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ON THE RATE OF CONVERGENCE IN THE CENTRAL LIMIT
THEOREM FOR FUNCTIONS OF THE AVERAGE OF INDEPEN-
DENT RANDOM VARIABLES

BY

DOMINIK SZYNAL (LuBLiN)

Abstract. We give the rate of convergence in the central limit
theorem and the random central limit theorem for functions belong-
ing to the class % of all real differentiable functions g such that
g'eL(1).

1. Introdection and notation. Let {X,, k > 1} be a sequence of indepen-
dent random variables and put S, ='ZX w k=1,2, ..., n. The asymptotical

‘normality of {g(S,/n), n > 1}, where g is a real function, were considered for

instance in [1] (Theorem 4.2.5, p. 76), [8] (Theorem 9.3.1, p. 259), [5], [6],
and in [3] for random elements of a Hilbert space. We are interested in the
rate convergence in law of the normalized sequence {g(S,/n), n > 1}.
Throughout this paper we shall use the following notation:
% — the class of all real, differentiable functions g such that g’ satisfies
the Lipschitz condition, i.e.

1) lg’(x)—g' Gl < Lix—yl,

‘where L is a positive constant;

& — the class of all functions ¢ defined on R for which

(a) ¢ is nonnegative, even, and nondecreasing on [0, oc],

(b) x/¢(x) is defined for all x and nondecreasing [0, o0);

2 — the class of all sequences {d,, n > 1} of positive numbers such that
d,— 0, n— o0, :

v <D(x)=—1—— ] e 2 gy,

2T —w
C denotes a positive constant.
Moreover, we shall often use the following results.
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Lemma 1.1 ([7], p. 28). Assume that X and Y are random variables and
F(x)=P[X <x], G(x) = P[X+Y < x]. Then, for any ¢ >0, xeR, and any
distribution function H, ' :

) 16G(x)-Hx) < sup \F (x) —H (x)| +
+max {{H(x—&)—H(x)|, |H (x+¢)— H(x)|}+P[| Y| = €]

From (i) we get
CoroLrLary 1.1. For any given ¢ > 0

@) SupIG O~ B0l < SupIF (9~ () +5//2+ PIY| > 2],

2. Uniferm estimates‘ In what follows we need the following

Lemma 2.1. Let Z be a random variable, and let b, ceR, ¢ # 0. Then for
every d >0 and every ge 9 with g'(b/c) # 0

(9 suplP {g—,-(f,,/—c)[g(Z/c)—g(b/c)J < x}-¢(x)|

< Ssup|P[Z-b <x]- cb(x)H— {—d*/2}+

— exp d .._,:E_'q_z__.
\/ leg’(b/e)l /2m

-Proof. Put ; _ .
o 9)—gb/g . ,
b= { =g T X*Ye

3§ B if x =bfc.

o ao]--e)

Hence, by (ii), for any glven e >0, we have

"We' see that

3 S!lpiP{ /e )[9 (Z/9)— g(b/c)] < X} ‘P(X)I
= suplP (Z—b+(Z—b) (h(Z/e)-1) < x} di(x)l
< sx;p!P‘[Z—-b < x]—d(x)| +£/\/—1t +P[|(Z-b)(h(Z/c)-— 1) = €].
Note how that for any d > 0 |
) P[I(Z—b)(h.(Z/c)-— 1) ze] < }[IZ—b| >d]+P[|h(Z/c)-1] = ¢/d]
< 2s1ip|P[Z—b < x]—di(x)|+2(1—¢»(d))+P[|h(Z/c)—1| > ¢/d].
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Taking into aécount the definition of h and (1), we get

|g(Z/)—glc) | _ ]
Zie—bag e |= 7

- pﬂg"”/":?gﬁ;“’/c’)q' > s/d] < PIZ~b] > (6/d) L |cq (b/o)]

< 2sup|P[Z—b < x]— @ ()| +2(1— @ ((&/d) L |eg'(b/c)))

6)  PRrZ/O)—-1] >e/d] = P[

‘as 0<f<1.
Combxmng (3) -(5) we obtain

{ (b/)[g(Z/) g(b/C)]<x} P (x)

< 55up|P[Z~b < x]— S| +2{1 — S(d)+

{(6) sup

+2(1 =@ ((/d) L  |cg’ (b/c))) +e/J§E

Putting, in (6), & = Ld?/|cg’ (b/c)} we get (2).

CororLary 2.1. Let {X,, k>1} be a sequence of random variables, and
let S, —ZXk (k=1,2,...,n). Suppose that {a,, k>1}, {b,k>1} and
{a, k = 1} are sequences of real numbers such that a, > 0, ¢, #0, k =2 1. Then
Jor every d >0 and every ge % with g'(b/c,) # 0, k = 1,

Cp : 'S,, b,, -
U] SUp IP{Q BJc) [g (a..c.,)_g (C—)] < x}—di(x)l
Sy, - 4 - Ld?
P|-—"—b, < x]-—_(b(x) + exp{—d*2}+ .
[a., dJ/m } leag’ (bufcall /2
CoroLLARY 2.2. Let {X;,k=>1} be a seqiaence of indeperident random
variables with finite expectations EX, and variances o> X, k > 1. Then for

every d>0 and every ge% with g'(u)#0, where p,=n"'> EX,
(k—l 2 sn)’

{,g (,,n,[ (S) g(u.)]«} &%)

< Ssup

(8) - sup

1.1S,—ES, Ld*s, f4 ' '
.‘: P A n — n — 2
< 5s1:p [—~———sn - < x] @ (x)|+ "l G ..)l xp{ d?/2}, |
=) o*X,
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CoroLLAry 2.3, Let {X;, k> 1} be a sequence of mdependent identically
distributed random variables wzth EX, =, 6*X, = ¢* < 0. Then for every
d >0 and every ge % with g'(u) #0

\/I_l S, .
® sup {g (u)a[g( ) 0(”)]“} 26
Ld%c 4
<5 - —d?/2).
7 [af x] O g aym P
Put

pbo=n"'Y EX,, s2=Y ¢*X,, X?=X,—EX,, k>1.
k=1 k=1

Estimates (7)-(9) and the known estimates the convergence rate in the
central limit theorem allow to obtain, among other things, the following
results.

THEOREM 24. Let {X,,k>1} be a sequence of independent random
variables such that E(XQ)? @ (X?) < o0, k> 1, for some pe®.
Then for every ge% with g'(u) #0, n> 1, and any sequence {d,, n

=1le7 ‘
(0 suplp{ 1 5l (S = )ow | <x}-ow
TECD 0D .
_ = -1 42
=0 S,f(P(S,,) +n|g (I‘u)l d, exP{ dn/2}

If EIX{® < o0, k > 1, then for every g % with ¢'(4) # 0, n> 1, and any
sequence {d,, n > l}e@

an sup P{ — w[ (S ) g(u,.)]<x} ()
SEXP )
=0kt Sﬁ +nlg o +d; Yexp{—d?/2}

CoroLLARY 2.5. If {X,, k > 1} is a sequence of independent identically
distributed random variables, then under the assumptions of Theorem 2.4 for
every ge 9 with g'(y) # 0, and any sequence {d,,n>1}e 2, we have
(10)  sup

AT ]

=0(¢(+\/7.)+3;§ y exp{—d3/2}),
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The estimate (9) allows us to give a generalization of a result given in
paper [2]: _

Tueorem 2.8. Let {X,, k = 1} be a sequence of independent identically distri-
buted random variables wzth EX,=u 6*X, =0? <0, and E|X,|**? < o0,
0<d<l. .

Then for every ge % with g'(u) #0
(15) Z n—1+6/2sup

= . {;/(;)[g(s) g(y)]<x} @ (x)

If E(X,—w?log(1+]|X;—u? < o0, then (15) converges with 6 =0.
. Proof. From (9) with d = ./Inn, we get

-
P{ v [Q(S) g(u)]<x} —&(x)
oy’ ()

|
<C{sup [ <xJ D(x )l nn}
| o/n
Moreover, we know [2] that

S,—nu | 1
P —P(
[af ] 0

which together with the obvious fact

< Q0.

sup

X

o0

Yy poita sup

n=1 x

< 0,

Y (¥ (nny/n) <o, 0<6<1,

n=1 |
allow us to obtain (15).

3. Partial sums with random indices. Following the consideration of
Section 1 one can prove the following

“LEmMMA 3:1. Let {X,, k> 1} be a sequence of independent identically
distributed random variables with EX, = p, ¢* X, = 6> < c0. Suppose that
{N,, n = 1} is a sequence of positive integer -valued random variables. Then for
every d >0, ¢ >0, and every ge % with g'(y) #0

P{{gj;[g(s"”) g(u)J<x} o)
”'{Ip"f { 00 g )

2
+ exp{—d¥2V+¢/./2n.

2V, T

(16) sup

p[M < xJ d(x)

< 3su
L1 s N,
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Using Lemma 4.1 we can give the following results: ,

Tueorem 3.2. Let {X,, k > 1} be a sequence of independent identically
distributed random variables with EX, = u, 62X, =0¢?, and E|X,]? < .
Suppose that {N,, n> 1} is a sequence of positive integer -valued random
* variables such that '

(17 P[%—l > a,.] = 0(\/2),

where a is a positive constant, and 1/n<eg,— 0, n— oo.
Then for every ge % with g'(u) # 0, and any sequence {d,,, nz1j}

P{—%[y(s” ) g(u)]«:x} (9

= O( /e, +d2//n+d; L exp{—d2/2})).

Proof. Following the considerations of the proof of Lemma 2.1 and
using (16) together with assumption (17) one can get

Nn I: (SN - . -/i }.— '-
P{ag,(#) g ) g | <xp~P(x)
{sup IP[ = x]—cb(x) +d,f/\/t—1+d,," 1exp{-—-d,f/Z}}
x o‘f

for any sequence {d,, n > 1}€ 9, where C is a positive constant. But it has
been proved in [4] that :

(18) sup

sup
x

= ow’ )

sup
x

[S—l—f—!-‘- < x] (D(x)

o /N,

hence we obtain (18).
CoroLLARY 3.3. Under the assumptzom of Theorem 3.2

P{%[g(s ) g(,u)]<x} P (x) =0( s,,+ln72).

CoroLLARY 34. If ( 7) hold . ith &, = (In n)/n, th n

P{cﬁ [g(sN ) g(u)]<x} @(Lx) =O(lj_[:)'

THeoREM 3.5. Let {X,,n>1} be a sequence of mdependent identically
distributed random variables such that EX; = i, 6> X, = ¢, E|X,|® < oo, and
{n,, n = 1} be a sequence withn™' < 3, — o0, n— co. Suppose that {N,, n > 1}
is a sequence of positive integer-valued random variables such that there

sup

x

sup

X
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exist positive constants c¢,, ¢, for which

N,
(19) P[[an] >cm,.] O (/)
(20) P[A<——] 0(/1):
i being a random variable taking values in (0, ) and independent of
{Xy, k> 1}.

Then for every ge ¥ with g'(4) # 0 and any sequence {d,,n> 1}e2

; P{*ﬁ;)[g(s") g(u)]<x} o

(21) sup
= O(/nud} +d; ' exp {—d2/2).

Proof. Ftom'(l6) we have

u P{ﬁ[g(s ) g(u)]<x} lfb(x.)

(22) sup

< 3sup

X

P[L-—N"—" <x] o(|+

¢ /N,
P[ Ig(ull'>(8'/d")\/——]

d,./2n
for any given ¢,>0 and {d,, n> 1}e 2.
Note now that by (19) and (20) we have

SN,,

exp{—d2/2}+&,/2n

(23) PHS:V:\—/%'_I” > lg’ () (stn) \/]—V_;]
< C{P’s:'\;jv_ > (" . T en \/(1 —cy 1) [eafna1/d, )]+ n.} _

< C{an’x‘p ‘P[S—;-\/-——_— < x] @(x)|+
+2(1-0 C” W SO m eamaid, ))+ n,}

Putting

£, = di/(lg—:f‘—)' J—cim) [{:z/rr..]) |
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and combining (22) and (23), we obtain

P{% [g (S” ) g(#)J }—@(x)

< C{sup P[ﬁ'ﬂ:—lﬁfi < x]—df'(x) +\/ad3+d,,“exp{—d?./2}.

a /N,

Using now [4] the estimate

sup
X

=0 /M),

sup

x

Sy
—"— < x |—P(x)
vkl
we obtain (21)

CoroLLARY 3.6. Under the assumptions of Theorem 3.5 for every ge %
with g'(u) #0

P{%[g(s ) g(u)J<x} o(x)
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