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Abstract. Let {X , ,  k 3 1) be a sequence of independent, 
identically distributed random variables with EtX,I = p < 0, and let 
{N,, n 2 O), No = 0 as., be a sequence d positive integer-valued 
random variables. Form the random walk {S,,, n 2 0) by setting So 
=Q,  S N n = X I S  ...+ X N n , n 3 1 .  

The main result in this paper shows (under appropriate 
conditions on {N,, n 3 01 and (X,, k 8 1)) that SNn conditioned on 
[S, > 0, . . ., SNn > 0] converges weakly to a random variable S* 
considerg by Iglehart [43. 

1. Introduction. We assume that (X,, k 2 I)  are the coordinate functions 
defined on the product space 

where R = (-m, co), 93 is the o-field of Bore1 sets of R, and n: is the 
common probability measure of the X,'s. If A, = [S, > 0, . . ., S, > 01, then 
we let (A,, A, n d ,  P,J be the trace of (a, d,  P) on A,, where A n n  d 
= ( A ,  n A, A E d) and P, [A]  = P [A]/P [A,] for A E  A, n d. The 
expectation with respect to P,  is denoted by En {.I. Let SX denote the 
restriction of Sn to A,, let , 

and, for u 2 0; set 

f,(u) = E, {exp(-US:)) = E (exp(-uSJ1 [S1 > 0, . . ., Sn > 011, 

where I [ - ]  denotes the indicator function; in the same way, for { N , ,  n 2 01, 
define 
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and, for u 2 0, 

where (N,, n 2 0), No = 0 as., is a sequence of positive integer-valued 
random variables. 

We suppose that (X,, k 3 1) is a sequence of independent, identically 
distibuted random variables and that the distribution of X ,  satisfies the 
following conditions : 
(I) - og < E {XI} = p < 0; 
(2) O (3) = E (exp(sXl)] converges for real sc [0, a) for some a > 0; 
(3) 8 (s) attains its infimum at a point z , 0 < t < a, where O (T)  = y < 1 

and O'(.t) = 0; 
(4) if XI is a lattice, then P [XI = Oj > 0. 

It has been proved by Bahadur and Rat, [l] Theorem 1 that conditions 
( 1) - (4) imply 

where a = OU(z)/y, 0 < a < m. 
In the- same way we have 

I 

Put now 
m 

M = [(2n)'12 az] - exp { C (y -"/n3/') P [S, > 01) 
n= 1 

which is finite by (5). Under assumptions ( 1 )  -(4) Iglehart [4] has proved that 

and, for u 2 0 
00 

(8) limf, (u) = [t/(t + u)] exp { [y -"/n3I21 [ E  {exp (- US:)) - 11) = f (u). 
n-+m n =  1 

2. Results. Proofs of theorems 1 - 3 are given in Section 3. 
THEOREM 1. Suppose that conditions (1) -(4) are satisjied. I f  (N,, n 2 01, 

No = 0 as., is a sequence of positive integer-valued random variables 
independent of {X,, k 2 1) and (a,, n 2 11 is a sequence of positive real 
numbers such that for any given E > 0 

with a, + co, n -+ a, a d  A is a random variable such that 

(10) PC2 2 a] = 1 for a constant a > 0, 
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then for u 3 0 

lim f+. (4 = f (4. 
n - m  

Remarks. Note that if A is a degenerate random variable at a > 0, then 
(10) is trivially satisfied. Moreover, we note that in general (9) cannot be 
replaced by the weaker condition N Jan 5 a, n -+ m (P. - in probability) 
which is used in the random central limit theorem. This fact is established by 
the following 

Ex ample 1. Let (X,, k 2 I} be a sequence of random variables which 
satisfies (1)-(4) with y = 112 and independent of {N,, n 2 1), where N ,  is as 
follows : I 

P [N, = 11 = 112" n3f2 ,  P [ N ,  = n] = 1 - 1/2" n3/2. 

Then for any given E > 0 
P [(NJn - 11 2 E ]  = 1/2" n3I2 4 0, n + a, 

P. i.e. N,/n-+ 1, n-i  a. 
In this case we have 

Hence, for u 2 0 we have 

Furthermore, we shall see that, in case where 1 is nondegenerated 
random variable, condition (10) cannot be replaced by P [A  > 01 = 1 without 
changing (9). 

Example 2. Let ((0, I), B((0, I)), P) be a probability space, where P 
is the Lebesgue measure and B((0, 1)) is the o-field of Bore1 subsets of 
(0, 1). Assume that (X,, k 2 1) is a sequence of random variables defined 
on ((0, I), g( (0 ,  1))) and satisfying (1)-(4). Let {N,, n 3 1) be a sequence 
of random variables independent of X,, k 2 1, defined as follows: 

We see that, for any given E > 0, 
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for n sufficiently large, where A is the random variable, uniformly distributed 
on (0, 1). 

Iglehart [4] has proved that, for u 3 0, 

In this case we have, for u 2 0, 

n4 

% = (f; Iu)  lln + z h lu) rk/n4)/% 

k=n3 + 1 
.4 

fl (u)  rl + - z h (lk) r k / n 3  

- - k = n 3 + 1  

.4 + f i I u ) # f ( u ) ,  n + w ,  
i 

since 
n4 "4 

C rk  'kfk (uMn3 - ( l /n3)  C ( f / k312 )  MI (u)-+ 0, 
k = n 3 + l  k = n 3 - t  1 

and 

In the case where A is a nondegenerated random variable which satisfies 
only P [A > 0 J = 1, we have 

THEOREM 2. Suppose that conditions (1)- (4)  are satisfied. I f  ( N n ,  n 3 O ) ,  
No = 0 as., is a sequence of' positive integer-valued random variables 
independent of ( X k ,  k 2 1)  and (a,, n 2 1 j is a sequence of positive r ed  
numbers such that lim a, = a, and 

n-m 

(I31 P [I. < 2 4  = 0 ( E  ( I N n / ~ i 1 2 ) ) ,  
then (11) holds, where d is a positive random variable and (E,, n 2 I )  is a 
sequence of positive numbers such that 0 < E, + 0, anen 4 co, n -+ a. 

We now establish (11) without the assumption of independence t X k ,  k 
3 1)  and (N , ,  n 2 01. First we shall give an example which shows that in 
this case assumptions of type (9) and (12) are not sufficient for (11). 

Example  3. Let {Xk, k 2 1 )- be a sequence of independent, identicaIIy 
distributed random variables such that XI is uniformly distributed on 
(-2, 1). It can be verified that XI satisfies conditions (1)-(4). Assume that 
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{N,, n B 1) is a sequence of positive integer-valued random variables such 
that 

CN,=nl=CX,+,f<-2,011, [ N , = n + l l = [ X n + , ~ < ~ , l ) l .  

Note that for any given E > 0 

whenever n > no = [I/&]. 
Moreover, we see that, for u 3 0, 

which proves that assumptions of type (9) and (10) are not sufficient for (11). 
When R is a degenerated random variable, we can prove in the 

considerated case the following theorem which is in some sense the strongest: 

THEOREM 3. Suppose that conditions (1)-(4) hoZd and that {N, ,  n 01, 
No = 0 a.s., is a sequence of positive integer-valued random ~ariables and 
{a,, n 2 1) is a sequence of positive integer numbers such that h or, = co. If 

n-rw 

(14) PCN, # a,] = 0Ir""/a3/~), 
then (1  1) holds. 

3. Proofs of the results. 
Proof  of Theorem 1. Let E, 0 < E < a, be fixed and put a, = 

[(a-&)a,]. By (9), (10) and the assumption a,+ co, n+ m, we can choose 
n sufficiently large such that 

and at the same time, by (7), 
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But 

I Hence 

(1 5 )  p,, :It M M. E (yN"/~,3/2), n + 

Put now 

m 

We see that C C, ,  = 1 and, for fixed k, by (9) and (15) 
k =  1 

which proves that [C,,],=, ,,,., = ,,... is a Toeplitz mdtrix. Therefore, by [5 ] ,  
p. 475 for u 2 0 we have 

which completes the proof of Theorem I. 
Proof of The ore m 2. By (12) and (13) we have, for sufficiently large n, 

b = d  m 

= c Q P [ N , = ~ ~ +  c Q P [ N , = ~ ~ - M . E ( ~ ~ ~ / N ~ ~ z ) .  
k= 1 k = la&,] 

One can see that 

m 

is a Toeplitz matrix. Indeed, we have Cn,j 2 0, C,,. = 1, and, by (la), (19) 
j =  1 

and (171, we get 

n -, co, as j 6 [cnan] for sufficiently large n. Following the considerations of 
the proof of Theorem 1  we obtain (11). 
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Proof of Theorem 3. From (14) we have 
m 

F,,=P[S,>O ,..., S N n > O ] =  x P I S 1 > O  ,..., S k > O , N n = k ]  
k =  1 

Hence, by (7), we get 

Taking into account that, for u 3 0, 

and (14), we have 

Therefore, by (18), we get (11). 
Note. The problem here considered, in the case where E (XI) = y = 0, 

was treated in [7]. 
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