
PROBABILITY 
AND 

MATHEMATICAL STATISTICS 

Vol. 6, Fasc. 2 (1985). p 10-120 

ID~FFEWE~ABILITl' OF LIKELIHOOD RATIOS WITH RATES 

BY 

WOLFGANG W EFELM EY ER (COLOGNE) 

Abstract. Call a function dlferentiable at some rate if the 
difference quotient approximates the derivative at this rate. Consider 
some root of the density of a one-parameter family of probabiIity 
measures as a function of the parameter. We characterize 
differentiability of this root in some (not necessarily corresponding) 
mean at a certain rate by an appropriate differentiability of an 
arbitrary other root at the same rate. In particular, we characterize 
Hellinger differentiability at some rate in terms of differentiabibty of 
the densit~es. This allows us to compare Hellinger dzerentiability at 
some rate with a differentiability concept of Pfanzagl and 
Weieheyer [Ill, which is necessary and sufficient for local 
asymptotic normality in the i.i.d. case at a certain rate. 

1. INTRODUCTION 

Let P,, t~ R, be a family of mutually absolutely continuous probability 
measures on a measurable space (X, d). Fix P = Po, and let f, denote a P- 
density of P,.  We want to compare several approaches to define 
differentiability off, at t = 0. Our aim is to decide which of these concepts is 
most appropriate for obtaining "higher order" local asymptotic normality in 
the i.i.d. case. More precisely, we are inteiested in the following particular 
form of the local asymptotic normality. For every bounded sequence u,, 
 EN, the Iog-likelihood ratios can be written as 

n 

with n- 'I2 1 g (xv) asymptotically normal N ( 0 ,  02) under Pn, and Rn + 0 in 
v =  1 

Pn-probability. 
To examine high& order properties of statistical procedures, we require 

rates on R, -, 0 of the form 

(1.2) P " ( ] R , [ > E ~ - " ~ ~ ]  = ~ ( n - ~ / ' )  for every E > O .  
, For a < 1 and b = 2a, such rates are needed by Bickel et al. [2] to 



110 W. Wefelmeyer . 

prove that a test statistic is efficient of order o(npa) if it approximates the 
log-likelihood ratio up to o (n-q2). 

For a = 6 = 0, condition (1.2) means that R, + 0 in Pn-probability. It is 
known (see [6] and [7]) that local asymptotic normality in the sense of (1.1) 
holds if and only if f,'I2 is dlyerentiable in quadratic mean at t = 0. This 
means that there exists a derivatiue + g  such that 

I 1 4  J1I2 = I +  t ig+t r t  with P(r:) = o(t") .  

(Here P(f) stands for J f (x) P(dx).)  
For arbitrary a, 6, however (and under the assumptions P@) = 0 and 

p (jg1 2(2 + b ~ 2  -0)  ) < m), Pfanzagl and Wefelmeyer [ I l l  found a somewhat 

different differentiability concept to be necessary and (nearly) sufficient for 
(1.2) (in the sense that it implies (1.2) for every a' < a instead of a). This is the 
so-called DCCb-diSferentiability of J; at a rate o(f), defined by 

with r, fulfilling the following degenerate convergence criterion DCC,: 

ti) P { l r t l > ~ t - ' ) = ~ ( t 2 + b )  for every & > ( I ,  
(ii) P(r, {lrtl ,< t- I]) = o(t), 

(iii) P(r:[lr,l<t-i))=o(tO). . 

(For 'notational convenience; we have identified a set A with its indicator 
function.) 

For a = b = 0, differentiability of f, in this sense is equivalent to local 
asymptotic normality (1.1), (1.2) and, therefore, to differentiability of in 
quadratic mean. The question poses itself whether in general DCCb- 
differentiability of f, at a certain rate can be described by differentiability of 
an appropriate root A'/' in c-mean at a rate o(ta), say. The latter is the 
obvious generalization of (1.3) to 

1 
(1.5) f , l l c= l+ t -g+ t l f a r ,  with P(Jr,lc)=o(tO). 

C 

To answer this question, we first show in Theorem 2.7 that for Od a 
< 1 and by c > 0, differentiability of a root f;ll' in c-mean at a rate o(ta) can 
be described by differentiability of another root f,ltb in (6, c)-mean at a rate 
o (f). This means that 

with r, fulfilIing the following condition R,+,,,,,: 

(4 P(lr,lb {lrtl > t-l-"1) = ~ ( t ( ' - ~ ) ( l + ~ )  1, 
(ii) P(lr,lc { f rJ  d t-' -")) = o(tO). 
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The case b = 1, c = 2 compares best with condition DCC. 
Differentiability of f; in (1, 2)-mean at a rate o(to) was introduced in [lo] 
under the name weak dijfferentiabilitv. Theorem 2.7 shows that weak 
differentiability of is equivalent to differentiability of J f J 2  in quadratic 
mean. A proof via equivalence with (1.1) is given by LeCam [7]. The 
equivalence remains true with rates o(ta), where 0 6 a < 1. 

For the question of comparing KCb-differentiability with 
differentiability of roots in some mean with o(ta), however, the answer is less 
satisfactory. For a > 0 we have only obtained the result that differentiability 
of in quadratic mean (or differentiability off; in (1, 2)-mean) at a rate 
o(t0), together with .condition DCCza(i) on the remainder, implies DCCza- 
differentiability ofJ; at a rate o(ta). This follows from Theorems 2.7 and 2.12. 
Obviously, a condition DCC,(i) with b > O is not entailed by (1, 2)- 
differentiability, whatever the rate imposed there. (The case b = 0 is 
distinguished by the feature that (1, 2)-differentiability of f, automaticaIly 
implies DCC,(i) for the remainder.) As noted above, however, condition 
DCC, (i) is necessary for rates of the form, (1 -2). Hence for higher order 
considerations DCC,-differentiability of j; seems to be better suited than 
differentiability of roots in some mean. 

2. RESULTS 

Let P be a fixed probability measure on a measurable space (X, dl, and 
V c (0, co) arbitrary. For t E V let P, be a probability measure with P-density 
f;. We think of P,, t~ K as a path converging to P as t + 0. Such a concept 
is, of course, void unless 0 is an accumulation point of K 

A definition of differentiability will be based on the following 
convergence concept. 

2.1. Defini t ion.  Let a 2 0 and b, c > 0. For ~ E V  let r,: X+ R be 
measurable functions. We say that r,, t~ l.: fulfills R,,,, if 

(ii) P(lrtic lr,l < t-"1) = o(t"). 

Note that r, fuIfills Rap,,, if and only if P(lr,lb) = o(to). 
2.2. Remark.  Let a 2 0  and b , c > O .  
(i) If b d c, then R,,,, implies p(lr,lb) = o (to), 

since 

(ii) If b 2 c, then p(lrtlb) = o (to) implies R,>,,,, 



since 

P(lr,lb {]rJ > t-").) d P(lr,Ib) = o(to) = 0(t('-~)3, 

P(lr,lc [(Ir,l < t-'1) 6 ~ ( ~ r ~ l ~ ) ~ ~ ~  = o(tO) .  

(iii) It is well known that P(lr,Jb) = o(tO) implies P(lrtIc) = o(to) for b 3 c;  
similarly, R,,,, implies &,r,b, 

With condition R,,,, we can introduce the following differentiability 
concepts for functions h, converging to the function ho = 1 as t + 0. 

2.3.Definition. Let a 2 O a n d  6, c > O .  For t ~ V l e t  b: X+[O, CQ) be 
measurable functions. We call h,, t~ differentiable in b-mean (resp., in (b, c)- 
mean) at a rate o(ta) with derivatiue g if 

with .r, fulfilling P(lrtlb) = 0 (to) (resp., condition R,  , , , A .  
We have found it convenient to describe differentiability by an 

appropriate Taylor expansion. Of course, h, is differentiable in b-mean at a 
rate o(ta) with derivative g if and only if 

25. Remark. For h, = Ailb, relation (2.4) writes 

For a = 0 and b = 2 this reduces to differentiabifity of f,lI2 in quadratic 
mean, introduced by LeCam 151. (This concept was already used by Hajek 
141 who refers to a preprint of Learn's paper.) 

2.7. THEOREM. Let 0 < a < 1 and b, c > 0, a d  assume 

1 
Then h:k is dtrerentiable in c-mean at a rate o(t3 with derivative -g  if 

C 

1 
and only $!$Ib  is differentiable in (b, c)-mean at a rate o(P)  with derivative -g. 

b 
I n  other words, the representation 
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holds with r, fulfilling P(lrt]3 = o(tO) f and only 'if the representation 

holds with st fuffillinq R ,  + ,.,., . 
The conditions on g hold if ~ ( l ~ l ~ ' " ' ' " ) )  is finite. For b < c the third 

condition follows from the second, for b > c the converse holds. For a = 0 
the three conditions reduce to P(lglb "') < m. 

U. Remark,  Let c 2 b. If h:,b is differentiable in (b ,  c)-mean (at a rate 
o(l)), then, by Remark 2.2 (i), /+lib is differentiable in b-mean (at a rate o(tu)). 
Hence by Theorem 2.7, differentiability' of h1IC in c-mean implies 
differentiability of h:Ib in b-mean (at the same rate). A direct proof of this 
consequence for h, = A and a = 0 is given by Fukelsheim (1121, Theorem 2). 

2.9. Remark.  We are mainly interested in expressing differentiability of 
the c-root f,'" in c-mean in terms of differentiability of J itself. The reader 
may wonder why we have formulated Definition 2.3 (ii) and   he or em 2.7 for 
arbitrary h, instead of f,. One reason is that some authors consider 
differentiability of f, instead of f,ll" in c-mean1. 

By Remark 2.2 (ii), differentiability of f, in c-mean is stronger than 
merentiability off,  in (1, +mean and hence, by Theorem 2.7, stronger than 
differentiability *of J;ltC in c-mean. Applying Theorem 2.7 for a = 0, b = c2, 
and h, = f;', we obtain that f, is differentiable in c-mean with derivative g if 

I 
and only if &Ifc is differentiable in (c2, c)-mean with derivative -g .  In 

c 
particular, J; is differentiable in quadratic mean with derivative g if and only 
if J;'f2 is differentiable in (4, 2)-mean with derivative $g. 

To compare differentiability in (1, 2)-mean with DCCb-differentiability, 
we derive below a relation between the conditions R ,  ,,,,,, and DCC,, 
defined in .the Introduction. 

We note first that under DCC,,(i), the following two conditions are 
equivaIent : 

This folbws from 

Observe that (2.1 1) is stronger than E C  (ii). 
This remark, together with the following theorem, implies that DCC2,- 

See [I] (p. 487, Theorem 5 )  and, for c = 2, [lo] (p. 23) and also [33 (p. 198). 



differentiability of f ,  at a rate o(ta) follows from (1, 2)-differentiability of S, at 
a rate o(t3,  augmented by condition DCC2,(i) on the remainder. 

2.12. THEOREM. Let f ,  = 1 + tg+tl"r, with P(g) = 0 and 

and r ,  fu&lIin.g DCC2,(i). Then r, fulfills Rl+a,1,2 if and only if r, fu(fills 
DCC ( i i i )  a d  (2.1 1). 

The proof is based on the following lemma. 
213. LEMMA. Let f, = 1 + tg + tr, with P ( g )  = 0 and 

Then P((r,l {lrrl > 2t- ' 1 )  = o(tl "b).  

2.14. Remark. Let f ; ' fZ be differentiable in quadratic mean at a rate 
o(ta) with derivative i g .  Assume 

P(jglzt' +"' (Igl < t -  '1) = d(tO), 

P(g2 (lgj > t -  l ))  = 0 (t2"). 

Then, by Theorem 2.7, f, is differentiable in (1, 2)-mean at a rate o(P)  
with derivative g. If the remainder term fulfills, in addition, DCC,,(i), then, 
by Theorem 2.12, .f; is also DCCz,-differentiable at a rate o(ta). As indicated 
in the Introduction, this is sufficient for local asymptotic normality of the 
form 

n n 1 1 log&- I,, (xv) = n- ' I 2  E g ( x v )  -5 P(g2) + R. (4 
v= 1 v= 1 

with Pn (IRnl > = o(n-") for every E > 0 and every a' < a. With a' 
replaced by a, this is the rate needed by Bickel et al. [2]. 

It turns out that for a < 1/2 the conditions on g are just sufficient for an 
appropriate normal convergence rate o ( n - 3  of the log-likelihood ratios. For 
E~ LO slowly enough we still have 

Hence by a theorem of Osipov [8] (see also [9], p. 118, Theorem 8), the 
distribution function of 

n 

under P' converges uniformly to the normal distribution function with 
variance P(g2) at a rate o(n-") for a < 1/2 and O(n-'1') for a = 1/2. No 
better rates are obtained if the conditions on g are replaced by the sufficient 
condition that P(1g12'1+a)) is finite. 
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3. PROOFS 

We need the following properties of k t , , .  
3.1. Remark. ( i )  Let b < c. If r, fulfills Ra,,,,, then there exist E, 10 and 

e, 7 oo such that E ,  < dt < et implies 
I 
I 1 (3.2) p(lrtlb {lr,l > dt t -") )  = ~ ( t ( " - ~ ) " ) ,  
I 
I (3.3) P(lrtlc {Ir,l < d, t-"1) = o (to). 

Conversely, if (3.2), (3.3) hold for arbitrary d,, then r, fulfills Ra,b,c. 
(ii) Let b > c. I f  r, fulfills R,,,,, then (3.21, (3.3) hold fox arbitrary dt. 

i Conversely, if (3.2), (3.3) hold for d, bounded and bounded away from 0, then 
P, fulfills Ra,b,,. 

Proof.  (i) Assertion (i) follows easily from the two inequalities 

P(lrtlb {lrtl > ct- "1)- P (lrtlb (lr,l > et-°)) 

= ~ ( l r , [ ~  {st-' 3 Ir,l > st-")) 

< ~ ~ - ~ t t ~ - ~ ) ~  P(lrtlc {lrtl < at-")) 

and 

P(lrtlc {lr,l < et-"1)- P(lrtlc (IrJ d st-"}) 

< K b  t(b-c)a P(lrtlb {lr,l > ~t - "1 ) .  

(ii) The case b > c is similar to the case b d c. 
3.4. Remark. R ,,, , is additive. 

Proof. Let rt and st fulfill Ra,b,c. 
(i) We have 

since 

P(lrtlb [Irt+stl > 2t-"])  < P(lr,lb [Iql d t-: Is,l > t-"))+ P(lrrlb -(lr,l > t-"1) 

< t -buP {ls,l > t-"1 + ~ ( t ( ~ - ~ ) " )  

d t(c-b)" P(IstIb { J S , ~  > t-1) + ~ ( t ( ~ - ~ ) " )  = o(t@- b)a 1. 
(ii) We have 
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since 

P(lr, +s,lc {lrtl 4 t-', /stl 6 t-"1) 
: 

G 2 C ~ ( ~ t - i [ c  {lr,~ a t - O ) ) + ~ ~ ( ~ ~ i ~ c  {ls,l 6 tea]) = .(to) 

and 

P([rt+s,lc {lrt+at 2 2t-a, Irtl > t-'1) 4 2ct-mP(lrtl  > t-") 

(iii) Condition R,,,, for r t+s ,  now follows from parts (i), (ii) of the proof 
and Remark 3.1. 

33. Remark. If r, fulfills K,,,, and Isr] 6 Irrl, then s, fulfills R,,,,,. 
Proof. Condition R,, , , ( i )  is trivially fulfilled for st. For b < c, condition 

R,,,, for s, follows from 

The case b > c is treated similarly. 
P r o  of of Theorem 2.7. We restrict ourselves to the case b < c. The 

case b = c is trivial, and the case b > c is treated as the case b < c. 
(a) The following expansion will be used to prove both implications of 

the assertion. Let 

Then 

1 
h:lC = ( l f t - g + t i f a  b rt)b/c. 

For z in a neighborhood of 0 we have the following Taylor expansion: 

Let 

At: = {Igl < zt t -I ,  lrtl 6 &t-'-O} 

with E~ 1 0  sufficiently slowly and E > 0 sufficiently small. From the Taylor 
expansion we obtain 
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with 

(b) Assume that h.,?Ib is differentiable in (b ,  +mean at a rate o ( f )  with 
1 

derivative -g. Then (3.6) holds with r, fulfilling Rl+o,b,c. Hence (3.7) holds 
b 

with s, fuliilling (3.8). We have to prove P(lstlc) = o(tO). We may treat each 
right-hand term in (3.8) separately as follows: 

6 E;' t-caP(IgIC (191 > 6 t - ' ) ) +  

+ E - ~  t(b-c)(i  + a )  P(Irttb {Irt( > ~ t - l - ~ ] )  = u(t0); 
! 

! t-" P(IglC A;) = t-'a P{IqIC(lyl < ~ ~ t - ' ,  lrtl > ~ t - ' - ~ ) ) +  

(c) Assume that h:Ic is differentiable in c-mean at a rate o(f) with 
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1 
derivative -g. We apply part (a) of the proof with b, c and r, ,  s, interchanged. 

C 
I 

I By assumption, (3.6) holds with st fulfilling P((st13 = o(tO). Hence (3.7) holds 
with r, fulfilling (3.8). We have to show that r, fulfills R, ,,,, . By Remarks 
3.4 and 3.5 it suffices to prove that each right-hand term in (3.8) fulfills 
R , + , , , .  Consider first R,+a,b,c(). Choose d 3 1 sufficiently large. Then 

is trivially fulfilled for those terms in (3.8) which are bounded by o ( t - I - 3 .  
The remaining terms are treated as follows: 

I < t ( t - b ) ( l  +a) p (lst13 = 0 ( t  
( c - b ) [ l  +a) 1- 

I Consider now Rl+,,,,,(ii). We have to prove 

t P(lrtlc fir,] < dt-  ' -"1)  = o(tO) 

, for the right-hand terms in (3.8). (RecalI that b, c and r,, st are now 
I interchanged in (3.8).) This is done as follows: 



Proof of Theorem 2.12. (i) Assume that r, fulfills DCC (iii) and (2.12). 
Then r, also fulfills (2.11) with d = 2, By Lemma 2.13, applied for b = 2a and 
Pr ,  instead of r,, 

From DCC (iii) we obtain 

Hence R, + ,,,,, holds by Remark 3.1. 
(ii) Assume that r, fulfills R l + a , l , 2 .  Since P(r,) = 0, we obtain 

lP(rt {{rtl < t - l -a} ) l  = 1p(rt {lrtl > t - l - a } ) l  < P(lrtl {lrtl > t - l - a ) )  = u(tl").  
' Hence (2.10) holds, which is equivalent to (2.11). Furthermore, DCC(iii) 

follows trivially from R1 + , , , ,  (ii). 

Proof of Lemma 2.13. Since f; 2 0, we have g f r ,  2 - t - l .  Hence 
r, < - 2t- implies 

We obtain 

O <  - ~ ( r , ( r ,  < - 2 t - I ) )  < 2P(g (g  > t - I ) )  = o ( t l f b ) .  

By assumption, P(r,) = 0. Hence 

P(lrtl {[rtl > 2t-'1) = -2P(r ,  {r, < - 2t- '1)-P(r ,  {Ir,I < 2 t - I } )  = o ( t I f b ) .  
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