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I Abstract. A close relationship is derived between optimal M- 
estimation and optimal robust testing for shrinking contaminations. 
Explicit formulas are given for solutions when the loss is defined as 
convex combination of asymptotic maximum bias span and variance. 
Neighburhoods are described in terms of a general class of special 
capacities. 

I 

I 
i 1. Intrdlllctioa. The basic goal of this paper is to present a close 
I relationship between the problem of optimal M-estimation, as viewed by 

Hampel [5] and the M-estimation induced by certain optimal statistics in a 
local asymptotic robust test problem of Rieder [7] and Bednarski 121. Such 
a relationship is in fact clear at least by the form of the IC functions of 
Rieder and Hampel. Rieder [8] has already shown that one can construct 
estimates based on optimal IC-test statistics and that these estimates have 
asymptotically minimax property in the sense of good covering the unknown 
parameter value. 

We shall consider Mestimates which minimize convex combinations of 
asymptotic variance and maximum bias sban for a large class of con- 
taminations induced by capacities. Controlling both bias and variance of 

i estimates, in the case of parametric models with shrinking contamination, is 
an intuitive criterion. The criterion in fact stems from some aspects of 
asymptotic robust test problems. 

An approach similar to the one presented here, but restricted to a 
different family of neighbourhoods, has been given by Bickel [4] who 
constructs Mestimates optimal in the sense of asymptotic minimax risk, 
where the risk is induced by convex loss functions. Bickel obtains his 
solutions by variational methods while here we utilize certain optimal test 
statistics obtained in a direct way in connection with robust asymptotic test 
problems (see Bednarski [3]). 

Section 2 introduces basic results and definitions. In the next section we 
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give a special formulation of Hampel's Lemma 8 [5]. Its assumptions are 
expressed in terms of maximum bias for &-contamination neighbourhoods. 
Such a formulation suggests a definition of optimal robust estimates as those 
which minimize asymptotic variance given a bound for the maximal 
asymptotic bias and it also gives the possibility of studying optimization 
problems under more general class of neighbourhoods. In Section 4 by 
relating asymptotic robust test problems to estimation problems, we gve 
results which show how to construct such optimal estimates. It is shown that 
their M-functions can be obtained from asymptotic minimax test problems 
for special capacities. One of the concIusions that we obtain is that identity 
of Hampel's and Rieder's solutions is due to the same type of 
neighbourhoods employed, even though in the original Hampel's lemma the 
neighbourhoods are not actually present. Finally, we conclude that the family 
of optimal estimates containes estimates optimal for other asymptotic risk 
functions, like the mean square error. 

2. PrePdnaries. In the sequel we shall consider a real parametric family 
(Po: B E @ ]  of probability measures (p.m.) defined on a Borel c-field &? of a 
Polish space 62, with 8 an open subset of R. 

Let A' be the set of all probability measures on g. 
The following regularity conditions are assumed to hold throughout the 

paper : 

(2.1) For every O E  O there exists an exponential family {Q,,,: Izf 6 z(O)] 
defined on 2 such that: 

-, 

'I, (i) dQ,,, = c,(z) expzd, dPe for some random variable A,; 
(ii) the distribution function F,  of A,  under P, has a density 

with respect to Lebesque measure and the distribution has convex 
support ; 

(iii) Iim sup nH2(P ,;, Q ,,,, J;;) = 0, where H stands for the 
n IZI w e )  

Hellinger distance. 
If for O O €  O the square root of dP,/dP,, is differentiable at 8,  in 

quadratic mean and an exponent of the derivative is integrable with respect 
to Po,, then conditions (i) and (iii) are fulfilled in 9, .  This, in fact, is the case 
for the commonly used models. A more detailed discussion of these condi- 
tions is presented in [3], Sections 2 and 6. In the "very regular" cases A, is 
simpIy the derivative of loglikelihood ratio. 

The basic parametric model will be contaminated by shrinking 
neighbourhoods induced by special capacities (see [2]). Let f be a concave 
function from [0, 11 to [0, 11 such that f (1) > 0. The practical justification 
of the assumption f (1) > 0 is given in Bednarski [3]. 

For every O E  O we shall take the extended model 
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We shall say that an estimate is studied at 0 in the extended model if its 
asmptotic behaviour is studied for sequences of distributions from 9':: that 
are contiguous to PFn, where n is the number of independent observations. 

i The M-functions y(x, 8) which we shall consider are assumed to satisfy 
the following conditions under the parametric model. 

! Let 0, be an M-estimate corresponding to 50. For every 8~ O 

I where A(0) = Jy(x, 0) A,(x)dP, > 0 and fq(x ,  8)dP,  = 0. 
By .F we denote the class of all bounded M-functions for the model 

I (Po: O E  O )  which satisfy (2.2) and such that 

b sup q (x, 0) = sup ess,, q (x, 0) and inf cp (x, 0) = inf ess,, q (x, 6 ) .  
I ir x E X 

General conditions for rp to be in 9 can be found in [9], Chapter 5 .  
With the extended parametric model there is associated a local 

asymptotic minimax test problem (cf. [6], [7] and [3]). It turns out that 
asymptotically minimax tests for the sequences of hypotheses and alternatives 

~ f !  ;r,n and 9$?',,,,.,, respectively, are based on a sum 
n 

I of independent variables, where the function ye is determined by 
I 

minimization of 
Mth) 

(2.3) [ [foP,(h > t ) + f  oP,(h < t) ldt-2~JhA,dPe+(1/2)Jh~dP, 
m?h) 

over the class of functions h, which satisfy jhdP8 = 0 and 

rn(h)=infh=infessh, M(h)=suph=sup essh. 
Pe Pe 

Namely, if h minimizes (2.3) at 8, then q8 = h P, a.e. Further on, to 
simplify the notation, we shall write rn and M instead of m(h) and M(h). - 

Expression (2.3) is obtained in the following way. 
Let 8 be fixed and put P = Po, A = A,. Moreover, let 

for t 0, 
gr(A, t) = [ ~ o P ( A ) + ~  OP(A')]-.~T fAdP+ 

A 

The function g, is a limit of properly normalized Bayes risks for testing 
Pe-zlJi,n against P8+,/*!i,, (see [3], Section 2). From Section 3 of [3] it 
follows that under condition (2.1) there is a unique (up to equivalence class) 
bounded function h of A so that for all t~ [inf ess h, sup ess h] we have 

P P 

gL(h 2 t, t )  = inf g,(A,  t) d 0 
A E B  
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and h = cp,. Therefore, if we take any random variable h' minimizing 

then it has to be equivalent to h. It is easy to verify that for every bounded 
I measurable function h we have 

M M I 

Ekplicit solutions to the minimization problem (2.3) are given in 131, 
. :  Section 3. 

If the derivative f '  of f exists, then 

where A$ = do v A ,  A dl with constants do,  dl depending on t and 8. In the 
caSe of a shift model the function is, for fixed z, a shift function with 
respect to 8. 

I 
I 
I 
I 3. Harnpl's lemma. k t  I F ( 9 )  be a subclass of -9 which consists of M -  ~ functions that are influence functions for its M-estimates. By (2.2) one can 

easily see that if p~ I F ( a  and & is its M-estimate, then under sequences 
from P?:, contiguous to PFn, the asymptotic distribution of &(&-O), if 
the limit exists, is normal N(c, 02), with a2 = E,q; and cc[a(B), b(B)], 
where 

a (0) = lim inf (& E ,  q3, b (0) = lim sup (& E ,  qo). 
; W e q ~ , ~  W~p6,n 

If Po,, is generated by &contamination capacity, that is f (x) = ~ ( 1  -x), 
then one can easily obtain that maximum bias (-u(9) v b(9)) equals 

sup lq (x, 9)I = 8 -(gross error sensitivity). 
X 

By this relation we can state Hampel's lemma in the following form: 
HAMPEL'S LEMMA [ 5 ] .  Let us consider the model with shrinking E- 

contam.nation neighbourhoods. Then, in the class of functions from IF (,FJ for 
which [-a (8) v b(B)] < C/E, there exists a unique one which minimizes the 
asymptotic variance of its M-estimate. 

Hampel's solution has the property that the interval indicating the span 
of bias is symmetric about zero. Notice, however, that if an M-estimate on 
gives an interval [a(@,  b(0)] with ends bounded and continuous in 0, then 
we can use estimate &n-(a(0,J+b(n))/(2/),  which already has bias in a 
symmetric interval of the same length. For 8, we can take any consistent, 
under the extended model, estimate of 8. Further on we shall measure the 
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bias of M-estimate by the length of such intervals, that is we shall deal with 
the bias span b (0) - a (8). 

Let us now return to the general family of neighbourhoods. Imitating 
the presented reasoning, we can define optimal robust M-estimates as those 
whch minimize asymptotic variance given a bound on the bias span. This 
general dehition reduces to Hampel's minimization problem if we deal with 
 contamination neighbourhoods. The next section will show that optimal 
M-functions, which are simple truncation of derivative of loghkelihood 
rstios, are associated with linear f only. 

4. Resuhs. Let Pe,, be generated by a sequence of special capacities of 
the form 

ue,. = CPe +(v&)/o POI A 1 ,  

where f is a concave function from [0, 11 to [O, I] and f (1) > 0. 
LEMMA 4.1. Let tp G 9. Then we haue 

and 
M .  

lim sup [,,h~~~~] = I f  oPs(rps> t ) d t .  
W ~ 9 0 , n  m 

Proof.  To prove the first equality notice that since SrpedPo = 0 we have 
(by Lemma 3.4 in [I]) 

m 

J;; SUP E w q e  = J ; ; [ I ~ . ( ~ ~ - ~  > t ) d t + ~ ]  
W ~ @ e , n  o 

M - m  t~ 

= f o ~ ~ ( ~ , - r n  > t)dt+&(t.-  fPe(qe-rn  > t ) d t ) ,  *. 0 

where t ,  = sup ( t :  ve,,(cpe-rn > t )  = 1) or t ,  = 0 if the set of such t is empty. 
Since the second summand is majorized by 

and t ,-+ 0 we obtain the desired limit. The other relation can be proved 
similarly. 

Thus, the asymptotic bias span of Mestimates, corresponding to c p ~  F 
at 0, is by (2.2) equal to 

M 

.f Cf oPs (qe  > t )  + fOP , (qe  G t)l dt/JqeAedPe 
m 

and will further be denoted by [b (0) - a(B)],. 
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Let us take now a smooth function T (11) so that, for every 8, there is a 
solution h, minimizing (2.3) and such that h~ 9. It is easy to see that in the 
case of shift model h(x ,  8) = h ( x - 8 )  and k E .F (see [9], Chapter 51, for 
~ ( 0 )  = 2.  

Now we shall ask abbut M-estimates which minimize 

with u(0)  = (1/2) J p ,  AedP,, that is estimates that minimize a combination of 
asymptotic bias and variance. By Lemma 3.1 of Bednarski [3] it follows that 
infimum of (2.3) is less than zero. Therefore-we always have ~ ( 8 )  > 0. Let us 
notice that (4.1) does not change if we take multiples of q. 

THEOREM 4.1. Under the above assumptions, for every BE O the solution h, 
of (2.3) minimizes (4.1) at 6. Moreover if h ' ~  F minimizes (4.1) at 8, then there 
is a multiple of h' so that it solves (2.3) at 0. 

Proof.  Suppose there is a c p ~  .F which gives (4.1) the-value smaller than 
h does at 8.  Take a multiple of q by a positive constant (cf. (2.2)), say cp', 
such that fybAedPe = 2a(B). Multiplying now expression (4.1) by 2a(8) we , 

obtain th& q' is better than h for (2.3) at 8. On the other hand, if h 
minimizes (4.1) at 0 and Jh ,  A,dP, = Za(O), then clearly it also minimizes 
(2.3) at 8. 

The scope of the correspondence between robust estimation and testing 
described in Theorem 4.1 depends also on the range of ol(z); notice that, at 
fixed 0, a is a function of T .  We shall consider this problem now. 

Let 0 E B be fixed and put P = P,, A = A,. Let M ( z )  and rn ( T )  denote 
the supremum and infimum of h, the solution of (2.3) for a given z .  Let T* be 
the least value of z for which there is a solution of (2.3) (for the existence of 
solution in the context of asymptotic robust test problems see [3]). 

LEMMA 4.2. Under condition (2.l), for > z*, the functions M ( r )  and m(z)  
are continuous. Moreover M ( z )  is increasing and m(z)  is decreasing. 

Proof.  Momtonicity. From Section 3 of [3] we get that for every T > z* 
there exist unique numbers zf ( z )  and z- ( T )  so that 

I 

Q, ( A  > z+ (21, W T ) )  = g, (A > 2- ( T I ,  m b ) )  = 0 

and 

inf gr(A,  M ( z ) )  = inf gr(A,  m(z))  = 0 .  
A € d  A€% 

Therefore, for z ,  > T > z*, the inequality M ( T , )  < M (7) implies 

s r ,  ( A  > z+ ( 4 ,  M(T1)) < &(A > z+ ( 4 ,  W))  = 0 
I 

which, since the left-hand side is nonnegative, is impossible. Arguments for 
m(z) are similar. 
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Continuity. Let z, r T. Since M(T) is increasing, we have M (TJ r c for 
some c  > 0. Suppose c  < M(T). Then, for c  < t < M(z), we have 

.Thus, for 2, close to z, we obtain 

which contradicts M(zJ < c .  
Suppose now that z, IT and M ( z 3  I c > M(z) .  Then we have 

infg,#(A,t)<O for every fixed t ~ ( M ( . t ) , c ) .  
A EW 

Therefore inf g,(A, t )  < 0 which contradicts the equality 
A E ~  

inf g, (A, M (z)) = 0. 
A E ~  

Similar arguments hold for m(z). 
LEMMA 4.3. Under condition (2.1) we haw: 
(i) If T L T*, then M(T) L 0 and m(z) r 0. 

(ii) If sup ess ( -A)  = sup ess (A) = a, then 
P P 

lim M (z)/z = - lim m (z)/-c = co 
Z'CD r + m  

I Proof.  (i) One can easily verify that 

I 

I Suppose M ( z )  I E > 0. Then, as in the proof of Lemma 4.2, for every 
I 

z > z* we have 

So, for some nonempty measurable set A, and 0 < E' < E, we obtain 
(gFA,, 6') < 0. This, however, is contradictory to 

inf gy7(A, 0) = 0. 
A €9 

(ii) Let us assumc that there is a sequence z, i" co so that M (Z,J/T, -, c  
< co. I f  c  > 0, let E > 0 be such that E < cP(A > 4 2 .  Then 
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if only M (T,,)/T, < 3c/2 and l/z, < ~ / 2 ,  Since the right-hand side of this 
inequality is strictly less than 0 and 

inf LltR (A, M(tn)) = 0, 
A E B  

we obtain the contradiction. In the case c = 0 we obviously have 
grn(A > 0, ~ ( z , J ) / z ,  < 0 for n large enough. This completes the proof. 

From Lemma 4.3 we conclude the following 
LEMMA 4.4. Let the derivative o f f  exist so that h is given by (2.3). Then 

{a  (T): z > z*} = (0, CQ). 

Thus, for every a ~ ( 0 ,  m j, the problem (4.1) of optimal M-estimation is 
equivalent to the optimization in some asymptotic robust test pr~blem (2.3). 
Let, for a E (0, m), qa minimize (4.1) and x (a) = (b  - a) cp,. Moreover, let y (a) 
= a: be the asymptotic variance of M-estimate induced by qa. Denote by W 
the set defined by 

W = ((x, y):  x = x  (a), y = y (or) for a ~ ( 0 ,  m j} . 

LEMMA 4.5. Let US  assume that inf ess (- A )  = sup ess (d) = m and that 
P P 

the derivatiue o f f  exists. Then 
(i) x (a), y (a) are continuous in o1~[0,  co); 

(ii) sup {x: (x, y ) ~ . g )  = 0 0 ;  

(iii) 3: =infix: (x, Y ) E ~ ]  > 0; 
(iv) K = sup (y  : ( x ,  y) E W) < m. 

Proof. The part (i) follows from Lemma 4.2 and continuity of the 
integrals in the formulas for the asymptotic bias span and variance. The form 
of the solution ?I, given by (2.4) and Lemma 4.3, gives (ii). 

To prove (iii) and (iv) notice that, in the minimization problem (4.1), we 
can restrict attention to M-functions cp for which suplql = D for a given 
constant D > 0. Then (iii) follows from the fact that the numerator in the 
formula for the bias span is bounded from zero. To complete the arguments 
for (iv) assume by contradiction that V =  oo. %n there is a sequence 
a(n)~(O, oo), a(n) -, a,, so that Sqa(,, AdP L 0 and y(or(n)) r m. In the case 
uO€ [0, CQ) we easily obtain the contradiction showing that i n h u m  of (4.1) 
has to be bounded in a neighbourhood of a,,. For a0 = oo we also obtain 
contradiction showing that, for any a ~ ( 0 ,  m), qa gives better minimum risks 
than those obtained for if n is sufficiently large. 

Lemma 4.5 easily implies the following result which transfers Hampel's 
basic lemma to a more general setup: 

THEOREM 4.2. Assume condition (2.1) is fulfilled and f is di$epentiable. 
Then, for every constant b€(B, m), in the class of M-functions which have 
asymptotic bias span < b there exists one, say q, which minimizes asymptotic 
uariance. The bias span induced by this M+nction is exactly b. Also 
(b, c;) E 9. 
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Finally, we would like to comment on solutions for other risk functions. 
Let r ,  2 0 and r, 2 0 be strictly increasing real functions. We can ask about 
Mestirnates minimizing 

for a given u > 0. 
If e.g. we take oc = 1, r , ( x )  = and r , (x)  = x, then we obtain the 

asymptotic mean square error. Theorem 4.2 implies that if cp, minimizes (4.2) 
and ( b - ~ ) ~ ~  > B, then ((b-a),=, o 2 ) ~ W .  In other words, the class of 
solutions that we obtained for our original risk function contains optimal 
solutions for risk functions of the form (4.2). 
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