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STATISTICAL CHARACTERIZATIONS OF GAUSSIAN: MEASURES
ON A HILBERT SPACE ‘

BY .

HARALD LUSCHGY (RHEINE)

Abstract. Let X,, ..., X, be iid. random vectors with values in
a real separable Hilbert space. We consider the problem of
estimating the mean of X,; under quadratic loss’ and discuss
analogues of characteristic properties of normally -distributed real
random variables. It is shown that there exists an  equivariant
sufficient linear statistic iff X, is Gaussian. Further the optimality of
the sample mean X in the class of all equivariant or unbiased
estimators is: a characteristic property of Gaussian random vectors.

1. Equivariant sufficient statistics and Pltman estimators. Let H be a real
separable infinite-dimensional Hilbert space. Denote by (-, ‘> the scalar
product and by |-| the norm m H. For fixed neN let

((H'l %(H")) {Py: SeH})

be the translation experiment uniquely defined by a probablhty measure P,
on B(H"), the Borel os-algebra on H", where Py = Po(-—9), 3e H, and x+y
=X+, ..., X,+), xe H", ye H. We consider the problem of estimating 3
under the loss function ' '

HxH-R,, (9 y)—ly—9>

An estimator is a Borel measurable statistic S: H"— H; Eg|S—9|? is
called the risk of the estimator S when the true value of the parameter is 3,
where E, stands for the expectation with respect to Py. Let I%;(Pg) denote
the space of all estimators S such that Eg|S|?> < co. An estimator S satisfying
the condition S(x+y) = S(x)+y for all xe H", ye H, is called equivariant.
For such estimators the risk E,|S— 9|2 = E,|S|*> does not depend on 8eH.
We say that an equivariant estimator S is a Pitman estimator, if
Ey|S|* < E,|S,)? for all equivariant estimators S;. A statistic S: H"— Y for
some set Y is called invariant, if S(x+y)=S(x) for all xe H", yeH. Let

QI(H") {Ae B(H"): 1, is invariant}.
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In this section we observe that the Pitman estimator may be
characterized analogously to the case H =R We need the following
information. The first lemma will also be useful for a characterization of
Gaussian measures by sufficiency. :

Lemma 1.1. If S: H"— H is an equivariant Borel measurable statzstlc
then the following statements are equmalent

(i) S is sufficient for &.

(i) $™Y(B(H)) and QI(H") are independent under Py, where EB(H) denotes
the Borel c-algebra on H.

Proof. (i)=(ii). Let Ae W(H"), Be B(H) and let f: H— R be a Borel
measurable function with foS = E4(1,4]S) Pg-as. for all 9¢ H. Since, for any
B'e B(H), yeH,

|- foSdPy= [ f(S+y)dP,,
- sTiey - s~iey
we obtain by Fubini’s theorem
Po(AnST'(B)= | [ f(S(X)+S(2)dPy(2)dP,(x)
: s~ l(mv HN.
= [ [ /(S(2))dPo(2)dPy(x) = Po(A): Po{S™*(B)).
s~ i@ m"

(ii) = (i). We define T: H"— H" by T(x) = x—S(x) Then Tis a maximal
invariant, Borel measurable statistic with T~ '(B(H")= A(H"). Hence, S
and T are independent under P,. Then it is easily seen that § and T are

independent under Py, e H. Furthermore, T is an ancillary statistic for &.
For any Ac B(H"), Be B(H) and 3¢ H this yields '

Py(AnS™ (B) = [ 15(S(x) 14(S(X)+ T(x))dPs(x)
N
= !Iln(y) [ Lay+1)dPg(1)dP3(y)
H?
= [ 13(3)- P5(A—y)dP5(y) .
H

= [ P3A-S(x)dPy(x),
T slm )
thus Eg(1,|S) = P5(A—S) Pg-as. This proves the assertion.
Remark. The proof of Lemma 1.1 shows that a Borel measurable,

equivariant statistic S: H"— H is sufficient for & if and only if for every
Ae U(H") there exists a version of E4(1,]S) independent of 3eH.- _
LemMa 1.2. Let Se I (P,) be equivariant. Then S is a Pitman estimator if

and only if E;<S, g> =0 for all invariant estimators ge I (P,).
- Proof. The “if” part. Let S, e I%;(P,) be another equivariant estimator.
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Then g =S, —Se I%/(P,) is an invariant estimator and we have
Eo |Si|? = EolS|*+2E, (S, 9>+ Eo lgl* > Eo|S|?
smce by assumption, Ey (S, g>=0.

The “only if” part. Let ge I%(P,) be an invariant estimator. For any
AeR, S; =S+1g is an equivariant estimator. Furiher

EolSy|? = Eo|S|*+24E <S, g)+A*Eolgl* = Eo|S|2

which implies E, <S, g> = 0.

Given a Pg-Bochner integrable statistic S: H" — H and a (B(H"), B(Y))-
measurable statistic T: H"— Y for some measurable space (Y, B(Y)), then
the T-conditional expectation Eg(S|T): H"—> H of S is the Pg-a.e. unique,
Py-Bochner integrable, (T~ (B(Y)), B(H))-measurable statistic such that .

[E4(S|T)dP; = [SdP, for all 4e T~ (B(Y));
A A .
integration and expectation will always be considered in the sense of

Bochner. Since H has the Radon-Nikodym property, the usual proof of the
existence of the conditional expectation works with H replacing R. We have

v, Eg(S|T)) = Es(Ky, §3|T)  Ps-as. for all yeH,
E\gEs(S' T) = E‘QS P‘g'a.s.,
|Es(SIT)> < Eg(ISI°|T)  Pg-as. for SeLy(Py)

(cf. [5], Chap. V-2). ‘
- TueoreM 1.3. If Se Ly(Py) is equivariant, then
. So=8—Eq (SI T) )
is the (up to Py-equivalence uniquely determined) Pitman estimator, where T(x)
=x—8(x), xe H".
Proof. Note first that a Borel measurable statistic g: H" — H is
(AH", (H))-measurable if and only if g is invariant. Therefore, E, (S| T) is

_invariant, so Soe % (Po) is an equ1var1ant estimator. Let geLH(PO) be an
1nvarlant estlmator Then .

<Eo(SIT), g> = Eo(<S, g>|T) = Po-as.

To see this let Q: H"x%(H) — [0, 1] be the regular T~ cond1t10na1
distribution of S under P0 For any ze H we have :

z, Eo(S|T)) = Eo (<2, SHIT) = | (z, }’>Q(T('f), dy)
. - H
= ¢z, ng(T(?), dy)> Pyas.,

5 — Prob. Math. Statist. 6 (2)
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which implies
Eo(S|T)= [yQ(T(),dy) Poas.
H

Therefore, for any Ae A(H") we obtain
f(Eo(SPT), g>dP, = I(IYQ(L dy), g(1)> dPg (1)

h‘-——: R ey

&, 9@>Q(t, dy)dPl() = | <y, g@®)>dPE"(y, 1)

HxA

AN Re—

S, 9>dPo— IEo <s, g)IT)dPo,

which proves the statement.
We conclude that

Eo (S0 4 = Eo (S, g5~ Eo Eo(<S. g5 T) = 0,

hence, by Lemma 1.2, S, is a Pitman estimator.

To prove the uniqueness of - the Pitman estimator assume that
S,eI%(Py) is another Pitman estimator. Then g = S1 —Soe4(Py) is an
invariant estimator and we have by Lemma 1.2

E, |g|2 = Eo {81, 9>—E<S0,9> =0,

which 1mp11es S{ =8 Pyas.

CoroLLARY 1.4. (a) If SeLH(Po) is equivariant and sufﬁaent for &, then
So =S—E,S is the Pitman estimator.

(b) If S, Sy Lg(Po) are equivariant and sufﬁczent for &, then S; = S,+y
Pg-as. for some ye H.

Proof The assertions follow 1mmedlately from Lemma 1.1. and
Theorem 1.3.

2. Characterizations of Gaussian measures. In the sequel X;: H"—» H
denotes the i-th projection. We assume that X, ..., X, are iid. under P,.
A probability measure yu on B(H) is Gaussian if the continuous linear
functionals (y, -y, ye H, are normally distributed (possibly degenerate) when'
considered as random variables on the probability space (H, B(H), p). The
H-valued random vector X; is Gaussian under P, if Pg" is a Gaussian
measure, i.e. y, X;>, yeH, are normally distributed under P,. Let

T=(X,~%, ..., X,— X).

The following theorems extend well known characterizations of the
normality of real random variables.

THEOREM 2.1. Assume n = 2. The following statements are equivalent:
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(i) There exists a sufficient statistic

for & with Z ¢ #0.

(ii) X, is Gausszan under P,.

If (i) and therefore (ii) are valid, then X is the essentially unique (up to P0
equivalence and up to an additive constant) equivariant sufficient statistic for &
in I3 (Py).

Proof. (i)=(ii). We may assume

Ye=1 and ¢ #0.
i=1 -

Then § is equivariant and, by Lemma 11, S and T, = X, — X, are
independent under P,, thus for ye H

G 8= X)) and )=, X H—, X,)
- =1 »

are independent under P,. Therefore, it follows by the Skitovich-Darmois
Theorem that (y, X,) is normally distributed under P, (cf. [2], Theorem
3.1.1).

(i) = (i). We may assume that E, X, = 0 and the support of P0 is all
H. Let C: H — H denote the covariance operator of X, under P, which is
determined by the relation

<Cy: Z>=E0(<y5le><Z’ X1>), }’,_ZEH-

Then C is a linear compact injective operator which is positive,
symmetric and trace class. .
If 9eC”2(H) Then P)! is P} !-continuous and

Xy .

dP

L.—= —-1/2 g2

(cf. [6], p- 83, Theorem 2), where L, is defined as follows. Let {e;: ic N} be
an orthonormal basis of H consisting of eigenvectors-of C. Then ¢;e C/*(H)
for all ieN and the random variables Z;, = (C'/?¢, -> are iid. N(0, 1)

under Pf){i. Hence, the sequence (Lg ).y of continuous linear functionals
defined by ’

) ) ‘
Ly, = Z Z; e, c-12 3

i=1
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. . X
is a martingale under P,' and

.supEolLs,koXll <|CTY2Y < 0.
keN

The martingale convergence theorem 1mpl1es that Ly, converges to a

- limit Ly P0 -a.s. »
Observe that there is a Borel measurable subspace Dy of H such that
(Ds) =1 and Lg4|Dy is linear. This yields

dP,
E = €Xp (anoX——-IC 12 912)
thus X is sufficient for the subexperiment {Py: 9e CY*(H)} of &.
X is Gaussian with E, X =0 and covariance operator C, = (1/n)C
under P,. Since C}2(H)= CY?(H) and P{(--9) = P_g, the linear hull of
' dpP¥
—= c\r g
{ary: secran|
is norm dense in I (P¥) (cf. [4], Theorem 4.1), thus X is a bounded complete
statistic for {Pg: 9e C'*(H)}. Hence, by a well known result of Basu, X and
T are independent under P,. Since T~ (B(H") = A(H"), X is sufficient for
& by Lemma 1.1. '
The assertion concermng the umqueness of X follows from Corollary
14 (b). |

THEOREM 2.2, Assume EoX, =0, Eq|X > < oo and n=3. Then the
following statements are equivalent:
(i) X is the Pitman estimator.
- (i) X, is Gaussian under P,.
Proof. (i) = (ii). Let ye H. According to Theorem 1.3 we have E,(X|T)
=0, thus Eo({y, X)|T) =0 Pyas. If we define y*: H"— R" by y"(x)
=({y, XD, ..., ¥, X,»), then

Eo((y, X)|y"oT) = EoEo(Ky, X)IT)|y"0T) =0  Pp-as.

Therefore, it follows from a theorem of Kagan-Linnik-Rao that {y, X,)
is normally distributed under P, (cf. [2], p. 155).

(ii) = (i). By Theorem 2.1, X is sufficient for & Hence, the assertion
follows from Corollary 1.4.

Theorem 2.2 may also be formulated as follows:

COROLLARY 2.3. In the ‘situation of Theorem 2.2
Eo(X|T)=0 Pyas
holds if and only if X, is Gaussian.
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THEOREM 2.4. Assume Eq X, =0, Eo|X|> <00 and n>3. Then the
following statements are equivalent:

(i) X is admissible in the class of all unbiased estimators of 9.

(i) X, is Gaussian under P,.

If (i) and, therefore, (ii) are valid, then X.is the (up to Pg-equivalence
uniquely determined, 3¢ H) optimal unbiased estimator of 3. .

Proof. (i)=-(ii). According to Theorem 13, S = X—E,(X|T) is the
Pitman estimator. Since X is equlvarlant we obtain E,|S|? < E,|X|%
Further we have '

EsS=EsX—EsEo(X|T)=S‘EOEO(XlT)
=9-E,X =9 for all 9eH.

The admissibility of X yields E,|S|?> = Eo|X|%. Hence, the assertion
follows from Theorem 2.2.
~ (ii)=(i). We shall show that X is optimal in the class of all unbiased
estimators for every ne N. According to Theorem 2.1 and Theorem 4.4 of
Kozek and Wertz [3] it suffices to prove this claim for n=1. We may
assume that the support of P, is all H. Let C denote the (injective)
covariance operator of P,. Further let {¢;: ie N} be an orthonormal basis of
H consisting of eigenvectors of C and let A, >4,>...>0 be the
corresponding eigenvalues of C (each written as many times as is its'
multiplicity). Then

EolXy|>= ) 4 < 0.

i=t1

Letc=zj.,.

i=1

Now suppose that X, is not optimal in the class ‘of all unbiased
estimators. Then there exist 9, H and an unbiased estimator S, such that

- Egy1So— Sol* <
for some ¢ > 0. Choose m such that
m
Z A = c—gf2.
" For
9 = Z <ei, 3oy e
i=1 :

and the unbiased estimator S, = Sy(-+3,—3;)—3+3; we obtain
Eq, 1S, —~9* = E,, 1So— 80> < c—
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-The following part of the proof is similar to the proof of the minimax
character of X, given by Berger and Wolpert in [1]. Define a: H —» R” by

OC(X) = (<xa el>! s <x’ em))
and f: R"— H by

B‘(") = Z T €.
. =1
Then
P;(Y) = P%( _’Y) = N(?a 2)9

where X is an m x m diagonal matrix with X;; = 1; and ye R™. We proceed by
constructing an unbiased estimator U: R"-— R™ of y in the translation
experiment ((R™, B(R™), {N(y, 2): ye R"}) with

-m

S [ (U=’ dN Gy, 2) < 3. [ (= dN s, 2)=5/2 = S d—g2
i=1 gm | i=1 gm _ i=1

where V= Id, and y, = a(3,), contradicting the optimality of the estimator

V in the class of all unbiased estimators of ye R™
~a is sufficient for the.subexperiment {Pg,: yeR"} of &, because

B(y)e C'2(H),

dP L
P =P (Lﬁ(v)"ilc ”2/3@)42),

Ly = Z Vi Lei = Z Yi j’i_l {e;,"> Pyas.
i=1 i=1
for all ye R™; see the proof of Theorem 2.1. Let f: R"- H be a Borel
' measurable statistic with foa = Ep,(S;|a) Pgy-as. for all ye R™ (cf. [3],
Lemma 4.2) and define the unbiased estlmator Uofyby U=aof Then we
obtain for any yeR"™

g

f (Ui—Vi)z dN(y, X) = Z Eﬁ('y)(Uioa-'yi)‘z
1 gm : i=1

)

= Z Eﬂ()’) (Eﬁ(y) <ei’ S1>|a)_yi)2

; Epg Egiyy (((e,, Si>— )’,)zlfl)

< Egy IS4 —B ).
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Since f(y,) = 9, this yields for y,

Y J(Ui=y?dN(y;,2) S Eg IS; = %4> < c—e < > Ai—e/2.
i=1 gm i=1

The assertion concerning the uniqueness of X is an immediate

consequence of the following extension of the covariance method of

‘Lehmann-Scheffé and Rao. Let
Se () LE(Pg)

SeH

be an unbiased estimator of 9. Then S is an optimal unbiased estimator if
and only if Eg<S, g> =0 for all 3¢ H and

ge LH(Ps)

SeH

with Egg =0, 3¢ H.
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