PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 7, Fasc. 2 (1986), p. 125-147

ON A RANDOM VERSION OF THE ANSCOMBE CONDITION AND ITS APPLICATIONS

R۱

KRZYSZTOF S. KUBACKI AND DOMINIK SZYNAL (LUBLIN)

Abstract. The paper proves theorems of [6] which are given here in a more general form. Moreover, some applications of the introduced version of the Anscombe condition are discussed.

1. Introduction. Let $\{Y_n, n \ge 1\}$ be a sequence of random variables (r.vs.) defined on a probability space (Ω, \mathcal{F}, P) . Suppose that there exists a probability measure μ such that

(1)
$$Y_n \Rightarrow \mu, \quad n \to \infty \text{ (converges weakly)};$$

for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

(A)
$$\limsup_{n\to\infty} P\left[\max_{|i-n|\leq \delta n} |Y_i-Y_n| \geqslant \varepsilon\right] \leqslant \varepsilon.$$

Suppose that $\{N_n, n \ge 1\}$ is a sequence of positive integer-valued r.vs. defined on the same probability space (Ω, \mathcal{F}, P) . The well known Anscombe's theorem [2] proves that if a sequence $\{Y_n, n \ge 1\}$ of r.vs. satisfies conditions (1) and (A), then

$$(2) Y_{N_n} \Rightarrow \mu, \quad n \to \infty,$$

for every sequence $\{N_n, n \ge 1\}$ of positive integer-valued r.vs. satisfying

(3)
$$N_n/a_n \stackrel{P}{\to} 1$$
, $n \to \infty$ (in probability),

where $\{a_n, n \ge 1\}$ is a sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$.

Condition (A), called the Anscombe condition, plays very important role in proofs of limit theorems for sequences of r.vs. with random indices. Aldous [1] has pointed out that condition (A) is a necessary and sufficient one for (2) when (3) holds. A more general and stronger result than that of [2] and [1] has been given by Csörgö and Rychlik [4].

THEOREM 1 [4]. Let $\{k_n, n \ge 1\}$ be a non-decreasing sequence of positive numbers. The following conditions are equivalent:

(i) the sequence $\{Y_n, n \ge 1\}$ satisfies (1) and the so-called "generalized Anscombe condition" with norming sequence $\{k_n, n \ge 1\}$: for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

(A°)
$$\limsup_{n\to\infty} P\left[\max_{|k_i^2-k_n^2|\leq \delta k_n^2} |Y_i-Y_n| \geqslant \varepsilon\right] \leqslant \varepsilon;$$

(ii)
$$Y_{N_n} \Rightarrow \mu \ (n \to \infty)$$
 for every $\{N_n, n \ge 1\}$ satisfying

(4)
$$k_{N_n}^2/k_{a_n}^2 \stackrel{P}{\to} 1 \qquad (n \to \infty),$$

where $\{a_n, n \ge 1\}$ is a sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$.

These results essentially base on the assumption $Y_n \Rightarrow \mu$ $(n \to \infty)$. In [6] we have considered the case where that fact is not known but we want to know whether a sequence of r.vs. with random indices weakly converges to a measure (we are interested in, e.g., Gaussian measure). The following theorem has been given without proof:

THEOREM 2 [6]. Let $\{k_n, n \ge 1\}$ be a non-decreasing sequence of positive numbers and let $\{v_n, n \ge 1\}$ be a sequence of positive integer-valued r.vs. such that $v_n \xrightarrow{P} \infty$ $(n \to \infty)$. The following conditions are equivalent:

(i) $Y_{\nu_n} \Rightarrow \mu \ (n \to \infty)$, and the sequence $\{Y_n, n \ge 1\}$ satisfies the so-called "Anscombe random condition" with norming sequence $\{k_n, n \ge 1\}$ and filtering sequence $\{\nu_n, n \ge 1\}$: for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

(A*)
$$\limsup_{n\to\infty} P\left[\max_{|k_i^2-k_{\nu_n}^2|\leq \delta k_{\nu_n}^2} |Y_i-Y_{\nu_n}| \geqslant \varepsilon\right] \leqslant \varepsilon;$$

(ii) $Y_{N_n} \Rightarrow \mu \ (n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying

(5)
$$k_{N_n}^2/k_{v_{a_n}}^2 \stackrel{P}{\to} 1 \quad (n \to \infty),$$

where $\{a_n, n \ge 1\}$ is a sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$.

We prove here Theorem 2 in a more general version and discuss some applications of the introduced random version of the Anscombe condition.

2. Random version of the Anscombe condition. Let $\{Y_n, n \ge 1\}$ be a sequence of r.vs. defined on a probability space (Ω, \mathcal{F}, P) and let $\{\alpha_n, n \ge 1\}$ be a non-decreasing sequence of positive r.vs. $(0 < \alpha_n \le \alpha_{n+1} \text{ a.s., } n \ge 1)$ defined on the same probability space (Ω, \mathcal{F}, P) . Furthermore, let $\{\tau_n, n \ge 1\}$ be a sequence of positive integer-valued r.vs. defined on (Ω, \mathcal{F}, P) and such that $\tau_n \xrightarrow{P} \infty$ $(n \to \infty)$.

Definition (Anscombe random condition). A sequence $\{Y_n, n \ge 1\}$ is said to satisfy the Anscombe random condition with the norming sequence $\{\alpha_n, n \ge 1\}$ of positive r.vs. and filtering sequence $\{\tau_n, n \ge 1\}$ of positive

integer-valued r.vs. if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$(A^{**}) \qquad \limsup_{n\to\infty} P\left[\max_{|\alpha_i^2-\alpha_{\nu_n}^2|\leq \delta\alpha_{\nu_n}^2} |Y_i-Y_{\nu_n}| \geqslant \varepsilon\right] \leqslant \varepsilon.$$

One can easily see that in the special case, when $\alpha_n = k_n$ a.s., $\tau_n = n$ a.s., $n \ge 1$, (A^{**}) reduces to (A°) , and hence, when $k_n^2 = n$ $(n \ge 1)$, (A^{**}) reduces to (A). On the other hand, if $\alpha_n = k_n$ a.s. $(n \ge 1)$, then (A^{**}) reduces to (A^*) .

Moreover, we notice that if a sequence $\{Y_n, n \ge 1\}$ satisfies (A), then it satisfies (A**) with the norming sequence $\{\sqrt{n}, n \ge 1\}$ (i.e. $\alpha_n = \sqrt{n}$ a.s., $n \ge 1$) and any filtering sequence $\{a_n, n \ge 1\}$ of positive integers such that $a_n \to \infty$ $(n \to \infty)$.

The analogous remark refers to (A°) . Namely, if a sequence $\{Y_n, n \ge 1\}$ satisfies (A°) with norming sequence $\{k_n, n \ge 1\}$, then it satisfies (A^{**}) with the same norming sequence $\{k_n, n \ge 1\}$ (i.e. $\alpha_n = k_n$ a.s., $n \ge 1$) and any filtering sequence $\{a_n, n \ge 1\}$ of positive integers such that $a_n \to \infty$ $(n \to \infty)$.

The following lemma generalizes these remarks and proves Lemma 1 from [6]:

LEMMA 1. If a sequence $\{Y_n, n \ge 1\}$ of r.vs. satisfies (A°) with the norming sequence $\{k_n, n \ge 1\}$, then it satisfies (A^{**}) with the same norming sequence $\{k_n, n \ge 1\}$ and any filtering sequence $\{\tau_n, n \ge 1\}$ independent of $\{Y_n, n \ge 1\}$.

Proof. Let $K \in \mathbb{N}$ be fixed. Then

$$\begin{split} P\big[\max_{|k_i^2 - k_{\tau_n}^2| \le \delta k_{\tau_n}^2} |Y_i - Y_{\tau_n}| \ge \varepsilon\big] \le P\big[\tau_n \le K\big] + \\ + \sum_{r = K+1}^{\infty} P\big[\tau_n = r\big] P\big[\max_{|k_i^2 - k_r^2| \le \delta k_r^2} |Y_i - Y_r| \ge \varepsilon\big], \end{split}$$

as τ_n is for every $n \ge 1$ independent of $\{Y_n, n \ge 1\}$. But

$$\lim_{n\to\infty}P\left[\tau_n\leqslant K\right]=0,$$

since $\tau_n \stackrel{P}{\to} \infty$ $(n \to \infty)$. Choosing then K so large that

$$P\left[\max_{|k_i^2-k_r^2| \leq \delta k_r^2} |Y_i-Y_r| \geqslant \varepsilon\right] \leq \varepsilon$$
 for every $r > K$,

we obtain the desired result.

There arises, obviously, a question about conditions which the filtering sequence $\{\tau_n, n \ge 1\}$ should satisfy in the case where we reject in Lemma 1 the assumption that $\{\tau_n, n \ge 1\}$ is independent of $\{Y_n, n \ge 1\}$. The following lemma gives an answer to this question and proves Lemma 2 from [6]:

LEMMA 2. If a sequence $\{Y_n, n \ge 1\}$ of r.vs. satisfies (A°) with the norming sequence $\{k_n, n \ge 1\}$, then it satisfies (A^{**}) with the same norming sequence $\{k_n, n \ge 1\}$ and any filtering sequence $\{N_n, n \ge 1\}$ satisfying (4).

Proof. By the assumption and the remark after Definition we conclude that the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with the norming sequence $\{k_n, n \ge 1\}$ and any filtering sequence $\{a_n, n \ge 1\}$ of positive integers such that $a_n \to \infty$ $(n \to \infty)$. Let $\{N_n, n \ge 1\}$ be a sequence of positive integer-valued r.vs. satisfying (4), i.e.

(a)
$$k_{N_n}^2/k_{b_n}^2 \stackrel{P}{\to} 1 \quad (n \to \infty),$$

where $\{b_n, n \ge 1\}$ is a sequence of positive integers with $b_n \to \infty$ $(n \to \infty)$. Put

$$B_n = [|k_{N_n}^2 - k_{b_n}^2| \le \eta k_{b_n}^2] \quad (n \ge 1),$$

where η is a fixed positive number. Then for every $\varepsilon > 0$ and $\delta > 0$ we have

$$\begin{split} \text{(b)} \quad & P \big[\max_{|k_i^2 - k_{N_n}^2| \le \delta k_{N_n}^2} |Y_i - Y_{N_n}| \geqslant \varepsilon \big] \leqslant P(B_n^c) + \\ & \quad + P \big[\max_{|k_i^2 - k_{N_n}^2| \le \delta k_{N_n}^2} |Y_i - Y_{b_n}| \geqslant \varepsilon/2; B_n \big] + P \big[|Y_{N_n} - Y_{b_n}| \geqslant \varepsilon/2; B_n \big] \\ & \quad \leqslant P(B_n^c) + P \big[\max_{|k_i^2 - k_{b_n}^2| \le \delta^n k_{b_n}^2} |Y_i - Y_{b_n}| \geqslant \varepsilon/2 \big] + P \big[\max_{|k_i^2 - k_{b_n}^2| \le \eta k_{b_n}^2} |Y_i - Y_{b_n}| \geqslant \varepsilon/2 \big], \end{split}$$

where $\delta^* = \delta(1+\eta) + \eta$. Since the sequence $\{Y_n, n \ge 1\}$ satisfies condition (A^{**}) with the norming sequence $\{k_n, n \ge 1\}$ and filtering sequence $\{b_n, n \ge 1\}$ and since, by (a), $P(B_n^c) \to 0$ as $n \to \infty$, inequality (b) proves that the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with norming sequence $\{k_n, n \ge 1\}$ and filtering sequence $\{N_n, n \ge 1\}$. The proof of Lemma 2 is completed.

Remark 1. Further it will be shown that (4) is in a sense necessary for (A°) to imply (A^{**}) . It will be proved that it is not enough to assume (5).

The following lemma generalizes Lemma 2 as well as Lemma 3 of [6]: Lemma 3. If a sequence $\{Y_n, n \ge 1\}$ of r.vs. satisfies (A^{**}) with the norming sequence $\{\alpha_n, n \ge 1\}$ and filtering sequence $\{\tau_n, n \ge 1\}$, then it satisfies (A^{**}) with the same norming sequence $\{\alpha_n, n \ge 1\}$ and any filtering sequence $\{N_n, n \ge 1\}$ such that $\alpha_{N_n}^2/\alpha_{\tau_{a_n}}^2 \stackrel{P}{\to} 1 \ (n \to \infty)$, where $\{a_n, n \ge 1\}$ is a sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$.

Proof. Let us put

$$B_n = [|\alpha_{N_n}^2 - \alpha_{\tau_{\alpha_n}}^2| \leqslant \eta \alpha_{\tau_{\alpha_n}}^2] \quad (n \geqslant 1),$$

where η is a fixed positive number. Then, for every $\varepsilon > 0$ and $\delta > 0$, we have

$$P\left[\max_{|\alpha_i^2 - \alpha_{N_n}^2| \le \delta \alpha_{N_n}^2} |Y_i - Y_{N_n}| \ge \varepsilon\right]$$

$$\leqslant P(B_n^\epsilon) + P\left[\max_{|a_i^2 - \alpha_{\tau_{a_n}}^2| \leqslant \delta^* \alpha_{\tau_{a_n}}^2} |Y_i - Y_{\tau_{a_n}}| \geqslant \varepsilon/2\right] + P\left[\max_{|\alpha_i^2 - \alpha_{\tau_{a_n}}^2| \leqslant \eta \alpha_{\tau_{a_n}}^2} |Y_i - Y_{\tau_{a_n}}| \geqslant \varepsilon/2\right],$$

where $\delta^* = \delta(1+\eta) + \eta$. The assumption and this inequality imply the desired result.

It is easy to see that if $\alpha_n = k_n$ a.s. $(n \ge 1)$, then Lemma 3 reduces to Lemma 3 of [6].

3. The main theorem. The following theorem generalizes and strengthens the statements of Theorem 1 and Theorem 2:

THEOREM 3. Let $\{\alpha_n, n \ge 1\}$ be a non-decreasing sequence of positive r.vs. and let $\{v_n, n \ge 1\}$ be a sequence of positive integer-valued r.vs. such that $v_n \stackrel{P}{\to} \infty (n \to \infty)$. The following conditions are equivalent:

- (i) $Y_{\nu_n} \Rightarrow \mu \ (n \to \infty)$, and the sequence $\{Y_n, n \ge 1\}$ satisfies Anscombe random condition (A**) with norming sequence $\{\alpha_n, n \ge 1\}$ and filtering sequence $\{\nu_n, n \ge 1\}$;
- (ii) $Y_{N_n} \Rightarrow \mu \ (n \to \infty)$ for every sequence $\{N_n, n \ge 1\}$ of positive integer-valued r.vs. such that

(6)
$$\alpha_{N_n}^2/\alpha_{\nu_{a_n}}^2 \xrightarrow{P} 1 \quad (n \to \infty),$$

where $\{a_n, n \ge 1\}$ is a sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$.

Proof. Let $\varepsilon > 0$ and a closed set $A \subset R$ be given. Then, for every $\delta > 0$, we have

$$\begin{split} &P\left[\left.Y_{N_n}\!\in\!A\right]\leqslant P\left[\left.Y_{v_{a_n}}\!\in\!A^\varepsilon\right]\!+P\left[\left.Y_{N_n}\!\in\!A;\;Y_{v_{a_n}}\!\notin\!A^\varepsilon\right]\right.\\ &\leqslant P\left[\left.Y_{v_{a_n}}\!\in\!A^\varepsilon\right]\!+P\left[\left.\left|Y_{N_n}\!-Y_{v_{a_n}}\right|\geqslant\varepsilon\right]\right.\\ &\leqslant P\left[\left.Y_{v_{a_n}}\!\in\!A^\varepsilon\right]\!+P\left[\left.\left|\alpha_{N_n}^2\!-\alpha_{v_{a_n}}^2\right|>\delta\alpha_{v_{a_n}}^2\right]\!+P\left[\max_{|\alpha_i^2-\alpha_{v_{a_n}}^2|\leqslant\delta\alpha_{v_{a_n}}^2}|Y_i\!-Y_{v_{a_n}}|\geqslant\varepsilon\right], \end{split}$$

where $A^{\varepsilon} = \{x \in \mathbb{R}: \varrho(x, A) \leq \varepsilon\}$, $\varrho(x, A) = \inf\{|x - y|: y \in A\}$. Since $\varepsilon > 0$ can be chosen arbitrarily small, we see by (6), (A**), the assumption $Y_{\nu_n} \Rightarrow \mu$ $(n \to \infty)$ and Theorem 2.1 of [3] that (i) implies (ii).

If (ii) holds, then putting $N_n = v_n$ a.s. $(n \ge 1)$, we conclude that $Y_{v_n} \Rightarrow \mu$ $(n \to \infty)$. Suppose that (A^{**}) with the norming sequence $\{\alpha_n, n \ge 1\}$ and filtering sequence $\{v_n, n \ge 1\}$ fails. Then there exist an $\varepsilon > 0$ and a subsequence $n_1 < n_2 < \ldots$ of positive integers $(n_j \to \infty, j \to \infty)$ such that

(a)
$$P\left[\max_{i \in B_{n_i}} |Y_i - Y_{\nu_{n_j}}| \ge \varepsilon\right] > \varepsilon \quad \text{for all } j \ge 1,$$

where

$$B_{n_j} = \{i \in \mathbb{N}: \ \alpha_{v_{n_j}}^2 \leqslant \alpha_i^2 \leqslant (1 + 1/j) \alpha_{v_{n_j}}^2 \} \quad (j \geqslant 1)$$

or

$$B_{n_j} = \{i \in \mathbb{N} \colon (1 - 1/j) \, \alpha_{v_{n_i}}^2 \leqslant \alpha_i^2 \leqslant \alpha_{v_{n_i}}^2\} \qquad (j \geqslant 1).$$

We shall only consider the first case as the second one can be treated similarly.

Let $\{G_i, 1 \le i \le M\}$ be disjoint and open subsets such that

$$0 < \mu(G_i) = \mu(\overline{G}_i), \quad \mu(\bigcup_{i=1}^M G_i) > 1 - \varepsilon/2,$$

and the diameter $G_i < \varepsilon/2$. Thus, by (a), there exist a set $G \in \{G_i, 1 \le i \le M\}$ and a subsequence $\{m_j, j \ge 1\}$ of the sequence $\{n_j, j \ge 1\}$ such that

(b)
$$P[Y_{v_{m_j}} \in G; \max_{\alpha_{v_{m_i}} \le \alpha_i^2 \le (1+1/j)\alpha_{v_{m_i}}^2} |Y_i - Y_{v_{m_j}}| \ge \varepsilon] > \varepsilon/(2M)$$
 for all $j \ge 1$.

Let $N_j = \min \{C_j^1, C_j^2\}, j \ge 1$, where

$$C_j^1 = \max\{i \in N: \alpha_i^2 \le (1+1/j)\alpha_{\nu_{m_i}}^2\}, \quad C_j^2 = \min\{i \ge \nu_{m_j}: Y_i \notin G\}.$$

Since the sequence $\{\alpha_n^2, n \ge 1\}$ is non-decreasing, we have $\alpha_{\nu_{m_j}}^2 \le \alpha_{C_j^2}^2$ a.s., $\alpha_{\nu_{m_j}}^2 \le \alpha_{C_j^1}^2$ a.s., $\alpha_{N_j}^2 \le (1+1/j)\alpha_{\nu_{m_j}}^2$ a.s. for all $j \ge 1$. Hence

$$\alpha_{N_j}^2/\alpha_{\nu_{m_j}}^2 \xrightarrow{P} 1 \quad (j \to \infty),$$

which proves that the sequence $\{N_j, j \ge 1\}$ satisfies (6). But

$$\begin{split} P[Y_{N_j} \notin G] &= P[Y_{\nu_{m_j}} \notin G] + P[Y_{N_j} \notin G; \ Y_{\nu_{m_j}} \in G] \\ &\geqslant P[Y_{\nu_{m_j}} \notin G] + P[Y_{\nu_{m_j}} \in G; \max_{\alpha_{\nu_{m_j}}^2 \leqslant \alpha_i^2 \leqslant (1+1/j)\alpha_{\nu_{m_j}}^2} |Y_i - Y_{\nu_{m_j}}| \geqslant \varepsilon] \\ &\geqslant P[Y_{\nu_{m_i}} \notin G] + \varepsilon/(2M), \end{split}$$

which, by Theorem 2.1 of [3], proves that $Y_{N_j} \neq \mu(j \to \infty)$. This is a contradiction to (ii), and it proves that the sequence $\{Y_n, n \ge 1\}$ must satisfy (A**) with the norming sequence $\{\alpha_n, n \ge 1\}$ and filtering sequence $\{\nu_n, n \ge 1\}$. The proof of Theorem 3 is completed.

Remark 2. It is easy to see that putting $\alpha_n = k_n$ a.s., $v_n = n$ a.s., $n \ge 1$, Theorem 3 reduces to Theorem 1. It is so since in this case (A^{**}) reduces to (A°) , whereas (A°) reduces to (A°) , whereas (A°) reduces to (A°) reduces (A°)

COROLLARY 1. Let $\{k_n, n \ge 1\}$ be a non-decreasing sequence of positive numbers and let $\{a_n, n \ge 1\}$ be a sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$. The following conditions are equivalent:

(i) $Y_{a_n} \Rightarrow \mu \ (n \to \infty)$, and the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with the norming sequence $\{k_n, n \ge 1\}$ and filtering sequence $\{a_n, n \ge 1\}$;

(ii)
$$Y_{N_n} \Rightarrow \mu, n \to \infty$$
, for every $\{N_n, n \ge 1\}$ satisfying

(7)
$$k_{N_n}^2/k_{b_n}^2 \stackrel{P}{\to} 1 \quad (n \to \infty),$$

where $\{b_n, n \ge 1\}$ is a sequence of positive integers with $b_n \to \infty$ $(n \to \infty)$ and $\{b_n, n \ge 1\} \subseteq \{a_n, n \ge 1\}$.

COROLLARY 2. Let $\{k_n, n \ge 1\}$ be a non-decreasing sequence of positive numbers and let $\{v_n, n \ge 1\}$ be a sequence of positive integer-valued r.vs. such that $v_n \xrightarrow{P} \infty$ $(n \to \infty)$. The following conditions are equivalent:

- (i) $Y_{\nu_n} \Rightarrow \mu \ (n \to \infty)$, and the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with the norming sequence $\{k_n, n \ge 1\}$ and filtering sequence $\{\nu_n, n \ge 1\}$;
 - (ii) $Y_{N_n} \Rightarrow \mu \ (n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying

(8)
$$k_{N_n}^2/k_{\nu_{a_n}}^2 \stackrel{P}{\to} 1 \quad (n \to \infty),$$

where $\{a_n, n \ge 1\}$ is a sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$.

In the particular case, where $k_n^2 = n$, $v_n = [\lambda n]$ a.s. $(n \ge 1)$, where λ is an r.v. such that $P[0 < \lambda < \infty] = 1$, the following conditions are equivalent:

- (i') $Y_{[\lambda n]} \Rightarrow \mu \ (n \to \infty)$, and the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with norming sequence $\{\sqrt{n}, n \ge 1\}$ and filtering sequence $\{[\lambda n], n \ge 1\}$;
 - (ii') $Y_{N_n} \Rightarrow \mu \ (n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying

$$(8') N_n/a_n \stackrel{P}{\to} \lambda (n \to \infty),$$

where $\{a_n, n \ge 1\}$ is a sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$.

COROLLARY 3. Let $\{\alpha_n, n \ge 1\}$ be a non-decreasing sequence of positive r. vs. and let $\{a_n, n \ge 1\}$ be a sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$. The following conditions are equivalent:

- (i) $Y_{a_n} \Rightarrow \mu \ (n \to \infty)$, and the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with the norming sequence $\{\alpha_n, n \ge 1\}$ and filtering sequence $\{a_n, n \ge 1\}$;
 - (ii) $Y_{N_n} \Rightarrow \mu \ (n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying

(9)
$$\alpha_{N_n}^2/\alpha_{b_n}^2 \stackrel{P}{\to} 1 \quad (n \to \infty),$$

where $\{b_n, n \ge 1\}$ is a sequence of positive integers with $b_n \to \infty$ $(n \to \infty)$ and $\{b_n, n \ge 1\} \subseteq \{a_n, n \ge 1\}$.

The following example elucidates the usefulness of these considerations. Example 1 [12]. Let $\{X_k, k \ge 1\}$ be a sequence of independent r.vs. defined by

$$P[X_{2^{2^n}} = 2^{2^{n-1}}] = P[X_{2^{2^n}} = -2^{2^{n-1}}] = \frac{1}{2} \quad (n \ge 1),$$

and X_k , for $k \neq 2^{2^n}$ $(n \geq 1, k \geq 1)$, has the normal distribution function N(0, 1) with mean zero and variance one. Let us put

$$S_n = \sum_{k=1}^n X_k, \quad S_n^2 = \sum_{k=1}^n \sigma^2 X_k,$$

and $Y_n := S_n/s_n \ (n \ge 1)$. Then

$$Y_{2^{2^n}-1} \Rightarrow \mathcal{N}_{0,1} \ (n \to \infty), \quad Y_{2^{2^n}} \Rightarrow X \ (n \to \infty),$$

where $\mathcal{N}_{a,b}$ denotes a normal r.v. with mean a and variance b, and the r.v. X has the characteristic function $\varphi(t) = \cos(t/\sqrt{2}) e^{-t^2/4}$ (cf. [12]). Let $\{N'_n, n \ge 1\}$ be a sequence of positive integer-valued r.vs. such that

(10a)
$$P[N'_n = 2^{2^n} - 1] = 1 - \frac{1}{n}, \quad P[N'_n = 2^{2^n}] = \frac{1}{n} \quad (n \ge 1).$$

Theorem 1 does not allow to confirm the weak convergence of the randomly indexed sequence $\{Y_{N_n}, n \ge 1\}$. But it is easy to see that the sequence $\{Y_n, n \ge 1\}$ of r.vs. satisfies (A°) with norming sequence $\{k_n, n \ge 1\}$, where $k_n = s_n$ $(n \ge 1)$ (cf. [13], p. 11). Hence, by Lemma 1, the sequence $\{Y_n, n \ge 1\}$ satisfies also (A**) with the norming sequence $\{s_n, n \ge 1\}$ and any filtering sequence $\{a_n, n \ge 1\}$ of positive integers with $a_n \to \infty$ $(n \to \infty)$. Thus, by Corollary 1, $Y_{N_n} \Rightarrow \mathcal{N}_{0,1}$ $(n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying $s_{N_n}^2/s_{b_n}^2 \xrightarrow{P} 1$ $(n \to \infty)$, where $\{b_n, n \ge 1\}$ satisfying $s_{N_n}^2/s_{b_n}^2 \xrightarrow{P} 1$ $(n \to \infty)$, for every $\{N_n, n \ge 1\}$ satisfying $s_{N_n}^2/s_{b_n}^2 \xrightarrow{P} 1$ $(n \to \infty)$,

where $\{b'_n, n \ge 1\} \subseteq \{2^{2^n}, n \ge 1\}$ $(b'_n \to \infty, n \to \infty)$. For the sequence $\{N'_n, n \ge 1\}$, defined by (10a), we have

$$s_{N'_n}^2/s_{2^{2^n}-1}^2 \xrightarrow{P} 1 \quad (n \to \infty).$$

Hence we conclude that in this case $Y_{N_n} \Rightarrow \mathcal{N}_{0,1}$ $(n \to \infty)$. Let us further notice that if A is an event independent of X_k $(k \ge 1)$ and

(10b)
$$v_n = \begin{cases} 2^{2^n} - 1 & \text{on } A, \\ 2^{2^n} & \text{on } A^c, \end{cases}$$

then $P[Y_{\nu_n} < x] \to \Phi(x) P(A) + P[X < x] P(A^c), n \to \infty$, i.e.

(10c)
$$Y_{\nu_n} \Rightarrow \mathcal{N}_{0,1} I(A) + XI(A^c) \quad (n \to \infty).$$

Moreover, the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with the norming sequence $\{s_n, n \ge 1\}$ and filtering sequence $\{v_n, n \ge 1\}$. Indeed, by the construction $v_n \xrightarrow{P} \infty$ $(n \to \infty)$, and v_n is for every $n \ge 1$ independent of Y_k $(k \ge 1)$. Since the sequence $\{Y_n, n \ge 1\}$ satisfies (A°) with norming sequence $\{s_n, n \ge 1\}$, Lemma 1 confirms the desired result. Hence, and by (10c) and Corollary 2, we have

$$Y_{N_n} \Rightarrow \mathcal{N}_{0,1} I(A) + XI(A^c) \quad (n \to \infty)$$

for every $\{N_n, n \ge 1\}$ such that $s_{N_n}^2/s_{v_{a_n}}^2 \xrightarrow{P} 1 \ (n \to \infty)$, where $\{a_n, n \ge 1\}$ is a

sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$. This fact implies the statements after (10a), i.e. putting $A = \Omega$ or, equivalently, $v_n = 2^{2^n} - 1$ a.s. $(n \ge 1)$, we obtain $Y_{N_n} \Rightarrow \mathcal{N}_{0,1}$ $(n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying $s_{N_n}^2/s_{b_n}^2 \stackrel{P}{\to} 1$ $(n \to \infty)$, where $\{b_n, n \ge 1\} \subseteq \{2^{2^n} - 1, n \ge 1\}$ $(b_n \to \infty, n \to \infty)$; putting, however, $A = \emptyset$ or, equivalently, $v_n = 2^{2^n}$ a.s. $(n \ge 1)$, we obtain $Y_{N_n} \Rightarrow X$ $(n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying $s_{N_n}^2/s_{b_n}^2 \stackrel{P}{\to} 1$ $(n \to \infty)$, where $\{b_n', n \ge 1\} \subseteq \{2^{2^n}, n \ge 1\}$ $(b_n' \to \infty, n \to \infty)$.

4. More about usefulneses of the Anscombe random condition. Now we shall give two examples of sequences $\{Y_n, n \ge 1\}$ which fulfil (A^{**}) , whereas they satisfy neither (A) nor (A°) . At the end of this section we shall give an example proving Remark 1.

Example 2. Let $\{X_k, k \ge 1\}$ be a sequence of r.vs. defined as follows: the r.vs. $X_k, k \ne 2^{2^n} (n \ge 0, k \ge 1)$, are independent and have the normal distribution function N(0, 1), and

$$X_2 = -X_1, \quad X_{2^{2^n}} = -\sum_{j=2^{2^{n-1}}+1}^{2^{2^n-1}} X_j \quad (n \ge 1).$$

Let us put $S_n = \sum_{j=1}^n X_j$, $Y_n := S_n / \sqrt{n}$ $(n \ge 1)$. Then

(11)
$$Y_{2^{2^n}} = 0 \text{ a.s. } (n \ge 0), \quad Y_{2^{2^n}-1} \Rightarrow \mathcal{N}_{0,1} (n \to \infty).$$

Indeed, for every $n \ge 0$ we have $S_{2^{2^n}} = 0$ a.s., which proves that $Y_{2^{2^n}} = 0$ a.s. $(n \ge 0)$. For the proof of the second property in (11) we put $S_n = S_n^* + S_n^{**}(n \ge 1)$, where

(12a)
$$S_n^* = \sum_{i=1}^n X_i = \sum_{\substack{i=1 \ i \in \mathbb{N}^o}}^n X_i, \quad S_n^{**} = \sum_{\substack{i=1 \ i \in \mathbb{N}^{oo}}}^n X_i = \sum_{\substack{i=1 \ i \in \mathbb{N}^{oo}}}^n X_i$$

and

(12b)
$$N^* = \{j \in \mathbb{N}: j \neq 2^{2^n}, n \geqslant 0\}, \quad N^{**} = \mathbb{N} \setminus \mathbb{N}^*,$$

and note that, for every $n \ge 1$, S_n^* is the sum of independent r.vs., $S_{2^{2^n}}^* = S_{2^{2^n}-1}^*$ a.s. for $n \ge 0$, while

(12c)
$$S_1^{**} = 0$$
 a.s.,
 $S_{2^{n-i}}^{**} = -S_{2^{2^{n-1}}-1}^{*}$ a.s. for $1 \le i \le 2^{2^n} - 2^{2^{n-1}}$ $(n \ge 1)$.

Moreover, by the Kolmogorov's inequality we have, for every $\varepsilon > 0$,

$$P[|S_{22^{n}-1}^{**}/\sqrt{2^{2^{n}}-1}| \geqslant \varepsilon] = P[|\sum_{\substack{i=1\\i\in\mathbb{N}^{\infty}}}^{2^{2^{n}-1}-1}X_{i}| \geqslant \varepsilon\sqrt{2^{2^{n}}-1}]$$

$$\leq 2^{2^{n-1}}/\varepsilon^{2}(2^{2^{n}}-1) \to 0 \quad (n\to\infty).$$

Hence, and taking into account that

$$E \exp\left\{it \, S_{2^{2^{n}}-1}^{*}/\sqrt{2^{2^{n}}-1}\right\} = E \exp\left\{it \, \sum_{\substack{j=1\\j\in N^{o}}}^{2^{2^{n}}-1} X_{j}/\sqrt{2^{2^{n}}-1}\right\}$$

$$= \exp\left\{-t^{2}(2^{2^{n}}-n-1)/2(2^{2^{n}}-1)\right\} \to \exp\left\{-t^{2}/2\right\} \quad (n\to\infty),$$

we obtain

$$Y_{2^{2^{n}}-1} = S_{2^{2^{n}}-1}^{*} / \sqrt{2^{2^{n}}-1} + S_{2^{2^{n}}-1}^{**} / \sqrt{2^{2^{n}}-1} \Rightarrow \mathcal{N}_{0,1} \quad (n \to \infty),$$

which ends the proof of (11).

Now we shall prove that the sequence $\{Y_n, n \ge 1\}$ does not satisfy the Anscombe condition (A).

Indeed, if the sequence $\{Y_n, n \ge 1\}$ fulfilled (A), then in view of the remarks after Definition it would fulfil (A**) with norming sequence $\{\sqrt{n}, n \ge 1\}$ and any filtering sequence $\{a_n, n \ge 1\}$ of positive integers with $a_n \to \infty$ $(n \to \infty)$, e.g. with $a_n = 2^{2^n} - 1$ $(n \ge 1)$ for which

$$Y_{2^{2^n}-1} \Rightarrow \mathcal{N}_{0,1} \quad (n \to \infty).$$

Hence, by Corollary 1, $Y_{N_n} \Rightarrow \mathcal{N}_{0,1}$ $(n \to \infty)$ for every $\{N_n, n \ge 1\}$ such that $N_n/(2^{2^n}-1) \stackrel{P}{\to} 1$ $(n \to \infty)$. So then, for $N_n = 2^{2^n}$ a.s. $(n \ge 1)$, we would have

$$Y_{2^n} \Rightarrow \mathcal{N}_{0,1} \quad (n \to \infty),$$

which is a contradiction to (11). Thus, the sequence $\{Y_n, n \ge 1\}$ does not satisfy (A^{**}) with the norming sequence $\{\sqrt{n}, n \ge 1\}$ and filtering sequence $\{2^{2^n}-1, n \ge 1\}$, and then, by the earlier considerations, we conclude that the sequence $\{Y_n, n \ge 1\}$ does not satisfy (A).

And now we shall prove that the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with the norming sequence $\{\sqrt{n}, n \ge 1\}$ and filtering sequence $\{3^{2^n}, n \ge 1\}$. To this end we note that for every $\varepsilon > 0$ and for every $\delta > 0$ we have

(13)
$$P\left[\max_{|i-3|^{2n}|\leq \delta 3^{2n}} |Y_i - Y_{3^{2n}}| \geq \varepsilon\right] \leq P\left[\max_{|i-3|^{2n}|\leq \delta 3^{2n}} |S_i - S_{3^{2n}}| \geq \varepsilon \sqrt{3^{2^n}}/2\right] + P\left[\max_{|i-3|^{2n}|\leq \delta 3^{2n}} |S_i| |3^{2^n} - i|/\sqrt{i} |3^{2^n}| \geq \varepsilon/2\right]$$

$$\leq 2P \left[\max_{[(1-\delta)3^{2^{n}}] \leq i \leq [(1+\delta)3^{2^{n}}]} |S_{i} - S_{[(1-\delta)3^{2^{n}}]}| \geq \varepsilon \sqrt{3^{2^{n}}}/4 \right] + \\ + P \left[\max_{[(1-\delta)3^{2^{n}}] \leq i \leq [(1+\delta)3^{2^{n}}]} |S_{i}| \geq \varepsilon \sqrt{\left[(1-\delta)3^{2^{n}}\right]}/2\delta \right],$$

where [x] denotes the integral part of the real number x. Further, by (12c) and the Kolmogorov's inequality, the first term on the right-hand side of (13) is less than or equal to

$$2P\left[\max_{[(1-\delta)3^{2^{n}}] \leq i \leq [(1+\delta)3^{2^{n}}]} |S_{i}^{*} - S_{[(1-\delta)3^{2^{n}}]}^{*}| \geq \varepsilon \sqrt{3^{2^{n}}}/4\right]$$

$$\leq 32\left\{ [(1+\delta)3^{2^{n}}] - [(1-\delta)3^{2^{n}}] \right\}/\varepsilon^{2}3^{2^{n}} \to 64\delta/\varepsilon^{2} \qquad (n \to \infty),$$

since, for $[(1-\delta)3^{2^n}] \le i \le [(1+\delta)3^{2^n}]$, we have

$$S_i^{**} - S_{[(1-\delta)3^{2^n}]}^{**} = \sum_{\substack{j=[(1-\delta)3^{2^n}]+1\\j\in N^{obs}}}^{i} X_j = 0$$
 a.s.,

while the second term on the right-hand side of (13) is less than or equal to

$$\begin{split} P \big[\max_{[(1-\delta)3^{2^{n}}] \le i \le [(1+\delta)3^{2^{n}}]} |S_{i}^{*}| &\geqslant \varepsilon \sqrt{[(1-\delta)3^{2^{n}}]/4\delta} \big] + \\ &+ P \big[\max_{[(1-\delta)3^{2^{n}}] \le i \le [(1+\delta)3^{2^{n}}]} |S_{i}^{**}| &\geqslant \varepsilon \sqrt{[(1-\delta)3^{2^{n}}]/4\delta} \big] \\ &\le 16\delta^{2} \big[(1+\delta)3^{2^{n}} \big] / \varepsilon^{2} \big[(1-\delta)3^{2^{n}} \big] + P \big[|S_{2^{2^{n}}-1}^{*}| &\geqslant \varepsilon \sqrt{[(1-\delta)3^{2^{n}}]/4\delta} \big] \\ &\le 16\delta^{2} \big\{ \big[(1+\delta)3^{2^{n}} \big] + 2^{2^{n}} \big\} / \varepsilon^{2} \big[(1-\delta)3^{2^{n}} \big] \to 16\delta^{2} (1+\delta) / \varepsilon^{2} (1-\delta) \quad (n\to\infty), \end{split}$$

where $16\delta^2(1+\delta)/\epsilon^2(1-\delta) \le 64\delta/\epsilon^2$ for $0 < \delta \le 1/2$.

Hence, for every $\varepsilon > 0$ and $0 < \delta \leqslant 1/2$, we have

$$\limsup_{n\to\infty} P\left[\max_{|i-3|^2 |i| \leq \delta 3^{2^n}} |Y_i - Y_{3^{2^n}}| \geqslant \varepsilon\right] \leq 128\delta/\varepsilon^2,$$

which proves that the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with the norming sequence $\{\sqrt{n}, n \ge 1\}$ and filtering sequence $\{3^{2^n}, n \ge 1\}$.

Let us further notice that $Y_{32^n} \Rightarrow \mathcal{N}_{0,1}$ $(n \to \infty)$. Indeed, since for every $n \ge 1$ we have

$$Y_{32^n} = S_{32^n}^* / \sqrt{3^{2^n}} + S_{32^n}^{**} / \sqrt{3^{2^n}},$$

where, by the Kolmogorov inequality, for every $\varepsilon > 0$,

$$P[|S_{3^{2^{n}}}^{**}/\sqrt{3^{2^{n}}}| \ge \varepsilon] = P[|S_{2^{2^{n}}-1}^{*}| \ge \varepsilon \sqrt{3^{2^{n}}}] \le 2^{2^{n}}/\varepsilon^{2} 3^{2^{n}} \to 0 \quad (n \to \infty)$$

and

$$\begin{split} E \exp \left\{ it S_{32^n}^{*} / \sqrt{3^{2^n}} \right\} &= E \exp \left\{ it \sum_{\substack{j=1 \ j \in \mathbb{N}^n}}^{32^n} X_j / \sqrt{3^{2^n}} \right\} \\ &= \exp \left\{ -t^2 (3^{2^n} - n - 1) / 2 \cdot 3^{2^n} \right\} \to \exp \left\{ -t^2 / 2 \right\} \quad (n \to \infty), \end{split}$$

we have $Y_{3^{2^n}} \Rightarrow \mathcal{N}_{0,1}$ $(n \to \infty)$. Hence, by Corollary 1, $Y_{N_n} \Rightarrow \mathcal{N}_{0,1}$ $(n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying $N_n/b_n \xrightarrow{P} 1$ $(n \to \infty)$, where $\{b_n, n \ge 1\}$ $\subseteq \{3^{2^n}, n \ge 1\}$ $(b_n \to \infty, n \to \infty)$.

Example 3. Let $\{X_k, k \ge 1\}$ be a sequence of r.vs. defined as follows: the r.vs. $X_k, k \ne 2^{2^n} (n \ge 0)$, are independent and have the normal distribution function N(0, 1) for $k \ne 3^{2^n} (n \ge 1)$ and

$$P[X_{32^n} = 3^{2^{n-1}}] = P[X_{32^n} = -3^{2^{n-1}}] = \frac{1}{2} \quad (n \ge 1),$$

while

$$X_2 = -X_1, \quad X_{2^{2^n}} = -\sum_{j=2^{2^{n-1}}+1}^{2^{2^n-1}} X_j \quad (n \ge 1).$$

Let us put

$$k_n^2 = \sum_{i=1}^n \sigma^2 X_i$$
 for $n \neq 2^{2^m} (m \geqslant 0)$,

and

$$k_{2^{2^n}}^2 = k_{2^{2^n}-1}^2$$
 for $n \ge 0$, $S_n = \sum_{j=1}^n X_j$ and $Y_n := S_n/k_n$ $(n \ge 1)$.

Then

(14)
$$Y_{2^{2^n}} = 0 \text{ a.s., } n \ge 0, \quad Y_{2^{2^n}-1} \Rightarrow \mathcal{N}_{0,1} \quad (n \to \infty).$$

Indeed, for every $n \ge 0$, $S_{2^{n}} = 0$ a.s., which proves that $Y_{2^{n}} = 0$ a.s. for $n \ge 0$. For the proof of the second property in (14) we notice that $k_{2^{n}-1}^{2} \approx 2^{2^{n}}$ for sufficiently large n, and

$$Y_{2^{2^{n}}-1} = S_{2^{2^{n}}-1}^{*}/k_{2^{2^{n}}-1} + S_{2^{2^{n}}-1}^{**}/k_{2^{2^{n}}-1} \quad (n \ge 1),$$

where S_n^* and S_n^{**} are defined in (12). Furthermore, by (12c), we have

$$Y_{2^{2^{n}-1}} = (S_{2^{2^{n}-1}}^{*} - S_{2^{2^{n}-1}-1}^{*})/k_{2^{2^{n}-1}} = \sum_{j=2^{2^{n}-1}}^{2^{2^{n}-1}} X_{j}/k_{2^{2^{n}-1}}$$

$$= \sum_{j=2^{2^{n}-1}+1}^{2^{2^{n}-1}} X_{j}/k_{2^{2^{n}-1}} \quad \text{for every } n \ge 1,$$

where

$$\begin{split} E \exp \left\{ it \sum_{j=2^{2^{n}-1}}^{2^{2^{n}-1}} X_{j} / k_{2^{2^{n}-1}} \right\} \\ &= \cos \left(t \cdot 3^{2^{n-2}} / k_{2^{2^{n}-1}} \right) \exp \left\{ -t^{2} (2^{2^{n}} - 2^{2^{n-1}} - 1) / 2k_{2^{2^{n}-1}}^{2} \right\} \\ &\to \exp \left\{ -t^{2} / 2 \right\} \quad (n \to \infty). \end{split}$$

Hence, $Y_{2^{n}-1} \Rightarrow \mathcal{N}_{0,1}$ $(n \to \infty)$, which completes the proof of (14). From (14) and that

$$k_{2^{2^n}}^2 = k_{2^{2^n}-1}^2 \quad (n \geqslant 1)$$

we conclude that the sequence $\{Y_n, n \ge 1\}$ satisfies neither the Anscombe condition (A) nor the generalized Anscombe condition (A°) with the norming sequence $\{k_n, n \ge 1\}$. The proofs of these facts run similarly as in Example 2.

Now we shall prove that the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with the norming sequence $\{k_n, n \ge 1\}$ and filtering sequence $\{3^{2^n}, n \ge 1\}$. To this end we note that, for every $\varepsilon > 0$ and for every $0 < \delta < 1$, we have

$$(15) \quad P\left[\max_{|k_{i}^{2}-k_{32^{n}}^{2}| \leq \delta k_{32^{n}}^{2}} |Y_{i}-Y_{32^{n}}| \geq \varepsilon\right]$$

$$\leq P\left[\max_{|k_{i}^{2}-k_{32^{n}}^{2}| \leq \delta k_{32^{n}}^{2}} |S_{i}-S_{32^{n}}| \geq \varepsilon k_{32^{n}}/2\right] +$$

$$+P\left[\max_{|k_{i}^{2}-k_{32^{n}}^{2}| \leq \delta k_{32^{n}}^{2}} |S_{i}| |k_{32^{n}}^{2}-k_{i}^{2}|/k_{i}k_{32^{n}}^{2} \geq \varepsilon/2\right]$$

$$\leq P\left[\max_{k_{32^{n}}^{2} \leq k_{i}^{2} \leq (1+\delta)k_{32^{n}}^{2}} |S_{i}^{*}-S_{32^{n}}^{*}| \geq \varepsilon k_{32^{n}}/2\right] +$$

$$+P\left[\max_{k_{32^{n}}^{2} \leq k_{i}^{2} \leq (1+\delta)k_{32^{n}}^{2}} |S_{n}^{*}| \geq \varepsilon k_{32^{n}}/4\delta\right] + P\left[\max_{k_{32^{n}}^{2} \leq k_{i}^{2} \leq (1+\delta)k_{32^{n}}^{2}} |S_{i}^{**}| \geq \varepsilon k_{32^{n}}/4\delta\right],$$

since $k_{32^{n}-1}^{2} \approx 3^{2^{n}}$ and $k_{32^{n}}^{2} \approx 2 \cdot 3^{2^{n}}$ for sufficiently large n, whence

$$\{i \in \mathbb{N}: |k_i^2 - k_{32^n}^2| \le \delta k_{32^n}^2\} = \{i \in \mathbb{N}: k_{32^n}^2 \le k_i^2 \le (1 + \delta) k_{32^n}^2\}$$

for sufficiently large n, and since for $i \in \{k_{32^n}^2 \le k_i^2 \le (1+\delta)k_{32^n}^2\}$ we have

$$S_i^{**} - S_{32^n}^{**} = \sum_{\substack{j=32^n+1\\i\in N^{**}}}^i X_j = 0$$
 a.s.

for sufficiently large n.

As S_n^* is the sum of independent r.vs. with finite variances, then, by the

Kolmogorov's inequality, the first term on the right-hand side of (15) is less than or equal to $4\delta/\epsilon^2$, the second one is less than or equal to

$$16\delta^2 (1+\delta) k_{32^n}^2 / \epsilon^2 k_{32^n}^2 \le 32\delta / \epsilon^2,$$

and the third term on the right-hand side of (15) is equal to

$$P[|S_{2^{2^n}-1}^*| \ge \varepsilon k_{3^{2^n}}/4\delta] \le 16\delta^2 \, k_{2^{2^n}-1}^2/\varepsilon^2 \, k_{3^{2^n}}^2 \to 0 \qquad (n \to \infty).$$

Hence, for every $\varepsilon > 0$ and for every $0 < \delta < 1$, we have

$$\limsup_{n\to\infty} P\left[\max_{|k_i^2-k_{32^n}^2|\leq \delta k_{32^n}^2}|Y_i-Y_{32^n}|\geqslant \varepsilon\right]\leqslant 36\delta/\varepsilon^2,$$

which proves that the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with the norming sequence $\{k_n, n \ge 1\}$ and filtering sequence $\{3^{2^n}, n \ge 1\}$.

Similarly it can be proved that the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with norming sequence $\{k_n, n \ge 1\}$ and filtering sequence $\{3^{2^n} - 1, n \ge 1\}$.

Let us further notice that

(16)
$$Y_{3^{2^{n}}-1} \Rightarrow \mathcal{N}_{0,1} \ (n \to \infty), \qquad Y_{3^{2^{n}}} \Rightarrow X \ (n \to \infty),$$

and

$$k_{3^{2^n}}^2/k_{3^{2^n}-1}^2 \to 2 \quad (n \to \infty),$$

where X is an r.v. with the characteristic function

$$\varphi(t) = \cos(t/\sqrt{2})e^{-t^2/4}$$
.

Then, by Corollary 1, $Y_{N_n} \Rightarrow \mathcal{N}_{0,1} \ (n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying $k_{N_n}^2/k_{b_n}^2 \to 1 \ (n \to \infty)$, where

$${b_n, n \ge 1} \subseteq {3^{2^n}-1, n \ge 1} \quad (b_n \to \infty, n \to \infty)$$

and $Y_{N_n} \Rightarrow X \ (n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying $k_{N_n}^2 / k_{b_n}^2 \xrightarrow{P} 1 \ (n \to \infty)$, where $\{b_n', n \ge 1\} \subseteq \{3^{2^n}, n \ge 1\} \ (b_n' \to \infty, n \to \infty)$.

Let us still notice that if A is an event independent of X_k , $k \neq 2^{2^n}$ $(n \geq 0, k \geq 1)$, and, for $n \geq 1$,

(17)
$$v_n = \begin{cases} 3^{2^n} - 1 & \text{on } A, \\ 3^{2^n} & \text{on } A^c, \end{cases}$$

then $P[Y_{\nu_n} < x] \to \Phi(x) P(A) + P[X < x] P(A^c), n \to \infty$, i.e.

(17b)
$$Y_{\nu_n} \Rightarrow \mathcal{N}_{0,1} I(A) + XI(A^c) \quad (n \to \infty),$$

and the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with the norming sequence $\{k_n, n \ge 1\}$ and filtering sequence $\{v_n, n \ge 1\}$.

Thus, by Corollary 2,

$$Y_{N_n} \Rightarrow \mathcal{N}_{0.1} I(A) + XI(A^c) \quad (n \to \infty)$$

for every $\{N_n, n \ge 1\}$ satisfying $k_{N_n}^2/k_{v_{a_n}}^2 \xrightarrow{P} 1 \ (n \to \infty)$, where $\{a_n, n \ge 1\}$ is a sequence of positive integers with $a_n \to \infty \ (n \to \infty)$. That fact implies the statements after (16), i.e. putting $A = \Omega$ or, equivalently, $v_n = 3^{2^n} - 1$ a.s. $(n \ge 1)$, we obtain $Y_{N_n} \Rightarrow \mathcal{N}_{0,1} \ (n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying $k_{N_n}^2/k_{b_n}^2 \xrightarrow{P} 1 \ (n \to \infty)$, where $\{b_n, n \ge 1\} \subseteq \{3^{2^n} - 1, n \ge 1\}$ $(b_n \to \infty, n \to \infty)$; putting however $A = \emptyset$ or, equivalently, $v_n = 3^{2^n}$ a.s. $(n \ge 1)$, we obtain $Y_{N_n} \Rightarrow X \ (n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying $k_{N_n}^2/k_{b_n}^2 \xrightarrow{P} 1 \ (n \to \infty)$, where $\{b_n, n \ge 1\} \subseteq \{3^{2^n}, n \ge 1\}$ $(b_n \to \infty, n \to \infty)$.

The following example proves Remark 1.

Example 4 [5]. Let $U, Z_1, Z_2, ...$ be independent r.vs. such that U has a uniform distribution on (0, 1) and, for each $n \ge 1$, Z_n has a normal distribution with mean zero and variance one. Let

$$Y_n = n^{-1/2} \sum_{i=1}^n Z_i \quad (n \ge 1),$$

$$J(\omega) = \{ [2^n U(\omega)] + 1, \ 1 \le n < \infty \},$$

and

$$Y'_n = Y_n I[n \notin J] \quad (n \geqslant 1).$$

The sequence $\{Y'_n, n \ge 1\}$ satisfies (A) [5] and then, by Lemma 2, it satisfies as well (A**) with norming sequence $\{\sqrt{n}, n \ge 1\}$ and any filtering sequence $\{N_n, n \ge 1\}$ of positive integer-valued r.vs. satisfying (3) (i.e. (4) with $k_n^2 = n, n \ge 1$).

Let us put $N_n = [2^n U]$, $n \ge 1$. The sequence $\{N_n, n \ge 1\}$ does not satisfy (3) but satisfies (5). Indeed, putting e.g. $v_n = [2^n U] + 1$, $n \ge 1$, we have

$$(5') N_n/v_n \stackrel{P}{\to} 1 (n \to \infty),$$

i.e. condition (5) with $k_n^2 = n$ ($a_n = n$, $n \ge 1$). Now we shall prove that the sequence $\{Y_n, n \ge 1\}$ does not satisfy (A**) with the norming sequence $\{\sqrt{n}, n \ge 1\}$ and filtering sequence $\{N_n, n \ge 1\}$. This fact will prove Remark 1.

It follows from Theorem 1 of [11], p. 472, that

(18)
$$Y_{N_n} \Rightarrow \mathcal{N}_{0,1} \ (n \to \infty), \quad \text{where } N_n = [2^n U] \ (n \ge 1),$$

since $Y_n \Rightarrow \mathcal{N}_{0,1}$ $(n \to \infty)$, $N_n \xrightarrow{P} \infty$ $(n \to \infty)$ and, for every $n \ge 1$, the r.v. N_n is independent of Z_i $(i \ge 1)$. Furthermore, by the construction of the set $J(\omega)$

since $o_n(1) = P[U < (n-1)2^{-n}] \to 0 \ (n \to \infty)$. This fact and (18) imply (cf. [7], p. 278) $Y'_{N_n} \Rightarrow \mathcal{N}_{0,1} \ (n \to \infty)$.

Since (5') holds, and

(19)
$$Y'_{\nu_n} = 0 \text{ a.s.} (n \ge 1), \text{ where } \nu_n = [2^n U] + 1 \ (n \ge 1),$$

we conclude that the sequence $\{Y'_n, n \ge 1\}$ does not satisfy (A^{**}) with the norming sequence $\{\sqrt{n}, n \ge 1\}$ and filtering sequence $\{N_n, n \ge 1\}$, where $N_n = [2^n U], n \ge 1$.

5. Applications to the martingale random limit theorems. We shall now show that the given results allow to generalize the martingale random central limit theorem of Rao [8].

We write $Y_n \Rightarrow \mu$ (stably), $n \to \infty$, if $Y_n \Rightarrow \mu$ ($n \to \infty$) and, for every $B \in \mathscr{F}$ with P(B) > 0, there exists a measure μ_B such that $Y_n \Rightarrow \mu_B/P(B)$, $n \to \infty$, under the conditional measure $P(\cdot | B)$. In the special case where $\mu_B = \mu P(B)$ for all $B \in \mathscr{F}$, we write $Y_n \Rightarrow \mu$ (mixing), $n \to \infty$ [10].

In what follows we shall need the following simple consequence of Theorem 3:

Theorem 4. Let $\{\alpha_n, n \ge 1\}$ be a non-decreasing sequence of positive r.vs.

and let $\{v_n, n \ge 1\}$ be a sequence of positive integer-valued r.vs. such that $v_n \xrightarrow{P} \infty$ $(n \to \infty)$. The following conditions are equivalent:

- (i) $Y_{\nu_n} \Rightarrow \mu$ (stably), $n \to \infty$, and the sequence $\{Y_n, n \ge 1\}$ satisfies (A**) with the norming sequence $\{\alpha_n, n \ge 1\}$ and filtering sequence $\{\nu_n, n \ge 1\}$;
- (ii) $Y_{N_n} \Rightarrow \mu$ (stably), $n \to \infty$, for every sequence $\{N_n, n \ge 1\}$ of positive integer-valued r.vs. satisfying (6), i.e.

$$\alpha_{N_n}^2/\alpha_{\nu_{a_n}}^2 \xrightarrow{P} 1 \quad (n \to \infty),$$

where $\{a_n, n \ge 1\}$ is a sequence of positive integers with $a_n \to \infty \ (n \to \infty)$.

Proof. Obviously, (ii) implies (i). To prove the reverse implication let B be a random event from \mathcal{F} with P(B) > 0. Then, by (i), there exists a probability measure μ_B such that $Y_{\nu_n} \Rightarrow \mu_B/P(B)$ $(n \to \infty)$ under the measure $P(\cdot | B)$. Furthermore, the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with the norming sequence $\{\alpha_n, n \ge 1\}$ and filtering sequence $\{\nu_n, n \ge 1\}$ under the measure $P(\cdot | B)$.

Indeed, for every $\varepsilon > 0$ we can choose $\delta > 0$, $\delta = \delta(\varepsilon, B)$, such that

$$\limsup_{n\to\infty} P\left[\max_{|\alpha_i^2-\alpha_{\nu_n}^2|\leq \delta\alpha_{\nu_n}^2} |Y_i-Y_{\nu_n}| \geqslant \varepsilon P(B)\right] \leqslant \varepsilon P(B).$$

Hence

$$\begin{split} \limsup_{n \to \infty} P \big[\max_{|\alpha_i^2 - \alpha_{\nu_n}^2| \le \delta \alpha_{\nu_n}^2} |Y_i - Y_{\nu_n}| \geqslant \varepsilon \, |B] \\ & \leqslant \limsup_{n \to \infty} P \big[\max_{|\alpha_i^2 - \alpha_{\nu_n}^2| \le \delta \alpha_{\nu_n}^2} |Y_i - Y_{\nu_n}| \geqslant \varepsilon \big] / P(B) \\ & \leqslant \limsup_{n \to \infty} P \big[\max_{|\alpha_i^2 - \alpha_{\nu_n}^2| \le \delta \alpha_{\nu_n}^2} |Y_i - Y_{\nu_n}| \geqslant \varepsilon P(B) \big] / P(B) \leqslant \varepsilon, \end{split}$$

which states the desired result.

Thus, by Theorem 3, $Y_{N_n} \Rightarrow \mu_B/P(B)$, $n \to \infty$, under the measure $P(\cdot | B)$, for every sequence $\{N_n, n \ge 1\}$ of positive integer-valued r.vs. satisfying (6). Hence, $Y_{N_n} \Rightarrow \mu$ (stably) $(n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying (6).

Remark 3. We note that if $Y_{\nu_n} \Rightarrow \mu$ (mixing) $(n \to \infty)$ not only stably, then in part (ii) of Theorem 4 we obtain $Y_{N_n} \Rightarrow \mu$ (mixing), $n \to \infty$.

Let $\{X_n, \mathscr{F}_n, n \ge 1\}$ be a martingale difference sequence (MDS) with $\sigma_n^2 = E(X_n^2 | \mathscr{F}_{n-1}) < \infty$ a.s. $(n \ge 1)$. \mathscr{F}_0 need not be the trivial sigma field $\{\emptyset, \Omega\}$. We put

$$V_n^2 = \sum_{k=1}^n \sigma_k^2, \quad s_n^2 = EV_n^2 \quad (n \ge 1)$$

and assume that s_n^2 is finite for all $n \ge 1$, and $s_n^2 \to \infty$ $(n \to \infty)$. Furthermore, we assume that the sequence $\{X_n, n \ge 1\}$ satisfies the following φ -mixing condition:

(20)
$$\sup\{|P(B|A) - P(B)|: A \in \mathfrak{M}_1^k, B \in \mathfrak{M}_{k+n}^\infty\} \leqslant \varphi(n)$$

with $\varphi(n) \to 0 \ (n \to \infty)$, where $\mathfrak{M}_n^m = \sigma\{X_k, \ n \leqslant k \leqslant m\} \ (1 \leqslant n \leqslant m \leqslant \infty)$.

The following theorem extends and strengthens Theorem 1 of [8]:

THEOREM 5. Let $\{X_n, \mathcal{F}_n, n \ge 1\}$ be an MDS satisfying (20). Suppose that

$$(21) Y_n := S_n/s_n \Rightarrow \mu (n \to \infty),$$

where

$$S_n = \sum_{k=1}^n X_k \quad (n \geqslant 1).$$

If $\{N_n, n \ge 1\}$ is a sequence of positive integer-valued r.vs. such that

(22)
$$s_{N_n}^2/s_{[\lambda a_n]}^2 \xrightarrow{P} 1 \quad (n \to \infty),$$

where $\{a_n, n \ge 1\}$ is a sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$, and λ is a positive r.v. having a discrete distribution, then

$$Y_{N_n} = S_{N_n}/s_{N_n} \Rightarrow \mu(mixing) \quad (n \to \infty).$$

The proof of Theorem 5 bases on Theorem 4 and the following lemmas: LEMMA 4. If $\{X_n, \mathcal{F}_n, n \ge 1\}$ is an MDS satisfying (20) and (21), then $Y_n \Rightarrow \mu(\text{mixing}), n \to \infty$.

LEMMA 5 [8]. Let $\{k_n, n \ge 1\}$ and $\{m_n, n \ge 1\}$ be sequences of positive integers tending to infinity, and let $A_n \in \mathfrak{M}_{k_n}^{m_n} (n \ge 1)$. Then, for any event A,

$$\limsup_{n\to\infty} P(A_n|A) = \limsup_{n\to\infty} P(A_n),$$

where we set $P(A_n|A) = P(A_n)$ if P(A) = 0.

LEMMA 6. Let $\{X_n, \mathcal{F}_n, n \ge 1\}$ be an MDS satisfying (20) and (21). If λ is a positive r.v. having a discrete distribution, then

(23)
$$Y_{[\lambda n]} \Rightarrow \mu(\text{mixing}) \quad (n \to \infty).$$

LEMMA 7. Let $\{X_n, \mathcal{F}_n, n \geq 1\}$ be an MDS satisfying (20) and (21). If λ is a positive r.v. having a discrete distribution, then the sequence $\{Y_n, n \geq 1\}$ satisfies (A**) with the norming sequence $\{s_n, n \geq 1\}$ and filtering sequence $\{[\lambda n], n \geq 1\}$.

Proof of Lemma 4. Let $A_0 = \Omega$, $A_n = [Y_n < x]$ $(n \ge 1)$. By Theorem 2 of [9] it is enough to prove that, for any A_k ,

(24)
$$\lim_{n\to\infty} P(A_n|A_k) = \lim_{n\to\infty} P(A_n).$$

Let $\{r_n, n \ge 1\}$ be a sequence of positive integers such that $s_{r_n}^2 \to \infty$ $(n \to \infty)$ and $s_{r_n}^2/s_n^2 \to 0$ $(n \to \infty)$.

For every $k \ge 1$ we put $r_n^k = \max(r_n - k, 0)$, $n \ge 1$. Of course,

$$s_{r_n^k+k}^2/s_n^2 \to 0 \ (n \to \infty)$$
 for every $k \ge 1$,

and then, by the Kolmogorov inequality, we have

$$P[|S_{r_n^k+k}| \ge \varepsilon s_n] \to 0 \ (n \to \infty)$$
 for every $\varepsilon > 0, \ k \ge 1$.

Therefore, for every $k \ge 1$,

(25)
$$\lim_{n \to \infty} P(A_n | A_k) = \lim_{n \to \infty} P[(S_n - S_{r_n^k + k})/S_n < x | A_k].$$

Note that

$$[(S_n - S_{r_n^{k+k}})/s_n < x] \in \mathfrak{M}_{r_n^{k+k+1}}^{\infty} \quad \text{for all } n \ge k,$$

and $A_k \in \mathfrak{M}_1^k$ $(k \ge 1)$. Hence, by the φ -mixing condition (20), for every $k \ge 1$,

(26)
$$\lim_{n \to \infty} P[(S_n - S_{r_n^k + k})/S_n < x \mid A_k] = \lim_{n \to \infty} P[(S_n - S_{r_n^k + k})/S_n < x]$$

since $r_n^k \to \infty$ $(n \to \infty)$ for every $k \ge 1$. Again, since

$$S_{r_n^k+k}/s_n \stackrel{P}{\to} 0 \quad (n \to \infty),$$

we get

(27)
$$\lim_{n \to \infty} P[(S_n - S_{r_n^k + k})/s_n < x] = \lim_{n \to \infty} P(A_n).$$

Combining (25), (26) and (27), we obtain (24). The proof of Lemma 4 is completed.

Proof of Lemma 6. Let l_j $(j \ge 1)$ denote the values taken on by the r.v. λ with positive probabilities and let $\Omega_j = [\lambda = l_j]$ $(j \ge 1)$. Then

$$P[Y_{[\lambda n]} < x] = \sum_{j=1}^{\infty} P[Y_{[l_j n]} < x | \Omega_j] P(\Omega_j)$$

and, by (20), Lemma 4 and Theorem 1 of [9], we obtain

$$\lim_{n \to \infty} P[Y_{[\lambda n]} < x] = \sum_{j=1}^{\infty} P(\Omega_j) \lim_{n \to \infty} P[Y_{[l_j n]} < x \mid \Omega_j]$$

$$= \sum_{j=1}^{\infty} P(\Omega_j) \lim_{n \to \infty} P[Y_n < x \mid \Omega_j] = \sum_{j=1}^{\infty} P(\Omega_j) \lim_{n \to \infty} P[Y_n < x] = F(x)$$

for every continuity point x of F, where $F(\cdot) = \mu\{(-\infty, \cdot)\}$, which proves that $Y_{[\lambda n]} \Rightarrow \mu \ (n \to \infty)$.

Let $A_0^{(j)} = \Omega_j$, $A_n^{(j)} = [Y_{[l_j n]} < x; \Omega_j]$ $(n \ge 1)$ for every $j \ge 1$. It is easy to see that the sequence $\{A_n^{(j)}, n \ge 0\}$ is a mixing sequence of sets in the space $(\Omega_j, \mathcal{A}_j, P_j)$, where

$$\mathscr{A}_{j} = \{ A \in \mathscr{F} : A \subset \Omega_{j} \}, \quad P_{j}(A) = P(A \mid \Omega_{j}) \quad \text{for } A \in \mathscr{A}_{j}.$$

Indeed, for every fixed $k \ge 1$ we have

$$\lim_{n \to \infty} P_{j}(A_{n}^{(j)} | A_{k}^{(j)}) = \lim_{n \to \infty} P_{j}(A_{n}^{(j)} A_{k}^{(j)}) / P_{j}(A_{k}^{(j)})$$

$$= \lim_{n \to \infty} P[Y_{[l_{j}n]} < x | A_{k}^{(j)} \Omega_{j}] P(A_{k}^{(j)} \Omega_{j}) / P(\Omega_{j}) P_{j}(A_{k}^{(j)}).$$

The last expression is, by Lemma 4, equal to

$$\lim_{n \to \infty} P[Y_{[l_j n]} < x | \Omega_j] P(A_k^{(j)} | \Omega_j) / P_j(A_k^{(j)}) = \lim_{n \to \infty} P_j(A_n^{(j)}),$$

where

$$\lim_{n \to \infty} P_j(A_n^{(j)}) = \lim_{n \to \infty} P[Y_n < x \mid \Omega_j] = \lim_{n \to \infty} P[Y_n < x] = F(x)$$

for every continuity point x of F, $F(\cdot) = \mu\{(-\infty, \cdot)\}$, which proves that $\{A_n^{(j)}, n \ge 1\}$ is a mixing sequence of sets on $(\Omega_j, \mathcal{A}_j, P_j)$ with the local density F(x).

Thus, for

$$A_n = [Y_{[\lambda n]} < x] = \bigcup_{i=1}^{\infty} A_n^{(i)} \quad (n \geqslant 1)$$

the sequence $\{A_n, n \ge 1\}$ is a mixing sequence of sets in (Ω, \mathcal{F}, P) [10]. Hence $Y_{[\lambda n]} \Rightarrow \mu$ (mixing), $n \to \infty$.

Proof of Lemma 7. For every $\varepsilon > 0$ and for every $\delta > 0$ we have

$$\begin{split} \limsup_{n \to \infty} P \big[\max_{|s_i^2 - s_{[\lambda n]}^2| \le \delta s_{[\lambda n]}^2} |Y_i - Y_{[\lambda n]}| \geqslant \varepsilon \big] \\ & \leqslant \limsup_{n \to \infty} P \big[\max_{|s_i^2 - s_{[\lambda n]}^2| \le \delta s_{[\lambda n]}^2} |S_i - S_{[\lambda n]}| \geqslant \varepsilon \sqrt{1 - \delta} \, s_{[\lambda n]}/2 \big] + \\ & + \limsup_{n \to \infty} P \big[|Y_{[\lambda n]}| \geqslant \varepsilon \sqrt{1 - \delta}/2\delta \big], \end{split}$$

where

$$\limsup_{n\to\infty}P\left[|Y_{[\lambda n]}|\geqslant \varepsilon\sqrt{1-\delta/2\delta}\right]=\mu\left\{x\colon |x|\geqslant \varepsilon\sqrt{1-\delta/2\delta}\right\}\to 0 \qquad (\delta\to 0).$$

Thus, the sequence $Y_n = S_n/s_n$ $(n \ge 1)$ satisfies (A^{**}) with the norming sequence $\{s_n, n \ge 1\}$ and filtering sequence $\{[\lambda n], n \ge 1\}$ if, for every $\varepsilon > 0$,

(28)
$$\lim_{\delta \to \infty} \limsup_{n \to \infty} P\left[\max_{|s_i^2 - s_{[\lambda n]}^2| \le \delta s_{[\lambda n]}^2} |S_i - S_{[\lambda n]}| \ge \varepsilon \sqrt{1 - \delta} \, s_{[\lambda n]}/2\right] = 0.$$

Let $\Omega_j = [\lambda = l_j]$ $(j \ge 1)$. Then, by Lemma 5, the left-hand side of (28) is equal to

$$\begin{split} \lim_{\delta \to 0} \sum_{j=1}^{\infty} P(\Omega_j) &\limsup_{n \to \infty} P\left[\max_{T_{n,\delta}^1 \le i \le T_{n,\delta}^2} |S_i - S_{[l_j n]}| \ge \varepsilon \sqrt{1 - \delta} \, s_{[l_j n]}/2 \, |\Omega_j\right] \\ &= \lim_{\delta \to 0} \sum_{j=1}^{\infty} P(\Omega_j) \limsup_{n \to \infty} P\left[\max_{T_{n,\delta}^1 \le i \le T_{n,\delta}^2} |S_i - S_{[l_j n]}| \ge \varepsilon \sqrt{1 - \delta} \, s_{[l_j n]}/2\right], \end{split}$$

where

$$T_{n,\delta}^{1} = \min \{i: (1-\delta) s_{[l_{j}n]}^{2} \le s_{i}^{2}\}, \quad T_{n,\delta}^{2} = \max \{i: s_{i}^{2} \le (1+\delta) s_{[l_{j}n]}^{2}\}.$$

Furthermore, the last expression is less than or equal to

$$2\lim_{\delta\to 0}\sum_{j=1}^{\infty}P(\Omega_j)\limsup_{n\to\infty}P\left[\max_{T_{n,\delta}^1\leqslant i\leqslant T_{n,\delta}^2}|S_i-S_{T_{n,\delta}^1}|\geqslant \varepsilon\sqrt{1-\delta}\,s_{[l_jn]}/4\right],$$

which, by the Kolmogorov inequality for martingales, is less than or equal to

$$\begin{split} 32 \lim_{\delta \to 0} \sum_{j=1}^{\infty} P(\Omega_{j}) & \limsup_{n \to \infty} E(S_{T_{n,\delta}^{2}} - S_{T_{n,\delta}^{1}})^{2} / \varepsilon^{2} (1 - \delta) \, s_{[l_{j}n]}^{2} \\ & \leqslant 32 \lim_{\delta \to 0} \sum_{j=1}^{\infty} P(\Omega_{j}) \limsup_{n \to \infty} \{ (1 + \delta) \, s_{[l_{j}n]}^{2} - (1 - \delta) \, s_{[l_{j}n]}^{2} \} / \varepsilon^{2} (1 - \delta) \, s_{[l_{j}n]}^{2} \\ & \leqslant \lim_{\delta \to 0} 64\delta / \varepsilon^{2} (1 - \delta) = 0. \end{split}$$

The proof of Lemma 7 is completed.

Proof of Theorem 5. By (23) and Lemma 7 we have $Y_{[\lambda n]} \Rightarrow \mu$ (mixing) $(n \to \infty)$ and the sequence $\{Y_n, n \ge 1\}$ satisfies (A^{**}) with the norming sequence $\{s_n, n \ge 1\}$ and filtering sequence $\{[\lambda n], n \ge 1\}$. Thus, by Theorem 4, we obtain $Y_{N_n} \Rightarrow \mu$ (mixing) $(n \to \infty)$ for every $\{N_n, n \ge 1\}$ satisfying (22), which is the statement of Theorem 5.

Now we give simple consequences of Theorem 5 which extend or strengthen results given in [6] and [8].

COROLLARY 4 (cf. [8], Theorem 1). Let $\{X_n, n \ge 1\}$ be a strictly stationary and ergodic sequence of r.vs. Assume that $EX_1 = 0$, $E(X_n | X_1, ..., X_{n-1}) = 0$ a.s. $(n \ge 1)$ and $EX_1^2 = 1$. If $\{N_n, n \ge 1\}$ is a sequence of positive integer-valued r.vs. such that $N_n/a_n \xrightarrow{P} \lambda$ $(n \to \infty)$, where $\{a_n, n \ge 1\}$ is a sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$, and λ is a positive r.v. having a discrete distribution, then $S_{N_n}/\sqrt{N_n} \Rightarrow \mathcal{N}_{0,1}$ (mixing) $(n \to \infty)$.

COROLLARY 5 (cf. [6], Theorem 4 and Remark on p. 209). Let $\{X_n, n \ge 1\}$ be a sequence of independent r.vs. with $EX_n = 0$, $EX_n^2 = \sigma_n^2 < \infty$ $(n \ge 1)$. Suppose that $S_n/S_n \Rightarrow \mu$ $(n \to \infty)$, where

$$S_n = \sum_{k=1}^n X_k, \quad s_n^2 = \sum_{k=1}^n \sigma_k^2 \quad (n \ge 1).$$

If $\{N_n, n \ge 1\}$ is a sequence of positive integer-valued r.vs. satisfying (22), then $S_{N_n}/s_{N_n} \Rightarrow \mu$ (mixing) $(n \to \infty)$.

COROLLARY 6. Let $\{X_n, \mathcal{F}_n, n \ge 1\}$ be an MDS satisfying (20). Suppose that

$$V_n^2/s_n^2 \stackrel{P}{\to} 1 \quad (n \to \infty)$$

and, for every $\varepsilon > 0$,

$$s_n^{-2} \sum_{k=1}^n E(X_k^2 I(|X_k| \geqslant \varepsilon s_n) | \mathscr{F}_{n-1}) \stackrel{P}{\to} 0 \qquad (n \to \infty).$$

If $\{N_n, n \ge 1\}$ is a sequence of positive integer-valued r.vs. satisfying (22), then $S_{N_n}/s_{N_n} \Rightarrow \mathcal{N}_{0,1}$ (mixing) $(n \to \infty)$.

The following result generalizes Theorem 4 of [6]:

THEOREM 6. Let $\{X_n, \mathcal{F}_n, n \ge 1\}$ be an MDS satisfying (20) and (21). If $\{N_n, n \ge 1\}$ is a sequence of positive integer-valued r.vs. such that

(29)
$$s_{N_n}^2/s_{a_n}^2 \xrightarrow{P} \lambda \quad (n \to \infty),$$

where $\{a_n, n \ge 1\}$ is a sequence of positive integers with $a_n \to \infty$ $(n \to \infty)$ and λ is a positive r.v. $(P[0 < \lambda < \infty] = 1)$ such that, for any given $\varepsilon > 0$,

(30)
$$\lim_{\substack{0 \le c \to 0 \\ n \to \infty}} \limsup_{n \to \infty} P\left[\left|\frac{S_{\{(\lambda \pm c)n\}}^2}{S_n^2} - \lambda\right| \ge \varepsilon\right] = 0,$$

then

$$S_{N_n}/s_{N_n} \Rightarrow \mu \ (mixing) \quad (n \to \infty).$$

Proof. Only some modifications are necessary in the proof of Theorem 4 from [6] to make it applicable in this case.

In the particular case, from Theorem 6 we get a result stronger than that of Theorem 4 in [6]:

COROLLARY 7. Let $\{X_n, n \ge 1\}$ be a sequence of independent r.vs. with $EX_n = 0$, $EX_n^2 = \sigma_n^2 < \infty$ $(n \ge 1)$. Suppose that $S_n/s_n \Rightarrow \mu$ $(n \to \infty)$, where

$$S_n = \sum_{k=1}^n X_k, \quad s_n^2 = \sum_{k=1}^n \sigma_k^2 \quad (n \ge 1).$$

If $\{N_n, n \ge 1\}$ is a sequence of positive integer-valued r.vs. satisfying (29) and (30), then $S_{N_n}/s_{N_n} \Rightarrow \mu$ (mixing) $(n \to \infty)$.

REFERENCES

- [1] D. J. Aldous, Weak convergence of randomly indexed sequences of random variables, Math. Proc. Cambridge Phil. Soc. 83 (1978), p. 117-126.
- [2] F. J. Anscombe, Large-sample theory of sequential estimation, Proc. Cambridge Phil. Soc. 48 (1952), p. 600-607.
- [3] P. Billingsley, Convergence of probability measures, John Wiley, New York 1968.
- [4] M. Csörgö and Z. Rychlik, Weak convergence of sequences of random elements with random indices, Math. Proc. Cambridge Phil. Soc. 88 (1980), p. 171-174.
- [5] R. T. Durrett and S. I. Resnick, Weak convergence with random indices, Stochastic Processes Appl. 5 (1977), p. 213-220.
- [6] K. S. Kubacki and D. Szynal, Weak convergence of randomly indexed sequences of random variables, Bull. Pol. Acad. Sci. 32 (1958), p. 201-210.
- [7] M. Loève, Probability Theory, Van Nostrand, Princeton 1960.
- [8] B. L. S. Prakasa Rao, Random central limit theorems for martingales, Acta Math. Acad. Sci. Hungar. 20 (1969), p. 217-222.
- [9] A. Rényi, On mixing sequences of sets, ibidem 9 (1958), p. 215-228.
- [10] On stable sequences of events, Sankhyā, Series A, 25 (1963), p. 293-302.
- [11] Probability theory, Akadémiai Kiadó, Budapest 1970.
- [12] Z. Rychlik, Martingale random central limit theorems, Acta Math. Acad. Sci. Hungar. 34 (1979), p. 129-139.
- [13] Asymptotic distributions of randomly indexed sequences of random variables, Dissertation, Maria Curie-Skłodowska University, Lublin 1980 (in Polish).

Institute of Applied Mathematics Agricultural Academy in Lublin ul. Akademicka 13, 20-934 Lublin Poland Institute of Mathematics, UMCS ul. Nowotki 10, 20-031 Lublin Poland

Received on 17, 12, 1984

en de la composition Après de la composition de la composit