A SHORT PROOF OF A CHERNOFF INEQUALITY

BY
XAVIER MILHAUD (TouLOUSE)

Abstract

Chernoff proves an inequality using Hermite polynomials. Here we prove and generalize this inequality using CauchySchwartz inequality and Fubini equality.

Let X be a Gaussian random variable $N(0,1)$ and f an absolutel continuous real function of real variable, with derivative f^{\prime} such that
(a) $\mathrm{E}\left(f^{2}(X)\right)<\infty$,
(b) $E\left(f^{\prime 2}(X)\right)<\infty$,

Theorem 1. The function f, described above, verifies

$$
\begin{equation*}
\operatorname{Var} f(X) \leqslant \mathrm{E}\left(f^{\prime 2}(X)\right) \tag{1}
\end{equation*}
$$

The equality in (1) occurs if and only if f is an affine function, i.e. if ther ${ }_{4}$ exist two real numbers a and b such that $f(X)=a x+b$.

Inequality (1) was established by Chernoff ${ }^{1}$) and proyed by him witl: the use of Hermite polynomials. In the sequel we apply Cauchy-Schwart: inequality and Fubini equality to give a refinement and a generalization cr Chernoff's inequality.

Lemma. For any absolutely continuous real function verifying assumption (a) and (b) we have

$$
\begin{equation*}
\mathrm{E}(f(X)-f(0))^{2} \leqslant \mathrm{E}\left(f^{\prime 2}(X)\right) \tag{2}
\end{equation*}
$$

The equality in (2) occurs if and only if there exist three real numbers $a_{1,}$, a_{2}, and b such that

$$
f(X)=a_{1} x \mathbf{1}_{]-\infty, 0[}(x)+a_{2} x \dot{\mathbf{1}}_{\mathrm{lO}, \infty[}(x)+b .
$$

Theorem 1 is a straight forward consequence of this lemma.
Proof of the lemma. Let us denote by g the probability density of X.

[^0]In order to prove (2) we observe that

$$
\begin{aligned}
\mathrm{E} & (f(X)-f(0))^{2}=\iint_{R}^{x}\left(\int_{0}^{x} f^{\prime}(u) d u\right)^{2} g(x) d x \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} 1_{\mathrm{j} 0, x[}(u) f^{\prime}(u) d u\right)^{2} g(x) d x+\int_{-\infty}^{0}\left(-\int_{-\infty}^{0} \mathbb{1}_{\mathrm{l}, 0 \mathrm{o}}(u) f^{\prime}(u) d u\right)^{2} g(x) d x
\end{aligned}
$$

The interval $] 0, x[$ (or $] x, 0[$) is a finite positive measure space for Lebesgue measure $d u$. Hence, using Cauchy-Schwarz inequality, we obtain

$$
\begin{aligned}
& \mathrm{E}(f(X)-f(0))^{2} \leqslant \int_{0}^{\infty}\left(\int_{0}^{\infty} x \mathbb{1}_{] 0, x[}(u) f^{\prime 2}(u) d u\right) g(x) d x+ \\
&+\int_{-\infty}^{0}\left(\int_{-\infty}^{0}-x \mathbb{1}_{] x, 0[}(u) f^{\prime 2}(u) d u\right) g(x) d x
\end{aligned}
$$

Observe that

$$
\begin{array}{cc}
\mathbb{1}_{] 0, x[}(u)=\mathbb{1}_{] u, \infty[}(x) & \text { if } x>0 \\
\mathbb{1}_{1 x, 0 l}(u)=\mathbb{1}_{]-\infty, u[}(x) & \text { if } x<0
\end{array}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} x \mathbf{1}_{] u, \infty[}(x) g(x) d x=g(u), \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\int_{-\infty}^{0}-x 1_{\mathrm{J}-\infty, u \mathrm{l}}(x) g(x) d x=g(u) \tag{4}
\end{equation*}
$$

Using the Fubini equality, we easily get (2).
In order to prove the second part of Lemma by using Cauchy-Schwartz inequality, it is sufficient to observe that inequality (2) becomes an equality if and only if

$$
\begin{array}{ll}
\mathbb{1}_{\mathrm{l} 0, x \mathrm{I}}(u) f^{\prime}(u)=a_{2} \mathbb{1}_{\mathrm{l} 0, x[\mathrm{l}}(u) & \text { for any } x \in \mathbb{R}_{+}, \\
\mathbb{1}_{\mathrm{l} x, 0[}(u) f^{\prime}(u)=a_{1} \mathbb{1}_{\mathrm{l} x, 0 \mathrm{l}}(u) & \text { for any } x \in \boldsymbol{R}_{-},
\end{array}
$$

q.e.d.

GENERALISATION

Theorem 2. (i) Let X be a random variable with probability density

$$
\begin{align*}
g(x)=\lambda_{1} \mathbb{1}_{]-\infty, 0[}(x) \exp \{ & \left.-\frac{|x|^{p}}{p}\right\}+ \tag{5}\\
& +\lambda_{2} \mathbb{1}_{\mathrm{j}, \infty}(x) \exp \left\{-\frac{|x|^{p}}{p}\right\}, \quad \text { where } p \geqslant 1
\end{align*}
$$

and f an absolutely continuous real function of a real variable, with derivative f^{\prime}, verifying
($\left.\mathrm{a}^{\prime}\right) \mathrm{E}\left(|f(X)|^{p}\right)<\infty$,
(b') $\mathrm{E}\left(\left|f^{\prime}(X)\right|^{p}\right)<\infty$.

Then the inequality

$$
\begin{equation*}
\mathrm{E}|f(X)-f(0)|^{p} \leqslant \mathrm{E}\left(\left|f^{\prime}(X)\right|^{p}\right) \tag{6}
\end{equation*}
$$

holds, and the equality occurs if and only if there exist a_{1}, a_{2}, and b such that

$$
f(x)=a_{1} x 1_{1-\infty .0[}(x)+\dot{a}_{2} x \mathbb{1}_{10, \infty[}(x)+b
$$

(ii) If X is a real random variable such that (6) holds for any absolutely continuous real function of a real variable, verifying (a^{\prime}) and (b^{\prime}), then the probability density of X is defined by (5).

The proof is similar to that of the lemma.
Giving to g the form (1), and using Hölder's inequality instead of Cauchy-Schwartz inequality, equalities (3) and (4) become

$$
\begin{equation*}
\int_{0}^{\infty}|x|^{p-1} \mathbf{1}_{] u,+\infty[}(x) g(x) d x=g(u), \quad u>0 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty}-|\dot{x}|^{p-1} \dot{\mathbf{1}}_{]-\infty, u[}(x) g(x) d x=g(u), \quad u<0 \tag{8}
\end{equation*}
$$

Then (i) is proved.
To prove (ii) we observe that (6) occurs if and only if equalities (7) and (8) hold. Then g is absolutely continuous and verify the differential equation

$$
\frac{g^{\prime}(u)}{g(u)}=-|u|^{p-1},
$$

which implies (ii).

Laboratoire de Statistique et Probabilités
ERA 591-C.N.R.S.
Université Paul Sabatier
118, route de Narbonne
31062 Toulouse Cédex, France

[^0]: ${ }^{(1)}$). Chernoff, A note on an inequality involving the normal distribution, Ann. Prob. 9 (1981), p. 533-535.

