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ON ROBUST ESTIMATION OF VARIANCE COMPONENTS

BY

WOJCIECH ZIELINSKI (WARSZAWA)

. Abstract. Estimating functions of variance components is
considered. The problem is to find an estimator, the variance of
which changes as little as possible when the kurtosis of the
underlying distribution runs over a given interval; such estimators
are called robust. In the paper the existence of robust estimators is
considered, The robust estimators with minimal variance are
constructed. A comparison of robust and standard estimators is
discussed. '

1. Introduction; Consider a linear model
. K .
y= X ﬁ + Z Ui gi »
i=1

where y is an n-vector of observations; X is a known (n x p)-matrix; g is a p-
vector of unknown coefficients; U; are known (n x n))-matrices, i = 1, ..., K;
& =&y -+, i)’ are normally distributed random vectors such that E&, =0,
EE & =0 for i #j, E§& =021, 62>0,i,j=1,...,K.

Let _

K
Vo) =Covy =Y otV
i=1
where ¥, = U, U; and ¢ =(d?, ..., o).

Let f'a =Y fi6} be an invariantly estimable function, i.. a function for
which there exists an estimator y' Ay with Ey Ay = f'a, Ac o = {A: AX
=0}. Let % denote the set of all such functions.

The problem is to estimate f'¢. The wellknown optimal solution
{[2, 3]), i.e. the solution minimizing :

Vary Ay = 2tr AV(6)AV(6), Aedf,

“will be denoted by y' Asy and will be referred to as the standard estimator.

WD R R e




96 W. Zielinski

It appears that statistical procedures based on the statistic y' A5y may
be very bad when ¢&; are not normal (for example, see the Bartlett test in [1]).
We are interested in estimators which are robust against nonnormality.
Assume that the model under consideration is violated by letting the kurtosis
v = E&Yfof =3, j=1,...,m, i=1,..., K, to change in a given interval

I'=[y21, Y211 x[¥225 P221 X -+ X [Y2x, Y2k]-
Now the variance of y' Ay, Ae.o/, is given by

: . ) K
(1 Vary Ay = ) of yya;a,+2tr AV (6) AV (0),
i=1
where a; is the vector of diagonal elements of the matrix U’AU,, i
=1,

We are mterested in an estimator, the variance of which changes as little
as possible when the kurtosis y =(y,, .., Y2x) runs over the interval I
- Formally, given an estimator y’ Ay, we consider a function on the parameter
space of the model (cf. [8]) defined by

K
) rq() =supVary Ay—infVary' Ay = Y, of (Tu—y2) 4 a;.
. yel' yel’ i=1 -

Definition. An estimator y' Ay (Ae /) of f' 6 ¥ is said to be robust, if
Ey'Ay =f"c and r,(0) < rg(o) for all ¢ and Be.of such that Ey By =f'o.

In what follows, conditions for the existence of robust estimators for a
function f'6e¥ are given. The problem of the existence of best robust
estimators is considered and, if such exist, a comparison of those with the
standard y' Agy is discussed.

The results remain valid if instead of the original Gau551an model one
considers any model with fixed kurtosis.

- The problem with K =1 and V=1 was considered in [9}

2. Introductory results. In the paper we use the following basic facts and
notation of the general theory of linear models (see [3]).

Let Z be a random element with values in an arbitrary Euclidean vector
space A endowed with an inner product denoted by (-, -). The expectation
EZ and the covariance CovZ are assumed to exist. The expectation EZ is
assumed to be an element of a known subspace & of . Let @ be the
convex cone of self-adjoint, nonnegative defined (n.n.d.) linear operators from
A" to A (usually it is assumed that @ is generated by Cov Z). The problem
is to estimate a linear function (4, EZ) defined on & We confine attention to
the class of estimators of the form (B, Z) for Be 4y, where 7, is a given
subspace of . The function (A, EZ) is said to be fy-estimable if there
exists a Be Ay such that E(B, Z) = (4, EZ). The estimator (B, Z), Be A, is
said to be (A, ©)-best for A ,-estimable function g, if E(B,Z) =g and
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, (B, 'B) < (C, I'C) for all Ce i, such that E(C, Z) =g and for all I'e®.
! Let Ze® be the maximal operator in &, ie. an operator such that
A (Z)= ( & (I'), where A4"(I') denotes the null space of the operator I.

Ie®
Such an operator exists in @ (see [4]). Let &F = &+ Ag.

{ "Lemma 1 ([3]). For every A o-estimable function there exists the (A, ©)-
best: estimator iff

' ' (A onZ HUF)=F for all TeO.

i LemMa 2. A (X, @)-best estimator is unigue iff /' (Z)n F*={0}.
ol This Lemma is a corollary from a well known Lehmann-Scheffé
! theorem.
) LemMa 3. Let A, be a subspace of X such that Ho < H'y. Let us
assume that for every X y-estimable function there exists a (A'(, ©)-best
estimator. Then a (A'y, @)-best estimator is (Ao, @)-best iff A NI~ (&
_‘ +AD) S Ay . '_
Proof. A (X, ©)-best estimator is (), @)-best one iff the (X, ©)-
f best estimator belongs to . It follows from the Lehmann-Scheffé theorem

that the set of (",, ©)-best estimators is of the form X4, n N\ I' ' (&+ X'}).
I'e® '

’ Hence we have to show that
Hin NI N E+HD=H, NX"YE+ D,

Ie®

which follows from the proof of Theorem 3.1 in [3].

3. Existence of robust estimators. For every function f'o¢ % there exists
a robust estimator iff the problem:

r,(6) =min! for all 6, Aess/, EY Ay=f'c

has a solution.
Let (A, B) = tr AB be the inner product in the space S, of all symmetric
(n x n)-matrices. Let &;: §S,—» S, be a linear operator defined by @4
= U,;(P(U; AU))U; for each AeS,, where PA =diag(a;, ..., a,,) is the
orthogonal projection on the subspace of the diagonal matrices. Let

X ‘
@ (o) = Z o} (Fai—y2:) D;-

i=1
The function (2) can be written in the following way:

K : _
ra(@) =3 ot (Ta—ya)(4, B;4) = (4, D(0) 4).
i=t
. K .
Let @ =sp{®,,...,Dx}* = {) o, ®;: o, >0} and let £ be maximal

i=1
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in ©. Let # =46+, where £=sp{V,..., g} +{XAX': A=A" is
a linear subspace generated by the expectations of yy'.

THEOREM 1. For every invariantly estimable function there exists a robust
estimator iff _
' (AN YF)F for all PeO.
Proof. For each 4, B=S, we have

(4, &, 4) = tr AU, (P(U, AU)) U; = tr U AU, P(U! AU))
| - " = tr P(U, AU, P(U,AU) > 0
and -
(4, ®; B) = tr AU, (P(U; BU)) U, = tr P(U, AU;) P(U. BU))
—tr P(U; AU) U, BU, = (&, A, B),

hence &; is an n.n.d. and self-adjoint linear operator. The set @ is a convex
cone generated by @,, ..., ®x. Theorem follows from Lemma 1.

From Lemma 2 we see that a robust estimator is unique iff 4" (Z)n F+
= {0}. . -, _ v

4. Best robust estimators. Let o/, denote the set of all robust estimators.
From Lehmann-Scheffé theorem it follows that .o/ is a linear subspace. Lét
%r S % be the set of all robust estimable functions, ie. f'oe % iff there
exists an Ae o/, such that Ey Ay =f'o.

Let f'o0e %g. We want to find the best robust estimator for f’¢. Due to
(1) and due to the fact that Zof (55 —72)aia;, i =1, ..., K, is the same for
all Ae.o/g such that Ey' Ay = f' o, in order to find the best robust estimator
one has to find a matrix 4 which minimizes tr AV (a) AV (6) uniformly in .

. Thus, we have to solve the following problem:

trAV(a) AV (o) = min! for all ¢, Aesfy, Ey Ay=f'o.
Let 25 be a linear operator defined by X; A = TAT for each AeS,. We
can rewrite our problem as _
‘ (A, Zy@A) =min! for all 6, Aesfp, EyAy=f'o.

Let ¥ =sp{Zy,:i=1,...,K}"*. It is easy to see that ¥" is a convex
cone of n.nd., self-adjoint linear operators. Let ¥ be maximal in ¥~ and let
Fr=E+%. 7 '

THEOREM 2. For every' function from %y there exists a best robust
estimator iff

DAV HFp) S Fr for all dey .

Proof. Theorem 2 follows from Lemma 1.
Remark. Let V=1 and let Q denote the orthogonal projection
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on /. Then for every function from % there exists a best robust estimator
iff sp{QV,0, ..., QVxQ} is a quadratic subspace.
8, Comparison with a standard estimator. Let Ap denote the matrix of

the best robust estimator. If I € #", then Lemma 3 yields the followmg result:
LemMMa 4. Ag = Ag iff A n(E+.o4Y) = .

6. Examples. (6.1) Let K=1, U, = Vl =]. The only invariantly
estimable functions are ¢ a2, where ce R. It is easy to see that for every such
a function there exists the best robust estimator. This case is discussed in full
details in [9].

(6.2) Consider a linear model “with two missing observations” ([7]):

| B, B. B
Ay [ Yir Y12 Vi3
A; | Y

The model is y;; = o;+b;+e; (i=1,2;j=1, 2, 3), where the effects o,
are fixed, while the effects b; and ¢; are random: Eb; =0, Ee;; =0, varb;
= o},vare; = 63, cov(b;, b;) = 0for j #j, cov(ey, e;y) =0for i #i orj #J,
cov(by, e;) = 0 for all i, j, j. The vector model is .

y= Xﬂ+U1 a1+U2.az,'

where B = (o, o), a; = (by, by,b3), a; =(eyy, €12, €13, ey), Uy =V, =1,

10 : 100\ 1001
' 10 T Io10 0100
X=tiop Y“loo1} "=10010
01 o 00/ 1001

The number of observations is n =4, rank of X is p=2. The matrix

M =I1-=P, where P is the ortoghonal projection on #(X), is of the form
2 -1'-10
. tf-1 2-10

M=31_1-1 20

0 0 00

The rank of the matrix

MV, MV, tMV,\ (22
“\trMV,  n—p 22
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is equal to one, so we have ¥ = {c-(6?+0%): ceR} (cf. [2]). Hence

a+b+4, Ay A b+4,
Ay a+b+1, A Ay :
= : s Ats A2, A3€R P,
J A Ay a+b+d, A @b, Ay 4, As€
b+12 112 /1,2 a+b+lq-3
2ay, —@11—0G3+a33 —ay3+az;—az; 0
of = “‘a_u'—aiz"‘ass v 2a,, G11—032— 033 0»
—811+a83,—033 a1, —a3,—0a33 2a3, Y
0 0 0 0
411, @23, @33€R 2,
and , . ‘
2by4 —(by1+b22) —(byy+bi3) bra
L= —(by1+b32) 2b,, —(b22+b33) by
—(b11+b33) —(byz+bs3) 2b33 bs4
bia  bas bus b

bi1, b33, bas, bya, bay, byy, bygeR

/

For every f'¢ from % there exist a unique robust estimator. We obtain
2-1-10
cf -1 2-10
3{-1-1_ 20
0 0 00

Easy calculations show that o N(&+ oY) = ;. Frokn Lemma 4 it
follows that AR = As.

- (6.3) Consider a linear model “with five missing observations™:

A= : ceR

B, B, B,
_‘A1+A2 Y11
A, Y22 Va3
-0 " V32

As in the previous case we assume that the A effects are fixed, and the B
effects are random. The model is

y\= XB+U1a1+U2a2, _
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where B = (a0, a5), a; =(by, by, b3), a; =(e11, €23, €23, €37), Uy =V, =1,

11\ 2100 1000
10 010 0101
X=8io0) Y=loo1 )} " loo1o
0 10 101
Now we have n =4, p=2 and
0 00
,M_1 0 1-10
“2f0-1 10
0 02

" . Because the rank of G = (3 2) is equal to two, all functions f'¢ = f, 63 +f, 62

are invariantly estimable. We have

a+b+a;+20,+4; A+d, A+d, O

A’l +12 a+b+11 A]_ a
&= : .
A’l +12 111 a+b+/11 0 4 b’ il, 2.2, ASER ?
0 a 0 b
0 0 0
0 a22=—-a22 Qazq
o = A L dyp, (g, g4 €R P,
0 —ay, dyy —dgs 22> @245 Qa4
Qg —a24 Q44
11 by, by bis
oL = bya - by 3(b22+b33) by
b3 3(b2z+bs3) b33 bs,
14 bu ' b34 0 .
by1, b12, bys, bia, baz, bsg, bay, b3 eR 2,
and
0 00
0 a-—-a b
H= - a,beR
A N(E+A) 0 —a a b a, be
b —b 2a

For every function there exists a unique robust estimator and we get
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0 0 O
0 a-a b
= - a,beR
J?’R 0 —a a-b % o€
b —-b a

Matrices Ag and Ag of the estimators of the function f; 62 +1, 62 are as
follows:

0 0 0
LY L S A )
o~ £ -Hh-R)
Wint) =) S
| 0 0 0
oo h —h 20-m)
i\o -5 L -2h-R)

260 200 2f,

It is easy to see that the condltlon of Lemma 4, i.e. of N (&+ .o/ l) < g,
does not hold.
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