run of a coin tossing
sequence of size N. In order to formulate the results, we introduce the
following notation.

The logarithms appearing in Sections 1 and 2 are meant to be the base 2.

Let X,, X,, ... be a sequence of iid. r.v’s with P(X; =0)=P(X, =1)
=1/2 and let S4 =0, S, =X, +X,+ ... +X, (n=1,2,..),

I(N,K)= max (S,+x—S,) (1 < N).

0snsN-K

| ,Fmally, let Zy be the largest integer for which I (N Z N) Z n- This r.v. Zy is

the length of the longest head-run up to N. The properties of Zy can be
described by the following results: ‘ '

THEOREM A. Let ¢ be an arbitrary positive number. Then
' ~ = [log N—log log log N+loglog e—2—&] = a; (N, &) = a;
except for finitely many N with probablllty 1. '

* This paper was read as a closing address of the 14-th Meeting of the European
Statisticians (Wroctaw, Pol_and September 2, 1981).
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THEOREM B. Let ¢ be an arbitrary positive number. Then

Zy <[log N—log log log N+log log e—1+¢] =a,(N, &) = a,

infinitely often with probability 1.
THEOREM C. Let a3(N) be a sequence of positive numbers for which

oo

Z "¢3(N)

Then Zy > a3 (N) iﬁﬁ'hiiéiy often with probability 1.
THeEOREM D. Let ay(N) be a sequence of positive numbers for which

e 9]
Y 274 oo,

N=1

Then Zy < a4(N) except for finitely many N with‘probability 1.

Theorems A and D clearly imply

CoNSEQUENCE 1. For any & > 0 we have a, (N, &) < Zy < a,(N) except for
finitely many N with probability 1.

Evaluating the value of 2;(N,01) and that of a,(N)=Ilog N+
+1.1 log log N for N =222 ~ 10315653 we get

a; =1,048,569, a,=1,048598, and a,—a; =29.

This means that by flipping a coin 22%° times the length of the longest head -
block “must be” between 1,048,569 and 1,048,598. The fact that the interval
(ay, a4) is very short means that the sequence {Zy} is “almost deterministic”.
In this paper we collect some further nearly deterministic sequences.

2. The area of the largest head-square. Let {X;} (i=0,1,2,...;j
=0,1,2,..) be a double array of iid. r.vs with P(X;; =0) = P(X;;=1)
=1/2, let : -

m+K—1 n+K—1

\Sin, m, K) = Z Z Xij,

I(N,K) = max S(n,mK) (I<K<N),

and define Y, as the largest integer for which I (N, Yy) = Y2. Here Y is the
area of the “largest head -square” in the square [0, N] x[0, N]. In order to
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describe the properties of the sequence {Yy} we introduce the following
notation:

f(N)=/Zlog N-2, a(N)=./2log N~[/ZIog N1,

e[ i aM<e,
Bi(N, 3)—ﬂ1(N)—{[f(N)]+1 if a(N)>e,

| _ C([fN1+3  if a(N) <1,
RM=mM {0 a1

where 0 <e< 1.
Then we have
THeOREM 1. Let & be an arbitrary positive number smaller than 1. Then

(1) B1(N, 8) < Yy < B:(N, &)

except for finitely many N with probability 1.
Observe that
. 3 ifa(N)<eg,
ﬁz(m—ﬁl(m={2 if & <a(N) <1-e.
3 falN)=1-e.
Hence Theorem 1 can be reformulated as
THEOREM 1*. For any ¢ (0 <g < 1)

F(NI+1or [f(N)]+2 i a(N) <5,
Y~={ Lf(N)]+2 fe<a(N)<l-g,
[f(N}+2or [f(N)]+3 ifa(N)>1-¢

except for finitely many N with probability 1.
It is worth-while to introduce the following definitions:
Definition 1. A sequence {Vy} of r.wv’s is asymptotically quasi-

deterministic (AQD) if there exist deterministic functions B, (N) < B,(N) and

a constant C > 0 such that 8, (N) < Vy < B,(N) except for finitely many N
with probability 1 and
o lim sup (B> (N)— B, (W) < C.

Definition 2. A sequence of {Vy} of r.v.s is asymptotically deterministic
(AD) if there: exist deterministic functions f;(N) < f,(N) such that B, (N)
< Vy < B2(N) except for finitely many N with probability 1 and

lim (B, (N)= B, (N)) = 0.
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It is trivial that our sequence {Yy} is not AD. Theorem 1 states that it is
AQD.

A well- known (but surprising) example of an AD sequence is given by
our

TueoREM E. Let Ny, N,, ... be a sequence of independent normal (0, 1)
rv’s and let T, = max {N,, Nz, ...s N,}. Then

lim (T,—(2 log n)'/?) = 0

with probability 1, ie. {T,} is an AD sequence.
"Proof of Theorem 1. In order to prove the inequality Yy > B, (N) we
~ show that among the squares

T;(N) = [, i+ By (NI, j+By (N)T (i,j=0,1,2,. N B1(N))

there exists at least one having heads at each of its lattice points. This
implies the existence of integers i, j such that

0<i,j< N+1~f,(N) and S(i, J, By (N)+1) = (B (N)+1)",

In fact, we prove a bit stronger statement. Namely, the existence of mtegers
4, v such that 0 < u, v< ] and

S (u(B. (N)+1), v(B; (N)+1), B, (N)+1) = (B, (N)+1)%,
where [ is the largest integer for which (B, (N)+1) < N—B, (N). Since
P{S(i, j, B (N)+1) = (B, (N) + 1)%) = 2~ ™+ 12
" and |
B1(N) < (2 log N)W—l—s
4we have _
P{S(u(8; (M) +1), v(B, (N)+1), B (N)+1) < (ﬁl(N)+1) <mv<i}
=(-2 (ﬂ1(N)+1)2)(l+1)2<eXp( 5 ~(B1(M+1)2 (l+1)) ' o

< exp ( 2- ((2logm1/2— )2 I+ 1) ) exp ( C(]og 'N)— 1 .228(2103”)1/2) < N2

if N is large enough and C is a suitable positive constant. NoW, the first part
of Theorem 1 follows from the Borel-Cantelli lemma. - .
In order to prove the inequality Yy < f,(N), we have to show that

S(i, j, B2(N)) < (B2 () ‘(i7j =0,1,2,..., N¥1-B,(N).
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Since B,(N) = (2 log N)!24¢, we get
= (B,(N))’ for at least one i,j (0 <i,j < N+1—8,(N)}
< (N+2_ﬁ2(N))2.2—(ﬂ2(N))2
< N? _27((ZlugN)1/2+E)2 < 2—2a(21ugN)1/2

if N'is large enough
Let N, = 2!2 "Then;obviously,

a0
Y P
k=1

and the Borel-Cantelli lemma implies that Ty, < B, (N,) except for finitely
many k with probability 1. Let N, < N < Nk+1 Then our statement follows
from the trivial. mequahtles

< YNH1 < ﬁz(Nkﬂa &) < ﬁZ(Nka 2e) < B2 (N, 2¢).

We note that Theorem 1 does not give the best possible result. We can
get a sharper result replacing the ¢ in (1) by a sequence {¢y} tending to 0. In
fact, without any new idea one can prove

THEOREM 2. We have

B1(N, en) < Yy < B (N, &y)
except for finitely many N with probability 1, where

log log N ‘ 1
.SN— W and C>2—

We do not claim either that Theorem 2 is the best possible result.

3. On the length of the longest imcreasing rum. Let U,, U,,... be a
sequence of independent r.v.’s uniformly distributed on the interval (0, 1). We
are interested in the length of the longest increasing run of the sequence
Uy, U,, ..., Uy. More formally, let Q, be the largest integer for which there
exists an integer Ry such that

URN+1 < URN-EZ < ... < URN+QN and RN+QN < N

where Q is the length of the longest increasing run. From here on log means
the natural logarithm. In his recent paper [3] the author proved

THeorReM F. Let

log 1

~ and a(n) =fm-[fH)],

="

8 — Prob. Math. Statist. 4 (1)
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where b, is the unique solution of the equation b, fr=e! log n. For any ¢ (0
<g<1) put also

L= L) = {[f(n)]—3 if a(m <e,

o [fW]1-2 if a(n)>¢,

[fMI+2 ifa(m)<l-e

[F(1+3  if a()>1-s. -

Then for Ezny e (0<e<1) we have Iy < Qy < Uy except for ﬁm’tely many N

with probability 1.
We note that

U= Un(s) = {

b, = log log n—log log ldg n—1+o(1).

Since U,(e)—1,(e) <6 0<e<1; n=1,2,..), Theorem F means that
{Qx} is an AQD sequence. Clearly enough, it is not an AD sequence. .

In this case it is also not clear how far is this result from the best possible
one. However, another theorem of [3] shows that one cannot get a much
sharper bound.

4. On the densest interval of a Poisson process. Let {x, (f) = 7(t), t > 0} be
a Poisson process of parameter A > 0. Consider the process -

Q0r() =07 = max (r(t+1)—=().
0sts€T—-1
Following the method of proof of Theorem F one can prove
THEOREM 3. Let :

logt 1

f@)= —5 and a(@)=f@O-Lf@],
b 2 .
" where b, = b,(4) is the unique solution of the equation
' log ¢
b, et = % -

For any & (0 <e < 1) put also

[f01-3 ifa@®<e,
l'=l'(£"1)_{[f(t)]—2 i att) > e,
and
f@1+2 fa@®<l-—s,
[f@®1+3 ifa(®)>1—e.
Then for any ¢ (0 <& < 1) and A > 0 we have anr.v. Ty = Ty(e, 4, w) such that
P(Ty < ow)=1 and I, < Q, < U, provided that t > T,.

U, = U, 4 ={
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" We note that -
b, =1log log t—log log log t—log 1—1+0(1)
and .

log t log t log log log t
log log t (log log t)*

@ fo=

log t 7

——  —(1+log A 1)).
+(log log t)Z( o - T_o( )

Theorem 3 states that {Q,, ¢ > 0} is an AQD process (clearly, not an AD). .
It is worth-while to mention that its lower and upper bounds (l (¢, 4) and
U,(e, /1)) do not depend very strongly on the value of A (cf. (2)).

5. On the contl.nmty modulus of the Wiener process. Let {W (t), t.> 0} be '
a Wiener process and consider the continuity modulus .

CW(+h-W()

' g:(h)z sup 72

ost<1i—h

The well-known result of P. Lévy is the following .

THeEOREM G. We have :
- ey
' ,,..o(2log 1/mvz
with probablhty 1. '

This theorem means that the process (2 log l/h)‘”zc(h) is an AD pro-
cess. A stronger result (see [2]) states that the process c(h) itself is an AD
process: ' .

THEOREM H. We have

 lim (c(B)—(2 log 1/h)1/2)

n—0

with probability 1.
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