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ON A THEOREM OF SALISBURY

BY

KRZYSZTOF BURDZY (LuUBLIN)

Abstract. Salisbury proved that there exist a domain and
attainable minimal Martin boundary points x and y such that no h-
process can start at x and terminate at y. A new, less computational
proof is supplied in this note.

1. Imtroduction. Salisbury [4, 5] has recently proved that in some
Greenian domains there exist attainable Martin boundary points x and y
such that there does not exist an h-process starting from x and terminating
at y. .

His proof is based on two lemmas: Theéorem 3.3 and Theorem 3.4. An
alternative proof is presented below. Theorem 3.4 is generalized and
Theorem 3.3 is replaced by a similar one. New proofs use many ideas taken
from the original ones but are less computational in nature, for example they
do not require Schwarz-Christoffel formulae or estimates of Cranston and
McConnel [1]. :

The reader is referred to Doob [2] for the definitions of an h-process,
Martin boundary and related concepts.

The author would like to thank Thomas Salisbury for the interesting
and stimulating discussion of Martin boundaries.

2. The Martin boundary. It will be convenient to use the complex

notation. Let
A,={zeC: Imz=a,, b, <Rez <1-b,}, n>1,

and

D={zeC: 0<Rez<1,0<Imz <1}\U 4,

Assume that - | _ ., "~

: 0<a,,<1,0<b,,<1/2. for n>1,
‘a,<a, forn<m,

lima, =a, =1, limsuph, = b, < 1/2.

n—+ao n—aw
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- Write a,,,—a, =e,. Let {z,} be a sequence of points such that z,e D,
Rez,=1/2 for n21 and

ImImz, =1.

Then there exists a subsequence z, which converges (in the Martin
topology) to a Martin boundary point z, of D. Let h be a Martin function in
D corresponding to zg.

. TueoreM 2.1. The function h is not minimal.

Remarks 2.1. (i) Theorem 2.1 generalizes Theorem 3.4 of Sahsbury (5],
who assumed in addition that b,/e, < ¢ < co for all n.

(ii) The idea of the proof is the following. Brownian motion in D is
unlikely to travel thin canals. This property is inherited by the h-process. The
h-paths are therefore likely to cluster near the points i or i+ 1. By symmetry
these events have probability 1/2 and the tail o-field is not trivial. This
implies that & is not minimal.

The proof of the theorem will be preceded by some more notation and
two lemmas.

Let b = (b, +1/2)/2. It will be assumed WLOG that b, < b for all n > 1
Define BX for n>1 and k=1,2,...,6 by

Bt = {zeC a,<Imz <a,,,, Rez = 6—5kb u(1 b)}
~ The distribution of the Brownian motion in D (h-process) starting from
xe D will be denoted by P*(Pj). If x = 1/2+ia,/2, then the superscript will
be suppressed. '

The paths of processes will be denoted by X (¢) and the lifetime R can be
written as ' ‘

=inf [t: liminfdist(X%(s), (D) =0}.
i £

The hitting time of a set B will be called 7. For sets

B,,B,,...,ByycDand j=1,2,..., o define events

F;(B, (Bz)a B3(B,), ..., Byu—1(Bay)
< ITl Tz, <o and Ty < Ty, and T, Linf{t > T;: X(t)éB3} <
and T, <inf{t > T,: X()eB,}...
and T, Linf{t > T_,: X()eBy,) <
and T, <inf{t > T_,: X(0eBy) and T, <inf{t>0: ImX (1) > a;}}.

If one of the sets B,, B, ..., By, is equal to 4D, then it is suppressed in
the notation.
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LemMa 2.1. There exists a constant cy < oo such that for all n> 1 and
j=zn+1
- P(F;(B2, B:)) <o ~e,,-P(Fj(B;‘)).
. Proof. There exists a constant'c, < co such that if K is an interval of
the real line of the length a > 0, then the chance that Brownian motion in

{Imz > 0} starting from i(1—2b)/5 will terminate at K is less than a-c,. It
follows that for k=2,3,4,5 and xe B!

el PRETE) <
and , '
1) - P*(F;(BET1(BEY) < eyrey.

The event F j(B:) is a union of an event N such that P*(N) =0 for all
xe B and a countable union from m =0 to o of the events '

F;(B2u 36(34) BUBS, ..., B2UBS(BY), B2u Bg, B*(B2U BY)).
mnmes

The P*-probability of such an event is less than (e, c;)™*! for all xe B},
which follows from (2.1a, b) and the repeated use of the strong Markov
property. Thus, for xe B,,,

2.2) P*(F;(BY) < 2 e )t < corey.

The last inequality holds for some ¢, < © and all e, small enough. It
will be assumed WLOG -that it holds for all e,. _
By the strong Markov property at T;3 and (2.2) one obtains
P(F;(B}, By)) <co-e, P(F;(B}),

which completes the proof.
LemMaA 2.2. Let u be a measure on B} (or on By)). Then P*-distribution of
X(T, 2, 5) has a density. g*(x), xe B2 U Bs There exists a function g,(x) such

. that, for every U,
(23) g2 (/gn(x) = e, MKEC)  for all xeBEQBS.
Here c(u, n) does not depend on x and
0 < lfe, <ki(x) <c;<oo for all xeBiu B;.

The constant c,, 1 <c, < o, does not depend on i or n.

Proof. Let f-be a conformal bijection of the rectangle U, bounded by
A,, A+, B} and B} onto the disc D; = {|z| < 1}. Assume that the midpoint
of B2 is mapped onto Oe D, and B? and B; are mapped onto arcs symmetric
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wrt real axis. For small e, the P*<chance, xe BZ, of hitting dU, to the right
from B2 is arbitrarily close to 1/2, so B2 is mapped on an arc close to the
imaginary axis.

A conformal mapping of Brownian motion is a time-changed Brownian
motion so the hitting probabilities are preserved. Therefore it is enough to
prove (2.3) with gf(x) replaced by g%(x), xe f(B?u B;), where §*(x) is the
density of X(R~—) for Brownian motion in D, with the initial distribution
pof ' If e, is small, then f(BZ U B}) consists of two small arcs. The hitting
distribution for Brownian motion in D, may be written down explicitly (see
p. 102 of [3]) and it is easy to verify (2.3) for g¥(x) directly.

Proof of Theorem 2.1. Let C; = {Imz = 4;} n D. The lemmas and the
strong Markov property applied at Tz 55 imply that the density of the P-

distribution of
(X('If:j)e‘, Fi(B3, BY), j=n+1,
is at most e, cq'c} times the P-density of _
(iIm X (Tz)+(1—Re X(Tp))e -, F;(BY)
for all the points of C;. Therefore formula (2.1) of [2] (p. 672) and the
symmetry of h imply that
Py(F/ (B3, BY) < ey-co-c2 Py(F,(BY) < ey co-c3.
If j—»voo, fhen_ F;(B3, B:)1F (B2, B¥ and, therefore,
Py(F o (B3, BY) < e, cocl.
By symmetry P,(F(By, B))) < e, co-c}. Thus
Y, Py(Fo (B}, Bi)UF (B, B3)) < 2-¢co-c3 i e, < .

n=1 n=1

It follows that P,-a.s. only finitely many events F_ (B2, B} U F_ (B*, B3)
happen and this implies that P,-a.s.

3
limsupRe X (t) < - b+ (l b) or liminfRe X (£) > — b+ (1 b).
t—R t—-R
By symmetry the P,-probability of each of these events is 1/2. Since
these events are in the tail o-field, it follows from [2], p. 730, that h is not
minimal.

3. Estimates of the Naim kernel. By Theorem 2.1 there exist at least two
minimal Martin boundary points x,, X,, such that if x — x; or x — x,, then’
Imx— 1. The points x, and x, are attainable by results of Cranston and
McConnell -[1]. Salisbury [5] (Corollary 3.5) has shown under some
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assumptions that there does not exist an h-process which starts at x; and
terminates at x,. A new proof of this result will be given below. Salisbury’s
basic lemma (Theorem 3.3) will be replaced by Proposition 3.1.

K(x;, x), xe D, will denote the Martin function and Gp(x, ), X, ye D,
will be the Green functlon Let zo = 1/2+ia,/2. Fix a,’s for the rest of this

section.

ProvpostTiON 3.1. If b, — O sufficiently fast as n— %0, then
limsup K (x;, I'(9))/Gp(z,, T'(t)) =
t—1-

for every continuous path I' = {I'(t),0 <t <1} = D such that
lim ImI"(f) = 1.

t—1-—
Proof. The functions K(x,, ‘) and Gp(z,, -) have limits 0 at the parts of
the boundary 8D N {Imz < a,} for every 1 <n <. The set D,=Dn {a,
<Imz < a,,,} is a Lipschitz domain. An easy variation of Theorern 1 of
Wu [6] apphed to the subset D! of D,,

2 1 1 2
Dn =D ﬁ{gan+§an+1 <Imz < ga,,+§a,,+1}
shows that if K(x,, x)/Gp(zo, X} =d for some xeD, Imx = (a,+a,.)/2,
then

. K(xla y)
Gp(20, ¥)

The constants ¢, >0 do not depend on d or b,’s.

It is easy to see that b, can be chosen so small that Gp(z,, x) <1 for all
xeD, Imx > a,.

For each n>2 choose b, so small that if a harmonic function g in
D {Imz <(a,+a,+,)/2} has the boundary limit O for each

(3.1) =>d-c, for all yeD, Imy=(a,+a,:+)/2.

xe 0D n {Imz <(a,+a,+,)/2}

and is bounded by 1 on {Imz = (a,+a,.)/2}, then g(zo) < c,/n.

Normalize K (x,, y) so that K (x,, zo} = 1. By the choice of b,’s for n > 2
we have K (x,, z,) = n/c, for some z,e D, Imz, =(a,+a,1)/2. It follows from
(3.1) that

K(xla y) > n.K(x.lazn) >c,,-n/c"
GD(ZO’ y) GD(ZO, Z,,,) 1
for all ye D, Imy =(a,+4a,+,)/2 and this completes the proof.

COROLLARY 3.1 (Salisbury). If b,— O sufficiently fast as n— oo, then there
does not exist an h-process in D starting from x, and terminating at x,.

=n
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Proof. Use Proposition 3.1 and Theorem 2.3 (c) of Salisbury [5].

Remark 3.1 How fast is “fast” in the last corollary? The above method
of proof does not provide an answer, see however Salisbury [5].
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