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ON ROBUST ESTIIWTION OF VARIANCE C O M m N E m  

Abstract. Estimating functions of variance components i s  
considered. The problem is to find an estimator, the variance of 
which changes as little as possible when the kurtosis of the 
underlying distribution runs over a i ven  interval; such estimators 
are called robust. In the paper the existence of robust estimators is 
considered. The robust estimators with minimal variance are 
constructed. A comparison of robust and standard estimators is 
discussed. 

1. Introduction. Consider a linear model 

where y is an n-vector of observations; X is a known (n x p)-matrix; is a p- 
vector of unknown coefficients; Ui  are known (n x ni)-matrices, i = 1, . . . , K ;  
ti = (til  , . . . , ti,)' are normally distributed random vectors such that Eci = 0, 
E c i < j = O  for i # j ,  E&&=a?i', r$>O,  i , j = l ,  ..., K, 

Let 
K 

V(a) =cavy = C a?&, 
i= l 

where T{ = Ui Uf and CT = fa:, . . . , oi)'. 
Let f'o = zl; u: be an invariantly estimable jitnction, i.e. a fu~lction for 

which there eusts an estimator y' Ay with Eyf Ay = f'a, A E . ~  = [ A :  AX 
= 0). Let 9' denote the set of a11 such functions. 

The problem is to estimate f'o. The well-known optimal solution 
([2, 31). i.e. the solution minimizing 

Vary' A,)? = 2tr AV(a) AV(a), A E ~ ,  

will be denoted by yrASy and will be referred to as the standard estimator. 
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It appears that statistical procedures based on the statistic y' A, y may 
be very bad when ti are not norma1 (for example, see the Bartlett test in [I]). 
We are interested in estimators which are robust against nonnormality. 
Assume that the model under consideration is violated by letting the kurtosis 
yZi = Et$/af- 3, j = 1, . . . , n,, i = I, . . ., K, to change in a given interval 

Now the variance of y' Ay, AE d, is given by 

where ai is the vector of dtagonal elements of the matrix U,IAUi, i 
= 1, ..., K .  

We are interested in an estimator, the variance of which changes as little 
as possible when the kurtosis y = (y,,, ..., yZx) runs over the interval r. 
Formally, given an estimator y' Ay, we consider a function on the parameter 
space of the model (cf. [8]) defined by 

K -- 

(2) r ,  (m) = sup Var y' Ay - inf Var y' Ay = a f i ~ ~ ~  - _ y Z i )  a,l a;. 
Y Y =I- i =  1 

Definition. An estimator y' Ay (AE d) off 'a€ 3 is said to be robust, if 
Ey' Ay = f 'o and r, (D) < r, (a) for all CT and BE d such that Ey' By = f 'a. 

In what follows, conditions for the existence of robust estimators for a 
function f ' a ~  3 are given. The problem of the existence of best robust 
estimators is considered and, if such exist, a comparison of those with the 
standard y' As y is discussed. 

The results remain valid if instead of the original Gaussian model one 
considers any model with fixed kurtosis. 

The problem with K = l and V =  I was considered in [9]. 

2. Introductory results. In the paper we use the following basic facts and 
notation of the general theory of linear models (see [3]). 

Let Z be a random element with values in an arbitrary Euclidean vector 
space X endowed with an inner product denoted by (., a) .  The expectation 
EZ and the covariance CovZ are assumed to exist. The expectation EZ is 
assumed to be an element of a known subspace d of X. Let 8 be the 
convex cone of self-adjoint, nonnegative defined (n.n.d.) linear operators from 
3- to X (usually it is assumed that O is generated by CovZ). The problem 
is to estimate a linear function (A, EZ) defined on 8. We confine attention to 
the class of estimators of the form (8, 2) for BE X o ,  where Xo is a given 
subspace of X. The function (A, EZ) is said to be Xo-estimable if there 
exists a BE Xo such that E(B, Z) = (A, EZ). The estimator (B, Z), BE X o ,  is 
said to be ( X O ,  @)-best fop Xo-estimable function g, if E(B, Z) = g and 
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(B, TB) < (C, TC) for all C E So such that E (C, 2) = g and for all r E Q. 
Let CEQ be the maximal operator in 8, i.e. an operator such that 

M(E)  = n N(r), where N(r) denotes the null space of the operator r. 
re@ 

Such an operator exists in 8 (see [4]). Let S = 6+ .fi 
LEMMA 1 ([3J). For every Xo-estimable function there exists the (So, 9)- 

best. estimator ifl 

LEMMA 2. A (Xo, @)-best estimator is unique i@ N(E) n 9' = (0). 
This Lemma is a corollary from a well known Eehmann-Scheffi 

theorem. 
LEMMA 3. Let X, be a subspace of: X such that Xo c X,. Let us 

assume that fur euery So-estimable function there exists a: (X I ,  @)-best 
estimator. 7hen a (XI, @)-best estimator is (Xo, @)-best if XI n E-' (t 
+ x:) G xo, 

Proof. A (X, ,  @)-best estimator is (,To, @)-best one iff the ( X I ,  8)- 
best estimator belongs to Xo. It follows from the Lehmann-Scheffi theorem 
that the set of (XI, @)-best estimators is of the form XI n r- ' (b+ %,I). 

T E ~  

Hence we have to show that 

which follows from the proof of Theorem 3.1 in [3]. 

3. Existence of robust estimators. For every function f ' a ~  3 there exists 
a robust estimator iff the problem: 

r,(cr)=min! for all a, A E ~ ,  EyrAy=f'a  

has a solution. 
Let (A, 3) = tr AB be the inner product in the space S, of all symmetric 

(n xn)-matrices. Let @,: S, + S, be a linear operator defined by QIi A 
= U, (P (Ui AU,)) Ui for each A E S,, where PA = diag (a,, , . . . , a,,,) is the 
orthogonal projection on the subspace of the diagonal matrices. Let 

K 

(a) = C a"('~zi -1zi)  @i.  
i =  1 

The function (2) can be written in the fo1Iowing way: 
R 

I A  ( ~ 1  = C aif ( ~ 2 i  - 1 2 i )  (A,  @i A) = (A ,  @ (0) A).  
i =  1 

K 

Let 8 = sp (a,, . . ., a,)+ = { ai Gi : ui 2 0) and let Z be maximal 
i =  1 
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in O.  Let F = C + d i ,  where b = s p { & ,  ..., V , ) + ( X A X ' :  A = A f )  is 
a linear subspace generated by the expectations of yy', 

THEOREM 1. For everjr inuariantly estimable function there exists a robust 
estimator ig 

( n l  for all @GO. 

Proof. For each A, B E S ,  we have 

( A ,  @, A) = tr A U ~  (PIU; AU,)) U; = tr U,! AUi P(U: AU,) 
= tr P(UI AUi) P(U:  AUi) 2 0 

and 

( A ,  48, B) = tr AUi (P(Ui Bu;)) U: = tr P(U;  AZJ,) P(Ui BUi) 
= tr P(Ui AUi) U;BUi = (qi A,  B), , 

hence is an n.n.d. and self-adjoint linear operator. The set Q is a convex 
cone generated by GI, . . . , GK. Theorem follows from Lemma 1. 

From Lemma 2 we see that a robust estimator is unique iff A'(C) n F1 
= (01. 

4. &st robust estimators. Let dR denote the set of a11 robust estimators. 
From Lehmann-Scheffi theorem it follows that d, is a linear subspace. Let 
qR E <9 be the set of all robust estimable functions, i.e. f ' a ~  gR iff there 
exists an A E sfR such that Ey' Ay = f '  a. 

Let f ' n ~  gR. Mre want to find the best robust estimator for f ' a .  Due to 
(1) and due to the fact that Caf(F2i - ~ ~ ~ ) a : a , . ,  i = 1 ,  . . ., K, is the same for 
all A E ~ ,  such that Ey'Ay = f ' a ,  in order to find the best robust estimator 
one has to find a matrix A which minimizes tr AV(a) AV(o) uniformly in la. 

Thus, we have to solve the foIlowing problem: 

trAV(ajAV(a)=min! for all a, E y ' A y = f l a .  

Let ET be a linear operator defined by ZT A = TATfor each AES,. We 
can rewrite our problem as 

(A,Z,(,,A)=min! for all a, E y ' A y = f 4 c r .  

Let V = sp{ZVi: i = 1, ..., K}'. It is easy to see that V" is a convex 
cone of n.n.d., self-adjoint linear operators. Let Y be maximal in V and let 
2FR = 8-tdR'. 

THEOREM 2. For every function from gR there exists a best 'robust 
estimator @ 

( n Y-  9 )  5 for all @ E #r. 

Proof. Theorem 2 folbws from Lemma 1. 
Remark. Let V, = 1 and let Q denote the orthogonal projection 
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on .dR. Then for every function from %JR there exists a best robust estimator 
iff sp {QVl Q, . .+, QhQ) is a quadratic subspace. 

5. Comprisao with a s tadad estimator. Let A,  denote the matrix of 
the best robust estimator. If I E  Y, then Lemma 3 yields the following result: 

LEMMA 4. AR = AS iff cdn(b+dl )  zdR .  

d Examples, (6.1) Let K = 1, U1 = & = I. The only invariantly 
estimable functions are c.aZ, where C E R .  It is easy to see that for every such 
a function there exists the best robust estimator. This case is discussed in full 
details in [9]. 

(6.2) Consider a linear model "with two missing observatioi~s" ([7]): 

The model is yij  = a, +bjf eii (i = 1 ,  2; j = Iy 2, 31, where the effects a, 
are fixed, while the effects bi and eij are random: Ebj = 0, Eeil = 4 var b.i 
= a:,var e = t~i, cov(bj, b,) = 0 for j # j', cov (e,,: eiJj,) = 0 for i + i' or j # j', 
cov(bf, eij) = 0 for all i, j', j. The vector model IS 

I 

The number of observations is n = 4, rank of .Y is p = 2. The matrix 
M = I- P, where P is the ortoghonal projection on d ( X ) ,  is of the form 

The rank of the matrix 



is equal to one, so we have B = (c.(o:+u3: C E R )  (Cf. [2]). Hence 

a i l ,  a 2 2 ,  a 3 3 ~ R  , 
and 

2 b 1 1  +b22) -(b11 + b 3 3 )  bI4 
I + bzz)  2b2, - (b22 + b33) 624 

1 
-@I 1 f b33) -@22 + b33) 2bS3 bg4 

bid b24 b34 b44 -l 

For every f'n from 3 there exist a unique robust estimator. We obtain 

Easy calculations show that d n (&+dl) = atR. From Lemma 4 it 
follows that A, = A,. 

(6.3) Consider a linear model "with five missing observations": 

As in the previous case we assume that the A effects are fixed, and the B 
effects are random. The model is 



Robust estimation 101 

where P = (a l7  aZ): a1 = ( b l ,  b2 ,  b,)', a2 = ( e l l ,  e,,, e,,, e3Jf ,  U 2  = V2 = I ,  

Now we have n = 4, p = 2 and 

Because the rank of G = (: ;) is equal to two, all functions f' rr =S, cr: -k f2 D: 
are invariantly estimable. We have 

1 1  b l 2  b 1 3  b14 

dl= 

14 b24 h a  0 

~ I I ,  b12, bi3, bi4, b227 b33, b24, b 3 4 ~ R  

and 

For every function there exists a unique robust estimator and we get 



Matrices A, and A, of the estimators of the function f, a: + f, a; are as 
follows: 

It is easy to see that the condition of Lemma 4, i.e. d n (b+ ,dl) s dR, 
does not hold. 
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