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WOLFGANG WEFELMEYER (COLOGNE)

Abstract. Call a function differentiable at some rate if the
difference quotient approximates the derivative at this rate. Consider
some root of the density of a one-parameter family of probability
measures as a function of the parameter. We characterize
differentiability of this root in some (not necessarily corresponding) .
mean ‘at a certain rate by am appropriate differentiability of an
arbitrary other root at the same rate. In particular, we characterize
Hellinger differentiability at some rate in terms of differentiability of
the densities. This allows us to compare Hellinger differentiability at
some rate with a differentiability concept of Pfanzagl and
Wefelmeyer [11], which is necessary and sufficient for local
asymptotic normality in the i.id. case at a certain rate.

1. INTRCDUCTION

" Let P, te R, be a family of mutually absolutely continuous probability
measures on a measurable space (X, /). Fix P = Py, and let f, denote a P-
density of P,. We want to compare several approaches to deﬁﬁe
differentiability of f; at t = 0. Our aim is to decide which of these concepts is
most appropriate for obtaining “higher order” local asymptotic normality in
the iid. case. More precisely, we are interested in the following particular .
form of the local asymptotic normality. For every bounded sequence  u,,
neN, the log likelihood ratios can be written as

(1.1) 2 10gf—1/2 () =un” 12 Z g(x)—~u az+_Rn(x) )

with n~ 172 Z g(x,) asymptotically normal N (0, o?) under P", and R,— 0 in
=1
P”-probablhty

To examine hlgher order properties of statistical procedures we require
rates on R, — 0 of the form
(1.2) - P*{|R,| >en""*} =0(n %% for every ¢ > 0.

. For a<1 and b= 2a, such rates are needed by Bickel et al. [2] to
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prove that a test statistic is efficient of order o(n~?% if it approximates the
log-likelihood ratio up to o(n~%?).

For a = b = 0, condition (1.2) means that R, — 0 in P"-probability. It is
known (see [6] and [7]) that local asymptotic normality in the sense of (1.1)
holds if and only if f,'/* is differentiable in quadratic mean at t = 0. This
means that there exists a derivative $g such that

(1.3) 2 =1+tig+tr, with P(r?) = o(t9).

(Here P(f) stands for | f(x)P(dx).)

For arbitrary a, b, however (and under the assumptions P(g) = 0 and
P(|g|*?*M2=9) < o0), Pfanzagl and Wefelmeyer [11] found a somewhat
different differentiability concept to be necessary and (nearly) sufficient for
(1.2) (in the sense that it implies (1.2) for every a’ < a instead of a). This is the
so-called DCC,-differentiability of f, at a rate o(t*), defined by

1.4 fi=1+tg+t'*r,

with r, fulfilling the following degenerate convergence criterion DCC,:

@) P{r|>e™ '} =0(**? - for every ¢> 0,
(“) P(rl {Irtl < t_l}) = O(t),
(iii) P {lr] <t71}) = o(t?).

(For notational convenience, we have identified a set A with its indicator
function.) ,

For a = b =0, differentiability of f, in this sense is equivalent to local
“asymptotic normality (1.1), (1.2) and, therefore, to differentiability of £;/? in
quadratic mean. The question poses itself whether in general DCC,-
differentiability of f; at a certain rate can be described by differentiability of
an appropriate root f,' in c-mean at a rate o(t*), say. The latter is the
obvious generalization of (1.3) to

1 .
(L.5) fiif =14+t—g+tt*r, . with P(r|9) = o(t°).
c

To answer this question, we first show in Theorem 2.7 that for 0< a
<1 and b, ¢ > 0, differentiability of a root f,'* in c-mean at a rate o(t%) can
be described by differentiability of another root £, in (b, c)-mean at a rate
0(t%). This means that

1
(1.6) filb = 1+tzg+t1+“r,

with r, fulfilling the following condition R, .,

(l) P(Irlli’ .{lrt| > t—l—a}) — O(I(c_b)(l +,,))’
o P(rf{Ir] < 1) = o(¢°).
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The case b=1 ¢=2 compares best with condition DCC.
Differentiability of f; in (1, 2)-mean at a rate o(t°) was introduced in [10]
under the name weak differentiability. Theorem 2.7 shows that weak
differentiability of f, is equivalent to differentiability of f,'/* in quadratic
mean. A proof via equivalence with (1.1) is given by LeCam [7] The
equivalence remains true with rates o(t“) where 0 < a <1.

For the question of comparing DCC,-differentiability with
differentiability of roots in some mean with o(t?), however, the answer is less
satisfactory. For a > 0 we have only obtained the result that differentiability
of Y2 in quadratic mean (or differentiability of £, in (1, 2)-mean) at a rate
o(t%), together with condition DCC,,(i) on the remainder, implies DCC,,-
differentiability of f; at a rate o(t). This follows from Theorems 2.7 and 2.12.
Obviously, a condition DCC,(i) with b >0 is not entailed by (1, 2)-
differentiability, whatever the rate imposed there. (The case b=0 is
distinguished by the feature that (1, 2)-differentiability of f, automatically
implies DCC, (i) for the remainder.) As noted above, however, condition
DCC, (i) is necessary for rates of the form (1.2). Hence for higher order
considerations DCC,-differentiability of f, seems to be better sulted than
differentiability of roots in some mean.

2. RESULTS

Let P be a fixed probability measure on a measurable space (X, &), and
V c (0, co) arbitrary. For te Vet P, be a probability measure with P-density
f;- We think of P,, teV, as a path converging to P as t — 0. Such a concept
is, of course, void unless 0 is an accumulation point of V.

A definition of dlfferentlablhty will be based on the followmg
convergence concept.

2.1. Definition. Let a= 0 and b, c> 0. For teVlet Ty X—»R be
measurable functions. We say that r,, teV, fulfills R,,. if -

) P(irf {ird > ¢77)) = o (1™,

(i) P(rf{Ir) <t7%) = 0(t°).
Note that r, fulfills R‘,;b,b if and only if P(Jr|") = o(t°).
2.2. Remark. Let a>= 0 and b, ¢ > 0.

. (i) If b<c, then R,, . implies P(|r,|") = o(t),
since

P(r?) = P(rl’ {ird < D+ P(rf* {Inl >t}
S P(rf{Ird <) +o (€™M = 0(t?).

(i) If b = ¢, then P(r/?) = o(¢°) implies R,,,,
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since
P(r" {Ir| > ) < P(Ir|") = 0(t%) = o (t“™ ),
P(lr° ITJ <t~ < P(ry" = o(t%).
(iii) It is well known that P(|r,’) = o(t°) implies P(|r,|°) = o(t%) for b > c;
similarly, R,,. implies R, ;.

With condition R,,. we can introduce the following differentiability
concepts for functions h, converging to the function hy =1 as t—0..

2.3. Definition. Let a>0and b, ¢ > 0. For te Vet h,: X - [0, o0) be
measurable functions. We call h,; te V, differentiable m b-mean (resp., in (b, ¢)-
mean) at a rate o(t®) with derivative g if

h=1+tg+t**or,

with r, fulfilling P(|r?) = o(t°) (resp., condition Ry .., ).
We have found it convenient to describe differentiability by an
. appropriate Taylor expansion. Of course, h, is differentiable in b-mean at a
rate o(t*) with derivative g if and only if

(24 P(jt™ ' (h—1)—gI")'* = o(t").
25. Remark. For h, = f;'”, relation (24) writes
2.6) . P(Ithl(f;llb—l)——glb)”b = o(t%).

For a = 0 and b = 2 this reduces to ﬂifferentiability of £,1? in quadratic
mean, introduced by LeCam [5]. (This concept was already used by Hajek
[4] who refers to a preprint of LeCam’s paper.)

277. THEOREM. Let 0<a <1 and b, c >0, and assume

P(lglc(l +a) {lgl < t—-l}) — O(to),
P(gi°llgl > t™ ') =0(™) i b<c,
P(gl{lgl >t 1) = o (V¥ if b>c.

Then hl’ is dzjferentlable in c-mean at a rate o(t') with derwatwe —gif

1
and only if h!" is differentiable in (b, c)-mean at a rate o(t*) with derivative g'g.

In other words, the representation

1
hlle = 1+t;g+t1f“r,
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holds with r, fulfilling P(lr)5) = o(t° if and only if the representation
B = 1+t%g+tl‘:“s, |
holds with s, fulfilling Ry, .p.-

The conditions on g hold if P(lglbve®*®) is finite. For b <c the third
condition follows from the second, for b > ¢ the converse holds. For a= 0

the three conditions reduce to P(jg””¢) < oo.

28. Remark. Let ¢ b. If h!/* is differentiable in (b, c}-mean (at a rate
o(t%), then, by Remark 2.2 (i), h!/* is differentiable in b-mean (at a rate o(t%).
Hence by Theorem 2.7, differentiability of h'* in c¢-mean implies
differentiability of h!’* in b-mean (at the same rate). A direct proof of this
consequence for h, = f; and a = 0 is given by Pukelsheim ([12], Theorem 2).

29. Remark. We are mainly interested in expressing differentiability of
the c-root f;'* in c-mean in terms of differentiability of f; itself. The reader
may wonder why we have formulated Definition 2.3 (ii) and Theorem 2.7 for
arbitrary h, instead of f;,. One reason is that some authors consider
differentiability of f, instead of £ in c-mean’.

By Remark 2.2 (ii), differentiability of f; in c-mean is stronger than
differentiability of f, in (1, c)-mean and hence, by Theorem 2.7, stronger than

" differentiability 'of £, in c-mean. Applying Theorem 2.7 for a =0, b = c¢?,

and h, = f, we obtain that f; is differentiable in c-mean with derivative g if
and only if f,' is differentiable in (c2, cj-mean with derivative —g. In
C

particular, f; is differentiable in quadratic mean with derivative g if and only
if £Y2 is differentiable in (4, 2)-mean with derivative g.

To compare differentiability in (1, 2)-mean with DCC,-differentiability,
we derive below a relation between the conditions R,.,;, and DCC,,
defined in.the Introduction. . '

We note first that under DCC,, (i), the. following two conditions are
equivalent:

(2.109) . - Pl <dT T =o(' ),

. (211) - B P(if, {Irtl S.t_l}) — 0_(t1 +a)_ 4

This follows from
Pr){t ' <|r)<dt™' %) <dt™ 17 P{r| > t71} = 0o(:**9).

Observe that (2.11) is stronger than DCC (ii).
This remark, together with the following theorem, implies that DCC,,-

1 See [1] (p. 487, Theorem 5) and, for ¢ =2, [10] (p. 23) and also [3] (p. 198).
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differentiability of f; at a rate o(t) follows from (1, 2)-differentiability of f; at
a rate o(t%), augmented by condition DCC,,(i) on the remainder.

'2.12. THeEOREM. Let f, = 1+tg+t'*“r, with P(g) =0 and

Plg{g >t} =o(t'"?),

and r, fulﬁllmg DCC,,(i). Then r, fulfills Ry.,,,, if and only if r, fulﬁlls
DCC (iii) and (2.11).

The proof is based on the following lemma.

2.13. LemMA. Let f, = 1+tg+tr, with P(g) =0 and

Pg{g>t"'})=0(t'"?),
CPrfri<2tT) =0('*h).
Then P(r) {r] > 2t~} = o(s*?).

214. Remark. Let f,*/? be differentiable in quadratic mean at a rate
o(t%) with derlvatlve 1g. Assume

P(gl2t*2 {lgl < t™1}) = 6(29),

P(g*{lgl > t™'}) = o(t*).
Then, by Theorem 2.7, f; is differentiable in (1, 2)-mean at a rate o(t%
with derivative g. If the remainder term fulfills, in addition, DCC,, (i), then,
by Theorem 2.12, f, is also DCC,,-differentiable at a rate o(t°). As indicated

in the Introduction, this is sufﬁcxent for local asymptotic normality of the -

form
n B n 1
Y logf _iplx)=n"12Y g(xv)—EP(ngR,.(x)
v=1 v=1

with P"{|R,| > en~ "'} =0(n™“) for every ¢ >0 and every & <a. With &'
replaced by a, this is the rate needed by Bickel et al. [2].

It turns out that for a < 1/2 the conditions on g are just sufficient for an

appropriate normal convergence rate o(n~°) of the log-likelihood ratios. For
& | 0 slowly enough we still have

P(g* {lgl > &t™'}) = 0(t%).

Hence by a theorem of Osipov [8] (see also [9], p. 118, Théorem 8), the
distribution function of

n~ 12 % g(x)
v=1

under P" converges uniformly to the normal distribution function with
variance. P(g?) at a rate o(n™° for a <1/2 and O(n"'?) for a = 1/2. No
better rates are obtained if the conditions on g are replaced by the sufficient
condition that P(|g|>**?) is finite.
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3. PROOFS

We need the following properties of R, ;..

3.1. Remark. (i) Let b < c. If r, fulfills R, , ., then there exist ¢ | 0 and
e, 7 o0 such that ¢ <d, <e, 1mp11es

62 HMWM>dtm—0W”W
? (33) P(r{Ir) < d,t~) = o(t9).

~ Conversely, if (3.2), (3.3) hold for arbitrary d,, then r, fulfills R,,_.
(i) Let b >c. If r, fulfills R, ., then (3.2), (3.3) hold for arbitrary d,.

N Conversely, if (3.2), (3.3) hold for d, bounded and bounded away from 0, then
! r, fulfills R ;..

Proof. (i) Assertion (i) follows easily from the two 1nequa11t1es
P(r*{lrd > et™*D—P(rd* {Ir| > et™?})
= P(]r,lb let™ 2 |rd > 8t_"})

< I (] < et™Y)
and

P(r[* il < et™*})— P{r){Ir <et™)
=P(rf{e " <[l <e™ )
| : < ec—bt(b—c)a P(lrtlb {lrtl > gt a}).

(ii)) The case b > c is similar to the case b<c
34. Remark. R,, . is additive.

Proof. Let r, and s, fulfill R, , .
(i) We have

P(lre+sl® {lre+sl > 267D < 2 P(rf* {lre+s > 27D+
+22 P(Is® {Ir,+sJ > 2t79}) = o (1“9,

since
P(rft {Ire+s) > 267D < P(r P {Ird < 7% 18 > 7D+ P(r ) lrd > 7))
St7VP{s| >t} +o (™9
< € Pl {|s] > £} +0 (67D = o (€D,
(i) We have |
P(lr, 45 {r.+5] <27 S P(Irp+s) {rl <t79, [l < 7))+
+P(r,+5) {lr, +5 < <27 ] > 17 D+
+P(lr+s)° {Ir+si < 267 sy >t = 0(t9),
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since
P(ro+s){Inl <t7% Isd <77 : ,
< ZP(rf{Ird < D+2P(s {Is] < 7)) = ()
and o
P(lr 45 {|r, +5 <, I >t N <2t “P{|r| > 1%
<209 PP {Irf > t7%}) = 0(t°).

(iii) Condition R, for r,+s, now follows from parts (i), (ii) of the proof
and Remark 3.1. . ' .
35. Remark. If r, fulfills R,,. and |s| < |r), then s, fulfills R, ;..

Proof. Condition R, (i) is trivially fulfilled for s,. For b < ¢, condition
R, for s, follows from

P(ls {Is] < t™) < P(lsi {Isd < 7% Ird > 7D+ P(sfo{Inl <7%)
<109 P(is P {Ir >t D+ P(rf {Inl <t
KR P(r ) > 1N+ (t%) = 0(19).

The case b > ¢ is treated similarly.

Proof of Theorem 2.7. We restrict ourselves to the case b <c. The -
case b =c is trivial, and the case b > c is treated as the case b <c.

(a) The following expansmn will be used to prove both 1mphcat10ns of
the assertion. Let

1
(3.6) : hlft = 1+t3g+t1+“r,.
Then
1
Wl =(1+tpg+etonpr.

For 2 in a neighborhood of 0 we have the following Taylor expansion:
b
\(1 + 2 — (1 +EZ)

A = 1Ig| < ett'I ‘Irtl St-l;a}

< dz>.

Let

with 3,10 sufficiently slowly and ¢ > 0 sufficiently small. From the Taylor
expansion we obtam

. 1
37 : h}/‘=1+t—c—g+t1+"s,
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with

—l—a ¢ —al 4 b
(3-8) |S,|$t 1 At+t ElglAt+E|rt|At+

b/c
A,

-
1+tzg+t1+“r,

2
41 "d( g+t“r,) A+t 1m0

(b) Assume that hM® is differentiable in (b, c)-mean at a rate o(t%) with
derivative %g Then (3.6) holds with r, fulfilling Ry 4ap.c- Hence' (3.7) holds
with s, fulfilling (3.8). We have to prove P(|s[9) = 0(t°). We may treat each
- right-hand term in (3.8) separately as follows:
c(1+a)P(Ac) < c(1+a)P{|gl > g t_1}+t c(1+a)Pj'|r| > Et-“l a}

<&t Plgl° {lgl > &t™H+

o700 P(rf (r > 61717 = 0(t°);

= P(lglc 49) = t=** P(lgl*{lgl < &t ', Ind > et™' 7P+
+17P(lgi° {lgl > &t '})
gt D Pllr| > et~ 17N +0 (2%

<
<P FD p(ir P {Ir] > et TN +0(t%) = 0(t9);

P(rff A) < P(rf{Ird <et™' 7)) = o(t%;
o9 p(lgl* A4) < 6079 P(glt 9 {lgl < &™) = 0(t%);
(1= 1260 P(|r |2 A < & P(Inf* {Ir} < er™' %)) = 0(t%);
(e +0 b P A = 270 P(lgP {g] < &t Inl > &7 D+
+17 0O P(lg {lgl > &7}
et pllp| >e~179
+e Pt P(gl*{lgl > &17'})
< e AT p(ir b {Ir] > &t ") +0(t%) =0(t%);
t —-c¢(1+a) tb(l +a)P(|r|b AC) —_ t(b c)(t +a)P(|rt|b {Irtl Et—l a lgl > Ett 1})
1D P (i {|r| > &™)
ett™ I Pligl > gt +o(t9)
< et P(igl* {lgl > &t™ 1)) +0(t°) = o(t?).

(c) Assume that hl” is differentiable in c-mean at a rate o(t?) with
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1
derivative A We apply part (a) of the proof with b, ¢ and r,, s, interchanged.

By assumption, (3.6) holds with s, fulfilling P(js|%) = o(t°). Hence (3.7) holds
with r, fulfilling (3.8). We have to show that r, fulfills R, ., .. By Remarks
3.4 and 3.5 it suffices to prove that each right-hand term in (3.8) fulfills
R tap.e. Consider first Ry, ,, (). Choose d > 1 sufficiently large. Then

P(Irllb {Ir:[ > dt_l—a}) = O(t(c—b)(l +a))

is trivially fulfilled for those terms in (3.8) which are bounded by o(t179).

The remaining terms are treated as follows:

e P(lgl" A; {1l 45 > di™ =) < 7 Pl {lgl >}

S ETHEO Pt {lg] > 1) = ot bU+a);
t b{1+a)tcP(lg‘cAc (t—1-a tc/blglcibA;: = dt—l—a})

<ETHI P (gl {lgl > £71)) = o (e DU
t—b(l +a) tc(1+a)P“St]cA:: {t—l—a tl:(l +a)/b]st|c/bA;‘ > dt-l—a})

S t(:-'-b)(1+a)P(ls!Ic)'= O(I(c_b)(l +a))-
Consider now R, .,,.(ii). We have to prove
P(rff {Ir] < di™'"}) = 0(t°)

for the right-hand terms in (3.8). (Recall that b, ¢ and ¥, S, are now
interchanged in (3.8).) This is done as follows:

T+ P49 < t~ed+a pligl > s,t_1}+t_°(1+“’P{|s,| > st"l"“}
<& ™ P(gl {lgl > &t~ )+ P(s)9) = 0(t9);
(e P(lgl A5 {t7lgl A < deTT ) = P(gl )
= P(gl {lgl <&t Isl > 71"+
+t7< P(lgl* {lgl > &2 })
gt U Plls| > et™ 17 +0(t%
587 P(s))+0(1%) = 0(t°);

//\//\

P(ls° 4, {Is) A, < dt™' 7"} < P(s) = 0(t%);
tc(l D P(lgl% 4, {t'~°g? 4, < dt™ ") < tc(l—a)Pdmcht) -
< gOTOP( T {lgl < 171 = 0(t);
0= 200 P(|5)2 4 (11912052 4, < dt~ 1)

< t‘”““"P(Istl2c {ls] <et™ 17 <& P(lsf) = 0(t%);
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el +a) rczle (Ig |c2/b AS (11 gelb |glel 42 g™ 19y
< (2e 0 (gl flg) > o717, o] < L)+

+tc2/b-c(1+a)P Iglc 2/ {E,t_l < |g| < db/ct—l.})
&I P{s| > e T} +d 0 P(lgl {lgl > 617

Sde ™ P(sl)+0(%) = o(t%);
fc+a) tc2(1 +a)/b P(ls, Ic2/bAc {t-—l—atc(l +a)]b|s Ic/bAc <dt™ l—a})
< t02(1 +a)fb—c(1 +a)P(|s Icz/b {Isrl < db/c -1- a}) < d bP(]sllc) = D(EO).

Proof of Theorem 2.12. (i) Assume that r, fulfills DCC (iii)‘ and (2. 12)

Then r, also fulfills (2.11) with d = 2. By Lemma 2.13, apphed for b = 2a and

*r, instead of r,,
P(lr) {ird > 2t 7)) = o(t* ).
From DCC/iiij) we obtain
Pei{nl <27 ) =P {7t <Inl <2677 N+ PC2{rl <t 1})
L2177 P(r) {Ir) > 7' P +0(t%) = 0(t9).

Hence R;:41,2 holds by Remark 3.1.
(i) Assume that r, fulfills R, ;. Since P(r) =0, we obtam

IP@{lr] < 77D =[P {Ird > 7 PI < POrd{ind > 7177 = 07

Hence (2.10) holds, which is eqmvalent to (2.11). Furthermore DCC (iii)
follows trivially from R, 4, (i)

Proof of Lemma 2.13. Since f, > 0, we have g+r, = —t~ 1. Hence
r, < —2t~! implies

g=>—tl=-r,>t"Y, rz-tl-g>-2%.
We obtain
—P(r{r, < —2") < 2P(g{g >t} =o' ).
By assumption, P(r) = 0. Hence
Pri{Ird > 271 = =2P( {r, < — 27 ) =Pl {lnd <271 = 0t ™).
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