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BIAS-ROBUST ESTIMATION OF THE SCALE PARAMETER

BY

JAROSEAW BARTOSZEWICZ (WRoCLAW)

Abstract. The paper deals with the concept of robustness given
by Zielinski (see [17] and [18]). The uniformly most bias-robust
estimates of the scale parameter, based on order statistics and
spacings, for some statistical models are obtained. Violation of these
models are generated by ordering relations in the set of distributions
like stochastic ordering, dlsperswe ordering, convex and star-shaped
orderings and others.

1. PRELIMINARIES

Throughout the paper we identify probability distributions with its
distribution functions and assume that all considered distributions are
continuous and strictly increasing on their supports which will be intervals.
We also assume that all expectations being considered exist and are finite.

Let random variables X and Y have the distributions F and G with the
supports Sy and S;, respectively. Denote by X,.., X,.,, ..., X,., and
Yi.m» Yauns - .., Y., OFder statistics of samples from the distributions F and G.
Define X,., =inf{x: F(x) >0} and Y., =inf{x: G(x) >0} if they are
finite. The random variables V., = X;.,— X;_;., and U;,, = Y.,~ Y., are
called spacings from the distributions F and G, respectively. We recall some
partial orderings of distributions which will be used in the sequel.

1.1. Stochastic ordering. We say that F is stochastically less than G
(F £ G) if and only if F(x) > G(x) for every x. We shall also use the notation
X & Y if and only if F& G It is well known that 1f X £ Y, then X,-:,,f% Y.,
and hence EX;.,<EY.,, i=1,2,.

1.2, Dispersizt; ordering. Distributions F and G are said to be ordered
in dispersion (F'<G) if and only if F !(B)—F (@) <G '(H)—G '
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whenever 0 <« < § < 1. We shall also use the notation X < Y if and only
disp ' '

if F<aG.

Many authors have studied properties of this ordering, e.g. Saunders and
Moran [14], Lewis and Thompson [11], Shaked [15]. Deshpande and Kochar
[6] have noticed that this ordering is the same as tail-ordering, introduced by
Doksum [7]. Bickel and Lehmann [5] have called this relation “G is more spread
out than F”. Shaked [157 has proved that under the above general assumptions

onFandG,F @ Dpifand only if the so-called shift function 4(x) = G~ LF(x)—
(see [8] and [12]) is nondecreasing for xeSg. Hence it follows that if

Xdi<9pK then X,-:,,di<SpY,-:,,, i=1,2,...,n. One can also prove that if
F and G are symmetric about the origin, ie. F(x)=1—-F(—x) for all x

(for G analogously), then X Fy implies |X] d-iélﬂlYl. The following other
properties of the dispersive ordering will be applied in next sections.

LemMma 1 - (Shaked [15]). Let Sy =[O, aF] and S =10, ag], ar <
w. If F*ZG, then F£6.
LemMa 2 (Oja [12]). Let Sy =1[0,ar] and S; =10, ag], ar < 0,.
ag < 0. f F'ZG, then V,, U, i=1,2,...,n
Lemma 3 (Bickel and Lehmann [5]). Iet F and G have the densities f and
g, respectively. Then Fdi<SPG if and only if gG~*(w) <fF 1 (w), ue(0, 1).

2

1.3. Convex and star-shaped orderings. Let F(0) =0 = G(0). Van Zwet
[20] has introduced the convex ordering relation: F is convex with respect to
G (F < G) if and only if G™*F is convex on Si. Barlow and Proschan [1]
have considered the weaker relation: F is star-shaped with respect to G
(F£G) if and only if G™'F is star-shaped on Sp, ie. G 'F(x)/x is
nondecreasing in xeSg. It i§ easy to see that F < G implies F £ G. These
relations are partial orderings of the scale equivalent classes of distributions.
The following properties of the convex and star-shaped orderings will be
used in the sequel.

Lemma 4 (Barlow and Proschan [1]). If F <G then EX,;.,/EY;.,
nonincreasing in i =1,2,..., n.

LemMa 5 (van Zwet [21]). If F £ G, then EV,.,/EU,,, is nonincreasing
imi=1,2,...,n

Lemma 6 (Sathe [13]). If F£ G and F £ G, then F'ZG.
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LEmMMA 7 (Leén and Lynch [10]). Let G have a density g on [0, ag],
ag < o0, which is positive and continuously differentiable on (0, ag). Then the
class of continuous distributions {F: G £ F} is closed under mixtures if and
only if ug'(u)/g(u) .is decreasing on (0, ag).

.1.4. s-ordering and r-ordering. The analogues of convex and star-shaped
orderings for symmetric distributions have been studied by van Zwet [20],
Doksum [7] and Lawrance [9]. Assume that F and G are symmetric about
the origin. We say that F and G are ordered with respect to the s-ordering
(F£G) if and.only if G™'F is convex on Sy [0, ) and concave on
Spn(—o0,0]. We say that F and G are ordered with respect to the r-
ordering (F < G) if and only if G™'F is star-shaped on Spn[0, c0) and
~G~1F is star-shaped on Sy~ (—o0, 0]. It is easy to notice that F < G
implies F < G. These relations are partial orderings of the scale equivalent
classes of symmetric distributions. The following lemmas give properties of
these orderings which will be needed in next sections. The first of them is
obvious. ' ' '

LeMMA 8. Let F and G be symmetric about the origin and let F® denote
the distribution of |X|*, « > 1, for G analogously. Then: (i) F < G implies
F® £ G®; (i) F < G implies F® £ G®,

LemMa 9. If F <G, then E|X,.|/E|Y;.,| is nondecreasing in i for
i < (n+1)/2 and nonincreasing in i for i = (n+1)/2.

The proof of Lemma 9 is quite similar to the proof of Theorem 4.6
in [9]. ‘

. After simple modifications of Lemma 7 we obtain the following result:

LemMA 10. Let G be symmetric about the origin and have a density g on
[—cg> c), cg < o0, which is positive and continuously differentiable on
(—cg, cg).- Then the class of continuous and symmetric about the origin
distributions {F: G < F} is closed under mixtures if and only if ug'(w)/g(u) is
decreasing on (0, cg) (and hence increasing on (—cg, 0)).

An interesting fact noticed by Oja [12] is that all above-mentioned
orderings may be characterized by the convexity properties of the shift
function A. It is obvious that if X has the distribution F, then X + 4(X) is
distributed according to G. . ‘

2. ROBUST ESTIMATION OF THE SCALE PARAMETER
FOR DISTRIBUTIONS ON R,

2.1. Estimates based on order statistics. Let G,() =G(-/4), A >0, be a
specified continuous distribution with the scale parameter A, having the
support Sg, = [a;, b;], 0< a; <b; < 0, and G(0) = 0. We are interested in

“an unbiased estimation of A based on a sample of size n. The appropriate
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statistical model is
My=(R,, B, !G,, >0}

Suppose that the original model M, is violated in such a way that in
fact the underlying random variables are distributed according to F,(‘)
=F(/) from a set of distributions [Ty (4) satisfying the following

.condmons

(i) H;LF, &K, for every F,ellyx(A), where H, and K, are fixed
continuous distributions with the scale parameter i and H (0) 0=K (O),

(i) HyeMy (), Kiellgg(l);

(ili) g x(A)N{G;, A >0} ={G;.} for every > 0.

The set IIyx(4) will be called a violation of M, (see [17] and [18])
generated by stochastic ordering.

Let T be an unbiased estimate of 4 in the model M,. Let F, run
through the set IT,x(4) and let E;, T denote the expected value of T if
the underlying distribution is F; (Ef T if A =1). Then

b= sup (Ef, T-AH)— inf (Ep, T-A)
F,elly gld) Faelly g
is the oscillation of the bias of T over ITyx(4) and gives us a measure of
robustness of the estimate Twith respect to its bias under the violation ITy ;.
The function A — by (4), 4 > 0, is called the bias-robustness of T (see [17] and
[18]).
The problem is to find T, such that

6] bro(4) < br(d) for every 1>0

and every Tin a given class of statistics. The estimate T; for which (1) holds,
is called the uniformly most bias-robust estimate (UMBRE) of 1 in the glven
class of statistics.

For our problem of estimation consider the class of statistics

={T@W=Y %X @ =, ..., x)eRY, Eg, T(@) = 4, 2 > 0},
=1 .

i.e. the class of all nonnegative linear combinations of order statistics which
are unbiased estimates of A in M,. Notice that if Te J*, then by (1) = Abr(1)
and the problem of finding the UMBRE of A in % reduces to that of
finding T, which minimizes bT(l) in Jt. We can state the following
theorem:

THEOREM 1. Under the violation Iy of the model My:

W if H < G < K, then X,.,/JEG X,., is the UMBRE of A in the class 7 ;

(i) if K £ G £ H, then X,.,/E¢ X,.,, is the UMBRE of 1 in the class T *.

Proof. The idea of the proof is the same as in [19] (see also [4]).
From the properties of the stochastic ordermg it follows that if Fellyy,
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then Ey X;., < Er X;.n < Ex X;un, i =1, 2, ..., n. Hence for every Te 7 we
have '

sup EF T(a) = Z o EK X“" and inf EF T(a) = Z aiEHXl':n'
i=1

Fellg g FE"H.K i=1

The problem of finding 7T, reduces to that of ﬁnding‘ @ =0,

i=1,2,...,n which minimize ) o;(ExX;.,—EyX;.,) under the condition
i=1

of T, being unbiased in Mo, ic.
' Z o Eg Xi.n=1.
i=1

This is a simple linear programming problem with a single constraint,
the solution is therefore («;, a5, ..., ®,) with exactly one nonzero coordinate.
Hence Ty = X;-.,/Eg X;:.,w, Where i* minimizes (Ex X;.,—Egy X;.))/Eg Xi:n-
From Lemma 4 it follows that if H2G &K, then i*=1, and if
K%GZ%H, then i*=n. :

Example 1. Exponential model. Let G;(x) = 1—e ¥4 x>0, 1> 0. The
relation H € G £ K is equivalent to that H is an IFRA distribution and K is
a DFRA distribution. Some families of distributions regarded as violations of
the exponential model have been considered by Zielinski [19], Bartoszewicz

'[2] and Bartoszewicz and Zielinski [4]. Among them two parametric families

have some particular interest: _ .
bl I (3; py, p2) = {Gapt Pi S P < P2},
where G, , is the exponential power distribution with the density function

9:.p(¥) = exp(— X/ T(1+1/p)], x20,0<p <1<p, <216,
and '
3 IT*(4; py, p2) = {GE,p: PL <SP < P2}
where Gj{‘_p is the gamma distribution with the density function

05,09 = > texp(—x/ TRl x>0, 0<p <1<p <.

Under the violation (2) the UMBRE of 4 in 7 is nX,., and under the
violation (3) the UMBRE of 1 in 7% is X,../(1+1/2+...+1/n).

Example 2. Uniform model. Let G,(x) = x/4, 0 < x < 4. If a distribu-
tion H has an increasing density, then H < G and hence H 2 G; similarly, if
K has a decreasing density, then G < K and hence G 2 K. As a violation of
the uniform model generated by stochastic ordering consider the parametric
family of distributions

)] {B(p, 1): pp <P P2},
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where B(p, 1) is the beta distribution with the density px?~!, 0 < x <1, and
0 < p; €£1< p, < 0. Evidently, 8,(1, 1) = G,. It is easy to see that for each
A >0 the family of distributions (4) is stochastically increasing in p, ie.
Bi(p, )L B¢, 1) for p<p and also B(pa, 1) < B(1,1) < B(py, 1). Hence
(n+1)X,.,/n is the UMBRE of 1 in the class 7 * under violation (4). It is
well known that (n+1) X,,../n is the uniformly minimum variance unbiased
estimate (UMVUE) of 4 in the original uniform model. -
Similarly one can easily obtain that this estimate is also the UMBRE
of A in " under the violation {B,(1, q): q, <q <4q,}, where B(1, q)
is the beta distribution with the density g(1—-x)*"!, 0<x<1, and
0<gqy <1<q, <. '
Define now the following set of distributions:

®) o (Fio: —E<e<n),

where F; . has the density .
1* () = {[25(1+£) 2x/A+(1—e)/(1+8]/4A f O0<x<(1+¢)4,
ie -

otherwise,
and ¢, 75 are fixed numbers from (0, 1). Of course, F; o =G,. It is not
difficult to show that if —¢ <& <& <, then F,, g F,, and also F;, < F, .
for each A>0. Thus the set (5) is a violation generated by stochastic -
ordering with H; =F,_ . and K, =F,, and Theorem 1 implies that
(n+1)X,., is the UMBRE of 1 in .
Consider another violation of the uniform model

(6) {F¥.: ~&<e<n},
where F¥, has the density '

[2&(1+s)‘ xA+(1—g)f1+e)]/A fO0<x< (1484,
otherwise,

.ﬁ.s( )—

and ¢, n are fixed numbers from (0,1). If —{<e<e <n then F%,
L Fx, %o and F}, . < F,,. Hence it follows from Theorem 1 that (n+1)X,.,/n
is the UMBRE of A4 in J* under the violation (6).

Example 3. Pareto model. Let G;(x)=1—(x/A)"", 0<i<x< 0,
" where r > 1 is known. Consider the following set of distributions:

(7 Fy: i) =1-(/2)7" 5 A<x, —y<e <4},

where y and & are positive fixed numbers and y <r—1. It is easy to verify
that if ¢ <¢', then F§ & F% and also F§ < F5 for each 4 > 0. Hence the set
(7) is a violation gemerated by stochastic ordering with H, = F§ and K,
= F}. Theorem 1 implies that the statistic (rn—1) X,.,/rn is the UMBRE
of A in the class 7" under the violation (7). It is easily seen that th1s
statistic is the UMVUE of A in the original Pareto model.
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Example 4. Contaminated model. This example has a more general
character than previous ones. Let G, be a distribution on [0, ¢;], ¢; < o,
with continuously differentiable density g, such that ug’(u)/g(u) is decreasing
on (0,c). Let L, be a distribution with the scale parameter A such that
L, 2 G, for each A>0 and also G £ L. Consider the followmg set of
distributions

U(l;ﬂo)={Ga,e=(1—6)Ga+8La, 0<e<e), .
where ¢,e(0, 1) is fixed. It is easy to verify that IT(4; g,) is a stochastically
decreasing family of ‘distributions, ie. G5 € G5 for 0 <¢ <& <1 and every

A > 0 and hence II(4; &) is a violation generated by stochastic ordering with
H, =(1-¢0)G,+&L; and K; = G,. From Lemma 7 it follows that G £

" (1—g0) G+&o L. Hence Theorem 1 implies that X,.,/Eg X,., is the UMBRE

of 2 in the class 7 * under the violation IT(4; ¢o) of the original model. The
particular case of this example, when G,(x) = 1—e™4 x >0, and L, is the
gamma distribution with a fixed shape parameter p < 1, has been considered
by Bartoszewicz [2].

2.2. Robust estimates based on spacings. Consider again the model M,.
Now suppose that the model M, is violated in such a way that the
underlying random variables have an unknown distribution F,() = F(:/A)
from a set of d1str1but1ons my K(A) satlsfylng the following conditions:

disp dxs

() H, <F, < K, for every F,elly x(1) where H, and KA are fixed
continuous distributions with the scale parameter A and H (0) 0=K(0);

(ii) H}.EHHK(/D KAEHHK(A)

(iii) Tgx(A) N {G,, A >0} = {G,) for every ' >0.

The set IT H.K (4) will be called a violation of M generated by dispersive
ordering. If Sp =10, ar], Sy =10, ag], Sk =1[0,ax] and ag < arp < ax < ®
for each Fellyy, then from Lemma 1 it follows that [Ty g (J) is also a
violation generated by stochastic ordering.

Consider the class of statistics

= {S(a) = za View @ = (@1, ..., 0) € R, Eg, S@) = 4, 4 > 0},

where V.,=X;,—X;_1. i=1,2,...,n X,,=inf{x: F;(x) >0}, are
spacings. Thus #* is the class of all nonnegative linear combinations of
spacings which are unbiased estimates of 4 in the model M. It is easy to see
that 7+ < &*. Notice that if Se %", then bg(4) = Abs(1), where bg () is the
bias -robustness of S defined similarly as previously. Thus the problem of
finding the UMBRE of 4 in the class %" reduces to minimizing bg(1) in #*.

Similar to Theorem 1, from Lemmas 2 and 5 we have the following
theorem:
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TheoreM 2. Under the violation Iy of the model M:
) ifH ‘% G < K, then V,,,/EG V.., is the UMBRE of A in the class ¥*;
(i) if K € G € H, then V,.,/E; V,., is the UMBRE of 1 in the class ¥*.

Example 5. Exponential model. Let G,(x) =1—e ™ x>0, 1 > 0. The
relation H < G < K means that H is an IFR distribuiion and K is a DFR
distribution. Violations (2) and (3) satisfy the assumptions of Theorem 2 (see
[3]) and hence, in the class #* under the violation (2), nV;., is the UMBRE
of A and, under the violation (3), V,., is the UMBRE of A

Example 6. Uniform model. Let G, be the uniform distribution on
[0, A]. Consider the violation (5) of the uniform model. Since for —¢ <¢
<¢ <nwehave F,, & F;, and F,, £ F,,, from Lemma 6 it follows that

F,-h,;di<spF,-nﬂ-. This can be also proved using Lemma 3. Thus the set (5)
is a violation generated by dispersive ordering with H; =F, _, and K,
= F,,. Theorem 2 implies that (n+1)V,., is the UMBRE of 4 in 9%,

PR
Consider now the violation (6) of the uniform model. It easily follows

from Lemma 3 that F“'di?F“- for —¢é<e<e <n Since F;, <G,

<F,1 - from Theorem 2 we obtain that (n+1)V,,, is the UMBRE of
Ain ¥,

3. ROBUST ESTIMATES OF THE SCALE PARAMETER
FOR SYMMETRIC DISTRIBUTIONS

Consider the statistical model M, = (R, 4%, {G;, 4 >0})", where G,()
= G(-/4) is a continuous and symmetric about the origin distribution on the
support Sg = [—c;, ¢;1, ¢; < 0. As a violation of M, consider a set [Ty (1)
of symmetric about the origin distributions with the scale parameter A
satisfying the following conditions:

(i) Hi(x) 2 F;,(x) > K;(x) for every F,ell x(1) and each x>0
and 4 > 0 where H; and K; are fixed continuous symmetric about the origin
distributions with the scale parameter 1;

(i) Hyellgx(2), K;ellyx(4);

(iii) My x(A)N1G,, 4 >0 =!G, for every i’ > 0.

For the family of distributions {G;, 4 > 0} the vector (| X ., [X.d, ...,
|X,.d) is a sufficient statistic (see [9]). Define the class #* of linear
estimates of A, unbiased in the original model M, and based on the sufficient
statistic, such that \

= {W(a) = Z ailXiznl, (dla ooy cney a")ERﬁ., EGZ W’(a) = l, A > 0}.

i=1

The problem consists of finding the UMBRE of 1 in the class ¥ ™
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under the violation Ty x. Similarly as previously, if We #'*, then by (1)
= Aby (1) and it suffices to find a Woe #™* which minimizes by (1).
Similar to Theorems 1 and 2, from Lemma 9 we have the following

. theorem:

THeoREM 3. Under the violation My of the model My:
() if H <G < K, then for arbitrary ye[0, 1]

IX(n+ 1)/2-n| .
It byj2eal if n is odd,
EG IX(u+ 1)/2:n|

IXnIZ'nl an/2+1:n| ’
. ....“_.H_'__.,_+(1_ — e
EolXuzal T VEclXuzr1d
is the UMBRE of 4 in the class W',
(i) if K <G < H, then for arbitrary ye[0, 13
IXl-n' |Xn'n|
Wy = y—iinl :
0 yEGIXl:nI EGIXu:nI
is the UMBRE of A in the class #*.

It is easy to notice that the vector (| X|;., 1X|2:m ---» | Xln:) is also a
sufficient statistic for the family {G,, 1 > 0}. Consider the following class of
linear estimates of A, unbiased in the original model M,:

@®) Wo =
if n'is even,

+(1—7)

’V+ ={V(a) = Z al'IXli:m (al: LR ] oz,,)eR’L, EG‘. V(a) = ll, A. > 0}.
i=1 _ '
Similarly, using Lemmas 4 and 8, one can prove the following result:
THEOREM 4. Under the violation Iy of the model My:
() if H<G <K, then |X|,./Eg|X|,.n is the UMBRE of A in the class
v,
(ii) if K <G < H, then |X|,.//E|X|:n is the UMBRE of A in the class
v, :
Consider now the model M, and its violation Ty ,(4) generated by
dispersive ordering, ie. ITyx(4) satisfies conditions (i) and (i) from the

definition of ITy (1) and also it holds H A FF A-di? K; for every F,elly x(4). -

It is easy to see that if Sy < Sy = S for all Fellyy, then Iy 4 is also of the
type yx. -

Define the class 2t of linear estimates of A, unbiased in the original
model M,, such that

= Z@= Y (Xl |Xh=1:0)s 1, -, 2 RS, Eg, Z(@) = 2, 2> O},

i=1

where |X]o., = 0. Notice that ¥"* < #™*. Since for symmetric about the

2 —Prob. Math. Statist. 7 (2)




112 ). Bartoszewicz

origin distribution X Py implies |X| 4 |Y1, usmg Lemmas 2, 3 and 8 one
can easily prove the following result:

THFOREM 5 Under the violation Iy, of the model Mo

() if H< G < K, then |X|,./E¢|X|, .. is the UMBRE of 4 in the class
rﬂa-f-

(!1) ;fK< G < H9 then ('Xln:n—'lxln—l:n)/EG('XIn:n_IXln—-I:u) is the UM-
BRE of A in the class Z™.

Example 7. Contaminated normal model. Let G,(-) = @(-/1), where @ is
the distribution function of the normal distribution N (0, 1), and suppose
that in fact the underlying random variables have a distribution F% from the
set

T(h; 20) = (F5() = (1—) D(/H+eD(/33), 0< e <e}, 4>0,

where g < 1 is fixed.

It is easy to notice that the violation I7 (/’L go) is of the type ITy & (4) with
H, =®(-/1) and K; = (1 —£o) P (/) +¢g, 45( /34). Smce for the standard nor-
mal density ¢ we have u@' (W)/ou) = —u> and &(*) < &( /3) from Lemma
10 it follows that

0() £ (—a0 ()20 B(/).

Now from Theorem 3 we obtain that the statistic W#*, being of the form
(8) with G = @, is the UMBRE of 1 in the class #™* under the violation
IT(4;80) of the normal model.

From Theorem 4 it follows that the. statistics V* X1y ./EplXls., is the
UMBRE of A in the class ¥ under the violation IT(4;g,) of the normal
model.

Consider two classical unbiased estimators of the standard deviation 4
in the original normal model:

12

1 v
S,=TI'(n2) (5 Y Xiz) T(n2+1/2),
i=1 '
ie. the UMVUE of 4, and

={2/n) Z IXzI/(Z/ﬂ)”2

"For the considered contaminated normal model Tukey [16j has studied
the asymptotic relative efficiency of these estimators. Using our definition of
bias - robustness one can easily check that under the violation I1(1; g;) the
bias-robustness of these estimates are the same, namely bs, (4) = bs: (4)

= 24g;. However, notice that S*e #"* and also S*e ™", so the estimates
W#* and ¥V* are more bias- robust than §, and S} under the violation
H ().. 80)
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