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Ahstmet. A large deviation expansion of the density of a 
maxikum likelihood estimator is derived in the case of replications 
from a multivariate curved subfamily of a continuous exponential 
family. Apart from an exponentially decreasing term, the 
approximation deviates only by a relative error of order O ( n  ') horn 
the true density in a fixed neighbourhood of the true parameter 
value. An example is given which shows an excellent tail 
approximation even for small n. The results are specialized to the 
multidimensional nonlinear normal regression models and it is 
shown that, in these models, the approximation may be improved to 
deviate only by an exponentially decreasing error term. 

1. Introductior We shall derive an approximation to the density of the 
maximum likelihood estimator (MLE) of a vector parameter P in the case of 
a smooth subfamily of an exponential family of continuous type. The 
expansion is a large deviation expansion in the sense that under simple 
replications the relative error of the approximation is O ( n -  l )  as n -+ m, 
uniformly in a $xed neighbourhood of the true parameter value. This fact 
ensures a much better tail approximation to the distribution than that 
obtained by an Edgeworth expansion, where the density is only 
approximated up to a ,fixed (not relative) error over the whole range. This 
may be sufficient for large n (or moderate n), but for small (or moderate) n 
other approximatiofis are needed. 

The computational work required to derive the approximation is 
probably larger than that required to derive the first and may be the second 
term of the Edgeworth expansion, and also integraticin of the approximate 
density will usually have to be done numerically. However, in a very 
common class of models, namely the non-linear normal regression models, 
the result may be stated explicitely and is a very simple algebraic expression 
(see Section 6). Also, in any case, the compliexity of the calculations is mzinly 
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I 

I determined by the dimension of the paraieter space and does not increase 
1 with increasing sample size. In fact, if n is the number of replications, the r 
I approximation to the density g(b) of B (the MLE) takes the form ;hg, (h) x 

x exp -ngz (b)j, where g ,  and g, are non-negative functions. 
There are several ways of refining the approximation, some of which will 

be mentioned in the paper, but each, of course, at the prize of an increased 
amount of numerical work. We shall be concerned mainly with the simplest 
version. 

The main idea of the approximations is Lemma 4.2, which gives an 

i exact, although not directly computable, expression for the intensity of the 
process of local maxima of the likelihood function, together with an 

! 
application of the saddlepoint approximation (see [ 5  1) to this expression. The 
paper has been restricted to maximum likelihood estimators within curved 
exponential families; it will, however, be clear that the method may be 

I applied to other estimators and other models. 
I 
I The paper has been restricted to the derivation of the basic expansion 

with only a few remarks on the (rather obvious) applications. More efficient 
use of the expansion in the construction of critical regions and confidence 
regions is probably possible, but a discussion of these problems would be 

I 
I 

beyond the scope of this paper. 
A few notational definitions, needed only for the multivariate algebra in 

Sections 4, 6 and 7, are given in Section 2. In Section 3 we review the basic 
method, deriving the expansion in the one-dimensional non-linear normal 

I 
I regression model without attention to mathematical rigour. In Section 4 we 

shall derive the approximation rigorously in the general (multivariate) curved 
exponential family model, including the basic proofs, but postponing 
technical proofs to the Appendix. Section 5 contains an example illustrating 
the behaviour of the approximation for small n. For large n the behaviour 
can be deduced from the theorems on its asymptotic properties. In Section 6 
we obtain the approximation for the important class of multivariate non- 
linear normal regression models, using the general results of Section 4. 
Finally, the Appendix contains the more technical proofs, whereas, as men- 
tioned above, the conceptually important proofs are included in Section 4. 

2. Natation. Most of the notation will be easily understood or explained, 
where it occurs. In Sections 4, 6 and 7 we shall, however, use a slightly 
generalized matrix notation. Vectors, matrices and 3-dimensional arrays of 
numbers are all regarded as matrices, e.g. A = (aijk), i = 1, . . . , n; 
j = 1, . . . , m; k = 1, . . . , rn, is an (n x rn x tn)-matrix. If B = (blp) is an (m x n)- 
matrix, then AB is the matrix product with respect to the last index of A and 
the first index of B, i.e. 
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which is an (n x rn x n)-matrix, etc. We shall scmetimes emphasize the 
dimensions of a matrix by writing these as subscripts, e.g. (aijk)" x m x m  for A or 
(ci), for a vector c in R. TO make the notation as conventional as possible, 
we shall still regard vectors as column-vectors (i.e. c is an ( n  x 1)-matrix) 
unless otherwise indicated, and write c' fdr the transpose of c.  Also B' is the 
transpose of 3. 

Iff: W" + PB" is a differentiable function, we denote its differential by Dj; 

and, similarly, D2 f (x) is fhe (n x m xm)-matrix of second partial derivatives 
at x, etc. 

3. The on4imensional nowlinear normal regression model. Let X i  
= pl ( f l )  + E ~ ,  ci - N (0, g2), BE B G R, 3 open, h: 3 -t R twice continuously 
differentiable, i = 1 ,  ..., k and E ~ ,  ,.., ck mutually independent. f l  is the 
unknown parameter; we shall consider u2 to be known, since this makes no 
difference in estimating P. We assume the existence of the maximum 
likelihood estimator p of P and, to avoid technical details, we shall also 
assume that only one local maximum of the likelihood function can occur. 
Both of these assumptions will be relaxed in the next section. 

Let P0€B be a fixed (true) value of the parameter, and let g o ( b )  denote 
the Po-density of B at an arbitrary fixed point 6. For the various functions of 
8, we shall use the convention that if the argument is omitted, b is 
understood, whereas an index 0 means the function evaluated at Po. Define 

where X = (XI, . . . , X,) and f is the density of X, and let Qo be the /lo- 
distribution of (Dl, D,) = (Dl (b) ,  D,(b)). Then a formal computation yields 

= lim(2~)-I Po {D,(B) = 0 and D,(B) < 0 for some P in Ib-E, b + ~ [ )  
E -0 

= lirn(&)-' P o  I D ,  + L I 2 ( P - - b )  = 0 and D, < 0 for some P 
E + O  

in Ib-E, b + ~ [ )  
, 

0 EPZI 
- 

= lim(W- j j' dQo (4, 4 )  
. 

E -+O - 00 -&lDzl 
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where la, is the Po-density of D l ,  and I,.,, denotes the indicator function of 
the set {.. .]. Notice that no approximations are involved in this 
computation; the general version will be given in Lemma 4.2 and its proof in 
the Appendix. 

To compute (3.2) notice that the distribution of ( D l ,  D,) is biirariate 
normal with parameters 

Eo $1, Dzl = ( ~ 1 ,  ~ a ) ,  vo {Dl) = a,,, v, /,ID,) == a,,, Vo $1, DZj- = a,, 

given by 

where p ( P )  = (pi (P), . . . , pk (fl))', and 1 ( P )  is the Fisher information. 
A direct computation now gives 

1 
(3.4) ho (0) = (2n l (b))- ' I 2  exp ( -$/I  (b)), 

where a=-E , (D , ID ,=O]=-y ,+a l zy , / l ( b )7  r2=&/ ,D21D, )=az2  
-a f2 / I (b ) ,  and @, tp are the standardized normal distribution and density 
function, respectively. Insertion in (3.2) now gives 

I 

1 
(3.6) go (b) = (2x1 (6))- ' I 2  exp { -Zg: / I  (b)] ( a 8  (a/z) + rtp (cx/z)), 

which is exact and hence solves our problem completely, since also its 
computation is feasible. 

To illustrate the general approximation, we shall continue to 
approximate (3.6) by a simpler expression. We shall do this by expanding eo 
as a function of aZ as a2 -+ 0, which is mathematically the same asymptotics 
as obtained by replications of the experiment. Using the expansion @ ( - x) - ( y ( x ) / x ) ( l - x - 2 )  as x-+ +a we obtain eo - a(l+o(exp{-c/a2j)) as a2 
-+ 0 if a > 0 for some constant c > 0 depending on cr. Since or = I (&)  if 
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b = Po, a will by continuity be positive in a neighbourhood of P o ,  which 
is independent of a2. Defining the approximation 

2, M > O ,  
0, otherwise, 

the relative error is o(exp .( -c/aZ}) for some c > 0 uniformly.in b € B o ,  where 
B, is some compact neighbourhood of P o .  Since the probability of being 
outside 3, is also decreasing at exponential rate as u2 + 0, we shall not 
worry about that part of the approximation. As a final result we have 

which satisfies 
THEOREM 3.1. fiere exist a constant c > 0 and a compact neighbourhood 

B,, of ' f lo such that 

uniformly in b~ Bo as D~ -t 0, ' where go is given by (3.41, 13.7) and (3.8). 
Proof.  Follows from Theorem 4.8. 
COROLLARY 3.2. There exists a constant c > 0 such that 

(3.10) 0 ,< f go (b) db - f go (b) db = o (exp ( - c/o2)) 
A A 

uniformly in all Bore1 sets A E B as a2+ 0, where go is given by equalities 
(3.41, (3.7) and (3.8). 

Proof .  The inequality follows from the trivial fact that Z, S e , .  The 
second part follows from Theorem 3.1 and from the fact that Po :/I$ B,) = 
o (exp ( - c,/a2]) for some c,  > 0, which is a consequence of the results 
in [4]. 

4. Multivariate curved exponential families. We shall now generalize the 
,. results of the previous section to multidimensional subfamilies of arbitrary 

exponential families of continuous type. In Section 3 we essentially used the 
normality via the normality of (Dl, D 2 )  only. The idea in the general case is 
instead to use a saddlepoint approximation to the distribution of ( D l ,  D,) or 
rather a simple version of t h  mixed Edgeworth - saddlepoint 
approximation (see [3]). The results will of course, be somewhat more 
complicated than in the normal case. 

Let us first shortly review the saddlepoint approximations; for more 
thorough accounts on this type of approximations, see [3], [ 5 ]  and 161, 

I XVI.7. 
Let S = X ,  + . . . + X ,  be a sum of n i.i.d. random vectors with density f . 

on RP and Iet f *n denote its n-th convolution with itself, i.e. the density of S. 
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Define 

(4.11 st ( X I  = f ( X I  et'*/cp ( t ) ,  t E RP, 
I 
i where y( t )  = Set'" f (x)dx is the Laplace-transform of Xi ;  we shall not at the 
I moment worry about its domain. Now, 

(4.2) gfn(s) = f *" (s) et'"/y (t)" 

and, for a particular s, we may choose ;such that g; is "centered" at s/n, i.e. 

(4.3) D log cp (8 =. f xg;(x) dx = s/n . 
Applying the central limit theorem to g:", the saddlepoint 

approximation to f *"(s) follows from (4.2). Letting h, denote the density of 
U = S/n, this yields 

(4.4) h,(u) = (n/27#'I2 1 /3 (3 1 - I f2 exp ( - Fun] q~ (gn (1 + O (n- '1) as n -+ m , 

where Ifl(t)l is the determinant of 

The remaining part of this section deals with the following setup. Let 
XI, ..., X, be i.i.d, random vectors in Rk, the density of XI with respect to 

I some measure p on Rk being 

(4.5) f tx; PI = exp [xf0(P)-$(O(B))), 

where j? E B E RP, B open; 6: B + Rk has a range satisfying 

O(B)~int@ = int {0~R"1$(8)  = J e x p ( ~ ' O ) ~ ( d x )  < co) 

for all P E  B. Further, let X = ( X I ,  . . ., X,), f, the density of X and X 
= CXi/n.  As in the previous section we define 

Dl (8) = u-l(D logf,(X; PI), = (DO(P))'(x-Eg { X ~ ) ) E  RP, 

D2 ( B )  = ' (D2 log fn ( X ;  x p  

= -1(P)/n+(x-E, ( X I ) ) ~ ( D ~ ~ ( / ~ ) ) ~ X ~ X ~ ,  

where 1 (/3) = n (DO (/3)Lxk (D" (0 (p))), ., (DO (/3)k,. , is the Fisher information 
matrix. For later reference we shall need the following assumptions: 

ASSUMPTIONS 4.1. (i) X has a continuous density with respect to the 
Lebesgue measure on the closed concex support of Xi. 

(ii) 0: B+ @ is one-to-one, bicontinetous and three times diflerentiable 
on B. 

(iii) The Fisher information matrix I @ )  is regular for ali BE B. 
Let #lo€ B and b~ B be fixed points, and let us again use the coivention 
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that if an argument is omitted, b is understood, whereas a subscript 0 means 
the value at j?,. 

Due to the assumption in Section 3 that only one local maximum of the 
likelihood function could occur, the limit in (3.2) was equal to the density of 

at b, In general this is not so, but we shall still consider the same quantity 

(4.6) A, (b) = lim(&P A,)- l Po { . f , ( ~ ;  P) has a local 
E-*O 

maximum within IIP-bll < €1 ,  
where A, = vol (PE RI IIBII < 1).  Thus lo (b) is, when it exists, the intensity of 
the point process of local maxima qf the likelihood firnctiorz. Obviously, we 
have 

when the MLE is formally defined as some external point, oo say, if the 
likelihood function has no maximum. The following lemma now generalizes 
equality (3.2): 

LEMMA 4.2. If Assumptions 4.1. m e  fulfilled, then 

where h, is the Po-density of Dl  and 

P r o of. See Appendix. 

Remark  4.3. It is clear from the proof that Lemma 4.2 is not restricted 
to exponential families, but we have chosen this framework, since in these 
cases the results are fairly simple and almost no extra conditions are needed 
to prove their validity. 

Our next step is to approximate h,(O) using the saddlepoint 
approximation. Since the expectation of Dl is usually different from zero, the 
outcome Dl = 0 is a "large deviation" and the usual normal approximation 
or the Edgeworth expansions could not be expected to give useful results. 

LEMMA 4.4. Let Asumptions 4.1 be fulfilled, and let Bo G B be any compact 
neighbourhood of Po.  Then 

(4.10) h, (0)  = ( n / 2 ~ ) ~ ~ '  lfl(31- x 

xe~p(-n[$(8~)-$(8)+z(8)'(~8)?])(1+0(n-~)) as n- ,  c~ 

unformly in b~ B,, where z ( 8 )  = D$(B), ? is the unique solution to 

(4.11) ( T ( @ - ~ ( 8 ) ) ' ( ~ 0 ) = 0 ,  B = 8 0 + ( ~ B ) k ~  

a d  P(t)  is given in (4.1 4)- 
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Proof. If n = 1, the Laplace transform of Dl and its first two loga- 
rithmic derivatives are 

= exp ($ (8, +(DO) t) - $ (0, j - t (O)'(DO) t ), t E RP, 

(4.13) D log q~ ( t )  = (T (6,) + (DO) t) - t (@J' DO, 

Hence, the equation defining the saddlepoint, cf. (4.3), becomes (4.11). f 
t 

may be recognized as the MLE in the model B E  {BO+(DO) t), which is an 
affine hypothesis in the canonical parameter 8. This fact ensures the existence 
and uniqueness of a solution to (4.11) satisfying UE @, since z (0(b)) belongs 
to the relative interior of the closed convex support of XI.  The result (4.10) 
now follows directly from (4.4). 

The approximation to e,, stated in the sequel, is derived from a simple 
kind of the mixed Edgeworth-saddlepoint approximation (see [3]), expanding 
the joint distribution of Dl and D, around the same point as used to 
approximate ho (0). 

LEMMA 4.5. Let Assumptions 4.1 be fulfilled and define 

yz l ,  if neg. definite, 
otherwise. 

Then 

uniformly on any cornpiact set B, c B on which y, is negatively de$nite, where 
e, is dejned in (4.9). 

Let fe, BE@, denote the 0-density of B induced by (4.5) with 8(B) 
replaced by 8. For fixed dl let t ,  be the solution to 

(4.18) (r (8,) -r (8 (b)))'D8 (b) = dl, *dl = (D8(b)) f 1 + 60 E 8, 

i.e. t ,  is the saddlepoint corresponding to D,  = dl ,  when approximating the 
distribution of D l .  Then, by (4.2), 

(4.19) f,, (4 = f*, (4 exP (n [11, (h) - @ (00) - 7 (61)' (D@(b)) t l l ) .  

Since t, depends only on x through d , ,  so does the entire exponential 
factor, and since d, is an affine function of x, it follows that the conditional 
0,-density of X, given Dl = dl, is proportional to f,, (x) on the affine support 
of X, given Dl = dl.  In particular, we may approximate conditional 
moments, such as e,, using a normal approximation to f,,. Since this 
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approach takes the "large deviation" event D ,  = 0 into acco,unt, it is 
preferable to a direct normal approximation. The result becomes 

uniformly in b in any compact set. Since the variance and higher cumulants 
of D, ,  given Dl = 0, are O(n-l), while y, is independent of n, (4.17) follows 
easily. 

Remark 4.6. In some cases it may be possible to evaluate 
J(-d,)qa(O, d,)d(d,), which would provide a better approximation to e,. 
Only in the one-dimensional case, however, would it be feasible to restrict 
the integration to the set, where (-d,) is positively definite. Other 
improvements are possible, e.g, by including variance-terms in the evaluation 
of the determinant rather than just computing the determinant of (-y,). 

On combining Lemma 4.2. with Lemma 4.4. and Lemma 4.5, we now 
have 

COROLLARY 4.7. Let Assumptions 4.1 be fulfilled, and let Bo c 3 be any 
compact set on which y2 is neg, definite; then 

(4.21) A, (b) = $ (b) (1 + 0 (n- I)) uniformly in b E Bo, 
where 

(4.22) XO(b1 

(n/2n)p12 (8 c)1- ' I 2  x 

= i x e ~ p { - n [ $ ( 8 ~ ) - ~ ( ~ ) + ~ ( ( 8 ) ' ( ~ % ) ? ~ )  I-.yzl, if yz  is neg. definite, 
0 otherwise. 

P r o of. Trivial. 
It remains now only to be shown, how the approximation to Lo(b) 

provides an approximation to go(b). The answer is simple. Since the 
probability of a local maximum in a neighbourhood of #3, not being global 
tends exponentially to zero, the difference between g,(b) and R,(b) tends 
rapidly to zero, such that &(b) also approximates go(b). 

THEOREM 4.8. Let Assumptions 4.1 be fulJilled. nen ,  for some 
neighbourhood Bo of Do and some constant c > 0, 

(4.23) go (b) = io (b) (1 + o (exp ( - cn))) = To (b) (1 + 0 (n- I ) )  as n -+ co 

uniformly in b E Bo . 
Proof. See the Appendix. ' 
Notice that since B, is independent of n, (4.23) is valid for large 

deviations of the type ~l&(b - Bo)ll = o (&) in the normalized variable 

J;; tB-so,. 
COROLLARY 4.9. Let Assumptions 4.1 be fu&lled. 7hen there exists a 
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constant c > 0 such that 

(4.24) J g,-(b) db - j" Xo (b )  db 
A A 

unifiorrnly in the class of Bore1 sets A. 
Proof.  Follows easily from Theorem 4.8 and the fact that, for any 

neighbourhood 3, of Po, a constant c > 0 exists such that P,@$B0) 
= o(exp{-cn)) as n+ m, which follows from the results in [4]. 

Remark  4.10. The advantage of this approximation, compared to the 
normal or Edgeworth approximations, is that apart from the exponentially 
decreasing term the relative error is O ( n - l )  uniformly in all sets A. This 
makes the approximation particularly useful for calculating tail probabilities. 

Remark  4.11. The relative error may be improved from O ( n V 1 )  to 
~ ( n - ~ / ~ )  by a renormaIization. There are several ways of doing this; the 
simplest is to divide 1 by its integral over B, but this may be infinite. 
Another method is to adjust such that at b = Po it equals the value of the 
third order Edgeworth expansion, i.e. including the O ( n - l )  terms; but the 
computational work is rather large. A simpler method, which is always valid, 
is to divide 1, by its integral as approximated by a Gauss-Hermite sum. In 
the one-dimensional case (p = 1) only 4 terms are required, and the 
approximation becomes 

i= 1 

where bi = Po + x, J ~ / I  (#lo) and w,, xi (i = 1, . . . , 4)  may be found in [I], 
Table 25.10. We shall not prove that this 'formula yields a valid asymptotic 
normalization improving the O(n-')  error to O ( n - 3 / 2 ) .  The proof relies on 
the fact that formula (4.25) yields the exact integral, if is a third order 
Edgewort h expansion. 

Remark  4.12. In calculating tail probabilities the best use of the 
approximation is probably to calculate the tail area rather than its 
complementary part. The reason is that essentially the relative error is 
bounded, such that small probabilities give smaller errors. However, one 
must convince oneself that the truncation introduced in (4.16) is of no great 
importance. This may be indicated by a smalI density at the boundary, where 
the truncation becomes effective. 

5. Am example. To illustrate the performance of the approximation for 
small TI, we shall use an example chosen not because of practical relevance, 
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but rather as a case, where none of the steps in the approximation are "too 
accurate" as in the normal regression, where the saddlepoint approximation 
(4.10) is exact, and at the same time the computation of the exact density is 
feasible. The example is onedimensional, since this makes pictures easier to 
look at. 

Let (Y, Z) be normally distributed with expectations zero and covariance 
matrix 

and consider the subfamily given by 6' = 1. Defining 

X = (+(Y2+z2), YZ), 

the model is of the form of Section 4 with Q being the unknown parameter 
corresponding to p. Consider n independent replications; then 

and 

Let us first briefly sketch the derivation of the approximation (4.22), 
(4.23) to the density g,(r) of 6 at. rE]  - 1, I[, when Q is the true parameter. 

The saddlepoint equation (4.1 1) becomes 

(5.11 
where 

- 
t-b = a2t-hbt+c ,  

If r = 0, then = b, otherwise the saddlepoint is 

for the other solution to (5.1), 0 is outside the range of 8. 
A straightforward computation now gives the approximation X,(r), 

defined in (4.22), 
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where 
(4r3 + q ( l  -4r2-r4)) / (r(1  - r2) (1  -a2) )+  

ql (e ,  I) = + q(r ( 1  - r2)), if positive 
0 otherwise, 

and b is given in (5.2), in (5.3). Although the expression seems complicated, 
it is quite explicit and quickly calculated on a computer. 

The exact density, g,(r), is derived from the Wishart distribution of rf on 
integration along the estimation lines (see e.g. [2 ] ,  Example I). The result is 

x exp [ - n(a + ps)] ds c, (1 -r2)"- 2/(1 - e2)?/2,  

where 

q = (1 + r 2 ) ( 1  - r 2 ,  c, = nn/(2n-2 r(n/2)2), 

If n is even,' the integral may be calculated explicitely. In particular, if 
n = 2, we obtain 

Note that here the computational work increases rapidly with n. 
We shall compute the exact and approximate density in three cases and, 

for comparison, also give the usual normal approximation given by 

n 
(5.7) 6, (r) = ( n / 2 1 ~ ) ' / ~  ( 1  + ~ ~ ) l / ~ / ( l -  Q2) exp ( --(r - Q ) ~  ( 1  + ~ ~ ) / ( 1 -  e2)2). . 

2 

We have also calculated the renormalized approximation 
1 

(5.8) $ (r)/  1 Xe (r)  dr . 
- 1 

The three cases are: 
I. Q = 0, n = 10. Small n, symmetric distribution. 
11. Q = 0.9, n = l o .  Small n, skew distribution. 
111. Q = 0, n = 2. Extremely small n, symmetric distribution. 
The results are given in Figs. 1 - 3 and Tables 1 - 3 below. Rather than 

stating the densities of Q̂  themselves, we have stated the densities of the 
normalized variable &(c-Q) as functions of 6. These are obtained from 
(5.4), (5.6)-(5.8) on division by &. 
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0.4 

0.3 

Fig. 1. Approximations to the density of ~ ( G - Q )  with Q = 0, n = 10. 
Exact density (solid), approximation (5.4) (dashes) and normal approximation (dotdash). 

Fig. 2. Approximations to the density of Jn(6-@) with Q = 0.9, n = 10. 
Exact density (solid), approximation (5.4) (dashes) and normal approximation (dot-dash). 
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I I I I  I I I I  I I I I  I I I I  

Fig. 3. Approximations to the density of & ( G - ~ )  with g = 0, n = 2. 
Exact density [solid), approximation (5.4) (dashes), renormalized approximation (5.8) (do.ts) 

and normal approximation (dot-dash). 

Table  1. Comparison of approximations to the density of ,,/i(~ - Q) at 6 = r, when g = 0, 
rz = 10. 

r exact normal approx. renorm. 

0.00 0.3505 0.3989 0.3989 0.3453 
0.10 0.3366 0.3795 0.3853 0.3357 
0.20 0.2996 0.3266 0.3477 0.3010 
0.35 0.2244 0.2162 0.2645 0.2290 
0.50 0.1476 0:1143 0.1720 0.1489 
0.70 5.355. lo-' 3.443 - 10- 5.917.10-' 5.122, lo-' 
0.90 2.176. 6.95 1.10- 2.270.10- 1.965. 
0.99 3.859. lo-' 2.969.10- 3.933, lo-' 3.405. lo-' 

TabIe 2. Comparison of approximations to the density of &(G:~) at 6 = r, when Q 
= 0.9, n = 10. 

r exact normal approx. renorm. 

0.50 1.284.10- 1.074.10- " 6.950. 6.893- lo-" 
0.70 1.088.10- 1.247. 8.547 - 10- 8.477 - 10- 
0.80 0.2983 0.2303 0.2761 0.2738 
0.85 1.152 1.509 1.130 1.121 
0.88 2.118 2.555 2.130 2.113 
0.90 2.777 2.825 2.825 2.802 
0.92 3.089 2.555 3.167 3.141 
0.95 2.109 1.509 2.172 2.154 
0.99 2.494. lo-' 3.708. lo-' 2.547. lo-' 2526.10- " 
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Table 3. Comparison of approximations to the density of J n ( c - e )  at 6 = r, when Q = 0, 
n = 2. 

r . exact normal approx. renorm. 

In case I (Q = 0, la = 10) it is seen (Fig. 1, Table 1) that, except for the 
extreme tail, the normal approximation does quite well. Approximation (5.4) 
is slightly worse in the main part of the distribution, but it keeps the shape 
better leading to an excellent renormalized approximation, which has not 
been drawn since it is hardly distinguishable from the exact density. Note 
that approximation (5.41, renormalized or not, keeps its degree of 
approximation throughout the range. No truncation (see (4.22) and (5.4)) is 
needed, when g = 0, 

In case I1 (Q = 0.9, n = 10) the distribution is skew and the normal 
approximation i s  useless. Approximation (5.4), however, does quite well 
throughout the range. Here, the effect of renormalization is vanishing, since 
the integral of the approximation is 1.008. In this case the approximation is 
truncated at 0.35324 at a density of approx. lo-'. 

In case I11 (Q = 0, n = 2) n is so small that hardly any approximation 
can be expected to work. Both (5.4) and the normal approximation are 
numerically useless as direct approximations (Fig. 3, Table 3). but 
approximation (5.4) again has the right shape and its renormalized version 
does surprisingly well. 

0 

The comparison with the normal approximation has only been included 
to give an impression of the magnitude of the deviations. In a thorough 
investigation of the behaviour it would be more relevant to compare with the 
second-order Edgeworth expansion, which has an error of order O(n-') and 
which better approximates skew distributions. Its tail behaviour is, however, 
not in general better than that of the normal distribution. 

It seems that approximation (5.4) behaves similar to the saddlepoint 
approximation on which it is based (see C.51); namely, keeping its relative 
error fairly constant throughout the range such that the renormalized 
approximation works extremely well. When calculating tail probabilities of 
magnitude 0.01, say, a relative error of 50°/, is often of no great importance 
and the approximation may safely be used directly, unless the truncation is 
of importance. 

6. The multi-dimensional normal regression model. In this section we 
shall specialize the results of Section 4 to obtain a simple explicit 
approximation to the density of the MLE of the (multivariate) parameter in 
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the important class of nonIinear normal regression models. As in Section 3 
we shall consider the asymptotics obtained by Ietting the variance tend to 
zero, which is equivalent (mathematically) to simple replications. 

Let X = (XI, . . . , X,) be normally distributed with expectation vector 
FIB) = (b), , . , pk (B)) and covariance matrix C = aZ I , .  ,, where 
P E B  s Rp is the unknown parameter, B is open, a 2  is considered to be 
known, and p: B + P' is a known function. 

As previously, ) is the MLE of P ;  B,E B and b~ B are arbitrary fixed 
points, and 

is the Fisher information matrix. Since the density of X is of the form 

this is a curved exponential family model as discussed in Section 4. 
I 

Assumptions 4.1 are equivalent to 

i Assu~mro~s  6.1. (i) p: 3 + 1Pk is one-to-one, bicontinuous and three times 
! . difSmen~iable. 

(ii) 'The Fisher information matrix i(P) is regular for all PEB. 
A direct computation, either by insertion in the results of Section 4 or 

using the normality of (Dl, D2) in combination with Lemma 4.2 now shows 
that approximation (4.22) becomes 

(6.2) ;ib (b) = (274 )- P/2 ( I  (b)l- e", x 

x ~ X P  (-+ (~(80)-  ~(b)) '  D P ( ~ )  1(b)-  DP (by (P ( P o )  -{l(b))/g4) 

where Pb is the projection matrix onto the subspace spanned by the columns 
of Dp(b), and 

y,J if y2 is negatively definite, 
other wise, 

Remark  6.2. The asymptotic behaviour of this approximation is stated 
in Theorem 4.8 and Corollary 4.9. There are, however, less approximations 
involved in this case, since approximation (4.10) to h,(O) here is exact, and 
also y, is exactly equaI to E, (D21D, = 0). Both of these approximations 



Large deviation approximations 105 

contributed with a relative error of order O(n-') in the general case. Hence, 
it might be worthwhile also to remove the last O(n-')-error by including the 
variance terms in the approximation to eo .  Even the higher-order terms (in 
powers of ra - ' )  may be removed in this way, leaving only exponentially 
decreasing errors but, if the dimension p is large, this requires quite a lot of 
computation. We shalI not state these refined expansions, which are easily 
written down for a specific p. 

7. Appdix.  
Proof  of Lemma 4.2. The event M 1  ( E ) ,  say, that f (X; b) has a local 

maximum at some B in (IIB- bll < E )  is the same as the event that D ,  (8) = 0 
and Da (/I) is negatively definite for some j in the same set, except if Dl ( p )  
= 0 and Dz lfi) = 0, which may be disregarded because of Assumption 4.l(i). 
We shall show that, furthermore, M,(E) may be replaced by the event 

M, (E) = {S, ( f i )  = 0 for some fl in [lib- bll < E ) ,  

and D, (b) is neg. definite), 

where S, ( p )  = Dl (b) + D, (b) (j - b)  = Dl + D, (fl - 6) is the linear approxima- 
tion to Dl (p) around p = b. 

Observe that since the Laplace transform E ,  exists in a 
neighbourhood of zero, there exists a K, > 0 such that 

and for some positive constants K,, K, we have 

if 118-z(9)ll < K, log&-'. 
Now, let 0 < 6 < 1 be fixed. Then 

= (1 + 8)" lim ( E P  (1 + 6 ) ~  Ap)- PO ( M ~  ( E  (1 + 8))) 
E -0 

2 lim(EPAp)- [pO ( M 2  ( E ) )  - PO ( ~ 2  (&)\MI ( E  (1 +4))]. 
E-+D 

But, if S1(pl) = 0, II#?l-bl/ < E, and Ilx-t(O)II < K l  loge-', then 

where ;I is the smallest eigenvalue of D, such that, by (7.2), 

2 - Prob. Math. Statist. 6 (21 
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which contains zero if A > K ,  E log E -  '/a. Since also 

HDIII < IlDall IIP1-bll K3 E I o ~ E - ~ ,  
we obtain 

proving that 

since S was arbitrary. The other inequality follows similarly. 
By Assumptions 4.1 we may write D, = A(D,)+ Y- l (b ) ,  such that A is 

a linear function and ( D , ,  Yj has a continuous density (,(dl, y), say, on its 
closed convex support, which contains (0, ED {YI Dl = 0)) as an interior 
point. Thus, by continuity, we have 

A,, (b)  = lim (cP Ap)- Po (M ( E ) )  
e -0 

where BE = ( x ~ R ~ ] I J x l l  < E ) ,  and ho and e ,  are defined in the Lemma. 
Proof  of Theorem 4.8. If X = z (8,), then the likelihood function has 

a global maximum at Po.  Hence, by continuity, if D,  (Po) = 0 and X Iies 
within a certain neighbourhood of z(8,), the local maximum at Po will also 
be global. By another continuity argument, using Assumption 4.1 (ii), there is 
a neighbourhood'^Bo of Po and, for each b ~ B b ,  a neighbourhood q b )  such 
that if Dl (b) = 0 and 8 6  qb ) ,  then the likelihood function has a global 
maximum at b. Now, for some constant c(bj, 

This proves the first equality of (4.23), since also the uniformity follows 
by continuity. The second equality follows by Corollary 4.7. 
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