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RANDOM WALKS WITH RANDOM INDICES AND NEGATIVE
' DRIFT CONDITIONED TO STAY POSITIVE

BY
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Abstract. Let {X,,k>1} be a sequence of independent,
identically distributed random variables with E| X, = 4 < 0, and let
IN,,n20}, Ny=0 as, be a sequence of positive integer-valued
random variables. Form the random walk {SNn’ n = 0} by setting S,
=0 8y =X, +...+Xy ,nx=1

The main resu}t in this paper shows (under appropriate
conditions on {N,, n > 0} and {X,, k > 1}) that Sy_conditioned on
[$;>0,. - Sy, > 0] converges weakly to a random variable S*
constdered by Iglehart [4].

1. Introduction. We assume that {X,, k > 1} are the coordmate functions

defined on the product space

(@Q, o, P) = kzil (R, 2, ),

where R=(—o0, o0), # is the o-field of Borel sets of R, and 7 is the
common probability measure of the X,'s. If A, =[S, >0, ..., S, > 0], then

we let (4,, A,n s/, P,) be the trace of (R, «/, P) on A,,, where AN

o

={4,nA, Ae 4} and P,[A]= P[A]/P[A,l] for AedA,nof. The

expectation with respect to P, is denoted by E {-}. Let S¥ denote the

restriction of S, to A,,, let
r-P[S1>O . S, > 0]
and, for u > 0 set
1) = E, {exp(—uS%)} = E {exp(~uS)II[S; >0, .., S, > 0]},
where I-] denotes the 1nd1cator function; in the same way, for {N,,n>
deﬁne
Fo=P[S;>0,..., Sy, >0]
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and, for u >0, A
Jow) = E {exp(—uSy )1 [S; >0, ..., Sy, > 01}, -

where {N,,n>0}, No=0 as, is a sequence of positive integer-valued
random variables. -

We suppose that {X,, k > 1} is a sequence of independent, identically
distibuted random variables and that the distribution of X, satisfies the
following conditions:

(1) —wo<E{X;}=p<0;

(2) O(s) = E{exp(sX;)} converges for real se[0, a) for some a > 0;

(3) @(s) attains its infimum at a point 7, 0 <7 <a, where @ (1) =y < 1
and @'(t) = |

4 if X, is a lattlce then P[X; =0] > 0.

It has been proved by Bahadur and Rao [1] Theorem 1 that conditions
(1)-(4) imply
(5)  P[S,>0]~Qmn) 2y"an)"!, n— oo,

where a = @"(1)fy, 0 <a.< o0.
In the same way we have

(6) E {exp(—uS,): §,> 0} ~(2nx)™ 29" (x(c+u)™!, n— 0.

( .

Put now
M = [(2n)'/? ar]™ ' exp {i (?‘"/n3’2)P[S,. > 01}

which is finite by (5). Under assumptions (1) -(4) Iglehart [4] has proved that
(7) ’ F ~ (13 M

and, for u > 0

®  mso = Eoe +ulexp 3, [~ ) (8 {exp(—u8)} =11} = ).

n—+x

2, Results Proofs of theorems 1-3 are given in Section 3.

THEOREM 1. Suppose that conditions (1)-(4) are satisfied. If {N,, n >0},

=0 as., is a sequence of positive integer-valued random -variables

_independent of {Xe, k>1} and {a,,n>1} is a sequence of positive real
numbers such that for any given ¢ >0

© P[IN,ju,—7{ > &] = o(E(y""/N3?)
with o, — 00, n— o0, and A is a random variable such that -

(10) + P[A=al=1 ' for a constant a > 0,
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then for u=20
(11) ﬁjn Jo) = f ().

Remarks. Note that if 1 is a degenerate random variable at a > 0, then
(10) is trivially satisfied. Moreover, we note that in general (9) cannot be
replaced by the weaker condition N,/a, Ba no o (P. — in probability)
‘which is used in the random central limit theorem. This fact is established by
the following

Example 1. Let {X,,k > 1} be a sequence of random variables which
satisfies (1)-(4) with y = 1/2 and 1ndcpendent of {N,,n= 1} where N, is as
follows:

P[N,=1]1=1/2"n¥?, P[N,=n]= 1—1/2" n3i2,

Then for any given &¢ > 0
P[IN/n—1]>2¢]=1/2"n 250, n- o,

ie. N,,/n—->1 n— .
In this case we have

fo=rP[N,=1]4r,P[N,=n] _
~P[X, > 0)/2"32+ M(1-1/2"n*?/2"n1%,  n— 0.
Hence, for u > 0 we have
J1@)ry/2"m* 2+ £, () M (1= 1/2"n¥%)/2" 0?2
/2 M (1= 1/2° 02" n?l2

f1 (w)ry +Mf(u)
ri+M

Jow) =

#f), n-co.

Furthermore, we shall see that, in case where A is nondegenerated

random variable, condltlon (10) cannot be replaced by P[4 > 0] = 1 without .

changing (9).

‘Example 2. Let (€0, 1>, #(<0, 1)), P) be a probability space, where P
is the Lebesgue measure and #(<0, 1)) is the o-field of Borel subsets of
<0, 1). Assume that {X,, k > 1} is a sequence of random variables defined
on (<0, 1), #({0, 1))) and satisfying (1)-(4). Let {N,, n> 1} be a sequence
of random variables independent of X, k > 1, defined as follows:

1, we<0,1/n),

N"(w)={k, Cwe {k—1)/n*, k/n“) k=n’+1,.

We see that, for any given ¢ > 0,

P[INJn* =2 2] =0
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for n sufficiently large, where A is the random variable, uniformly distributed
on <0, 1>.
Iglehart [4] has proved that, for u > 0,
Tu Ju (W) ~ (/%) M (u),
where ' B ) o
M (u) = [2n)a(t+u)] 'exp{ Y (y~"/n) E {exp(—uS,): S, > 0}} < 0.
n=1 ’ :
In this case we have, for u >0,
B : "4
S =(fi@ryn+ Y f@r/n*)F,

k=n3+1

Si@wr +. Z fern/n®

= k=l — fi@) # f), n- oo,
[ ro+ Z ro/n’
. k=n3+1
since
n? n4
Y nh@m ~m) Y (MM, () -0,
k=n3+1 k=n3+1
“and
o 4 :
Y, /M) ~(1/md) Y (M0, n- 0.
k=7l3+1 k=n3+1 ’ :

In the case where A is a nondegenerated random variable which satisfies
only P[A> (0] =1, we have

THEOREM 2. Suppose that conditions (1)-(4) are satisfied. If {N,, n > 0},
No=0 as, is a sequence of positive integer-valued random variables
independent of {X,, k>1} and {o,,n=1) is a sequence of positive real
numbers such that lim a, = 00, and R

(12) PN Jou,— 4| > &,] = o(E(y""/N3/3),
a P[4 < 2,] = o(E(y""/N¥?)),

then (11) holds, where 1 is a positive random variable and {¢,,n > 1) is a
sequence of positive numbers such that 0 <&, — 0, o, ¢, — 00, n— 00.
We now establish (11) without the assumption of independence {X,, k
> 1} and {N,, n> 0}. First we shall give an example which shows that in
thls case assumptions of type (9) and (12) are not sufficient for (11).
-Example 3. Let {X,, k > 1} be a sequence of _1ndependent identically

distributed random variables such that X, is uniformly distributed on
{—=2, 1). It can be verified that X, satisfies conditions (1)-(4). Assume that
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{N,,n>1} is a sequence of positive integer-valued random varlables such
that

[Ny=n]=[Xpe1e<=2,0, [Ny=n+1]=[X,10, 1],
Note that for any given ¢ > 0
| PLIN./n—1]>¢] =0,
whenever n > ny = [1/¢g].
Moreover, we see that, for u = 0,
f.w) = -{Eéxp(—uS,,)'I[Sl >0,...,8,>0]1[X,+,e{-2, 0]+
‘+Eexp(—uS)I[S;>0,..., 5, > 0]exp(—uX,;+,)x
) I[Xne €40, IX{PLS; >0, ..., 5,> 0, Xpp1e<{—2, O]+
+P[§;>0,...,85,4+1>0, X,:,€<0, 1>]}
= E(exp(—uS)|I[S; >0, ..., S, > 01)(2/3+(1—e™9/(3u))
= fu@)(2/3+(1 fe‘”)/(3u)) - (2/3+(1-e™")/Bw) f(w), n— oo,

which proves that assumptions of type (9) and (10) are not sufficient for (11).
When A is a degenerated random variable, we can prove in the
considerated case the following theorem which is in some sense the strongest:
THEOREM 3. Suppose that conditions (1)-(4) hold and that {N,, n = 0},
No =0 as., is a sequence of positive integer-valued random variables and

{rx,,, nz1}isa sequence of posmve integer numbers such that lim &, = co. If
n—ow

(14 - . P[N,#a,]= 0(?“"/“3’2),
then (11) holds.

3. Proofs of: the results.

~ Proof of Theorem 1. Let ¢, 0<e<a, be fixed and put g,
" [(@a—¢)a,]- By (9), (10) and the assumpt1on o, — 00, H— 00, W€ can choose
n sufficiently large such that

an

0< Y P[S,>0,...,5>0]P[N,=k]< ¥ P[N,=k]
. k=1 - ' k=1

< P[IN,Jo,—2 > &1 = o(E("/N32),
and at the same time, by (7),

Z P[S,>0, ..., 8. > 0] P[N, = k] ~ Z (MK PIN, = k]

k=a,+1 o k=a,+1

 M-EGMYNI-MY PN, = k],
k=1



222 A. Szubarga and D. Szynal

But
0 MY (*/K**)PIN,=kl<MY P[N,=k]=o(E(y""/N¥?).
k=1 k=1
Hence
(15) Ffar~ M-E("INY®),  n—oo.
Put now

(16) Cox =t P[N,=Klffyy k21,131,

We see that Y C,, =1 and, for fixed k, by (9) and (15)
k=1 )

2PN =K o m )

0<sCus 7 Nusnr3/2
Tn M-E(y"/N3"%)

=0, n- o,

is a Toeplitz matrix. Therefore, by [5],
p. 472, for u > 0 we have ,

f;(u)=k§ﬁ(a)c,,,_k%f'(u), 1 o,
k=1

which com?letes the proof of Ihéotem 1.
Proof of Theorem 2. By (12) and (13) we have, for sufficiently large n,

(17)  #,=P[S;>0,..., Sy >0]

[anep] @® .
= Y nP[N,=kl+ Y rP[N,=k]~M-E@G"N¥?,
o k=1 k={aye,]

One can see that

Cj=P[S;>0,...,8,>01P[N,=jlf,, n>1,j>1

is a Toeplitz matrix. Indeed, we have C,; >0, Y C,; =1, and, by (18), (19)
and (17), we get '

[2ntn)
P[N,=k -
NP Rl ! PONJa A el P2
ST MeEGMNY M-E("/N) -

n— o0, as j < [g,a,] for sufficiently large n. Following the cohsiderations of
the proof of Theorem 1 we obtain (11).
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Proof of Theorem 3. From (14) we have
fo=P[8;>0,...,8y, >0] = kiP[Sl >0,...,8>0,N,=k]
=P[S$, >0,...,5, >0, N, =, ]+ P[S; >0, ..., Sy, > 0, N # ,].
Hence, by (7), we get |
(18) M (y""foc 2)l-~0(3*“" udl?) < #, < MG™/03?) + 0 (")
Taking into account that, for u >0, .
Pofu(t) = E{exp(—uS, )I[S; >0, ..., S, > O0]I[N, =]} +
+E{exp(—uSy)I[S; >0, ..., Sy, > OJI[N, # a,]}
= E{exp(—uS,)I[S; >0, ..., S, > 0]}~
—E{exp(—uS, )I[S; >0, ..., S, > O] [N, # a.]} +
+E{exp(—uSy)I[S, >0, ..., Sy, > O1I[N, # a,]},
and (14), we have |
a fon @) — 0 7 03?) < Fo o) S 7, o, W)+ 0 (7).

Therefore, by (18), we get (11).

~ Note. The problem here considered, in the case where E {Xy}=pn=0,
was treated in [7].
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