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Abstract. The paper proves theorems of Ed] which are given 
here in a more general form. Moreover, some applications of the 
introduced version of the Anscornbe condition are discussed. 

I. Intltrdasstiun. Let (Y,, n 3 13 be a sequence of random variables (r-vs.) 
defined on a probability space (Q, 9, P). Suppose that there exists a 
probability measure p such that 

Y, p, n + oc (converges weaklp); 

for every E > 0 there exists a 6 > 0 such that 

lirmsupP[: max I&- 3 EJ < E .  
n-rm li-n(Sdn 

Suppose that {N,, n 2 1) is a sequence of positive integer-valued r.vs. 
dehed on the same probability space ($2, 8, P). The well known Anscom- 
be's theorem C2-j proves that if a sequence (Y,, n 2 1) of r.vs. satisfies 
conditions (1) and (A), then 

for every sequence (N,, n 2 If d positive integer-valued r.vs. satisfying i 
{3) 

P N,/n, -. 1, n - m (in probability), 1 
where (a,, n > 1) is a sequence of positive integers with an+ m (n + oo). 

Condition (A), called the Anscornbe condition, plays very important role 
in proofs of limit theorems for sequences of r-vs. with ra.ndom indices. Aldous 
[I] has pointed out ithat condition (A) is a necessary and sufficient one for (2) 
when (3) holds. A more general and stronger result than that of [2] and [I] 
has been given by Csorgb and Rychlik [4]. 
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THEOREM 1 [4]. k t  (k., n 3 1) be n non-decreasing sequence of pusitiae 
numbers. The following coditions we equivaient: 

(i) the sequence {Yn, n 2 1) satifies (1) and the so-called "generalized 
Anscombe condition" with norming sequence {k,, n 3 1): for every E > 0 there 
exists a S > 0 such that 

(A") limsupP[ m;lx Il;-YJ 2 e] $ e; 
n+m ik, -~ , Is *A,~  

(ii) YMn p (n -r m) for every ( N , ,  n >, 11 satisfying 

where (a,, n 2 1) is a sequence of positive integers with a, + ac {rt 4 m). 

These results essentially base on the assumption Y,* p (n -, a). In [6] 
we have considered the case where that fact is not known but we want to I 

know whether a sequence of s,vs. with random indices weakly converges to a 
measure (we are interested in, e.g., Gaussian measure). The foll~wing theorem 
has been given without proof: 

THEOREM 2 [6]. Let fk,, n 2 1) be a mn-decreasing sequence of positive 
numbers arid kt (v,,  n 2 4 j. be a sequence of positive integer -valued r.vs, such 
that v, m (n  -r a). The following conditions me equivaient: 

(i) Kn s p (n -, m), and the sequence { Y,, n 2 1) sati$es the so-called 
"Anscombe random condition" with norming sequence (k,, n >, 1 )  and filtering 
sequence [v,, n 2 11: for every E > 0 there exists a 6 > 0 such that 

(A*) IimsupPE max 1%-  YVnl 2 E ]  < E ;  
n+ao l t i 2 - ~ ~ ~ s ~ ~ ,  

(ii) Gn p (n -+ ao) for euery (N,, n 2 1 f satisfying 

where (a,, n 3 1) is a sequence of positive integers with a, + oo (n + m). 
We prove here Theorem 2 in a more general version and discuss some 

applications of the introduced random version of the Anscombe condition. 

2. Badom version of the Allscclmk eodition. Let {Y,, n 2 1) be a 
sequence of r.vs. defined on a probability space (8, 9, P) and let (a,, n 2 11 
be a non -decreasing sequence of positive r.vs. (0 < a, < a,, , as,, n 2 1) 
defined on the same probability space (Q, 9, P). Furthermore, let {z,, n 2 1) 
be a sequence of positive integer -valued r.vs. defined on (a, 9, P) and such 

P that .r,+ oo (n-, oo). 
Defini t ion (Answmbe random condition). A sequence (Y,, n 2 1 )  is 

said to satisfy the Anscornbe random condirion with the norming sequence 
(a,, n >, 1) of positive r.vs. and filtering sequence (z,, n 3 1) of positive 



integer - valued r.vs. if for every E > 0 there exists a S > 0 such that 

(A**) LirnsupPC qax 2 I T - K , ~ I > E ] < E .  
+.a lai - UV"l C &a,, 

One can easily see that in the special case, when a, = kn a.s., T ,  = n a.s., 
n 3 1, (A**) reduces to (A0), and hence, when kt = n (n  2 I ) ,  (A**) reduces to 
(A). On the other hand, if a,  = k, a.s. (n 2 11, then (A**) reduces to (A*). 

Moreover, we notice that if a sequence {Y,, - R 3 1) satisfies (A), - then it 

satisfies (A**) with the norming sequence { $ j ,  n >, 1) (i.e. a, = J n  as., A 
2 1 )  and any filtering sequence [a,, n 2 1) of positive integers such that . a ,  
-+ XI (n-, m). 

The analogous remark refers to (Aa). Namely, if a sequence {Y,, n 2 I f  
satisfies (A") with norming sequence {k,, n 2 I ) ,  then it satisfies (A**) with 
the same norrning sequence [k,, n 2 lj (i.e. a, = k, as., n 3 1) and any 
filtering sequence (a,, n 2 I ]  of positive integers such that a, + co (n + a). 

The following lemma generalizes lhese remarks and proves Lemma 1 
from [ 6 ] :  

LEMMA 1. I f a  sequence [Y,, n 2 11 of r.os, satisjies (A") with the norming 
sequence kk,, n 3 l), then it satisfies (A*") with the same norming sequence 
{k,, n 2 1 j and any filtering sequence {r,, n 3 1) independent of f ',, n 2 i}. 

Proof .  Let K E N  be fixed. Then 

m 

+ x. P [ r , = r ] P [  max lx-lj 2.~1, 
r = K +  1 lkf-k;1<bk: 

as r, is for every n 1 independent of [Y,, n 2 I } .  But 

since z, 5 r ~ ,  (n -+ m). Choosing then K so large that 
,, ' 

P [  mfx xlx-Y.12~]<~ for every r > K ,  
lkf-k, ( 6 8 k ,  

we obtain the desired result, 
There arises, obviously, a question about conditions which the filtering 

sequence jz,,, n 2 1 )  should satisfy in the case where we reject in Lemma 1 
the assumption that { T , ,  n 2 1 )  is independent of .(Yn, n 2 1). The following 
lemma gives an answer to this question and proves Lemma 2 from [ 6 ] :  

LEMMA 2. If a sequence { ',, n 2 1 )  of r.vs. satisfies (A3) with the norming 
sequence {k , ,  n 2- I ) ,  then it satisfies (A**) with the same norming sequence 
{k, ,  n 2 1 )  and any filtering sequence {N , ,  n 2 1) satisfying (4) .  

3 -Rob. ~ a t h .  Statist. 7 (2) 
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Proof.  By the assumption and the remark after Definition we conclude 
that the sequence { Y,, n 3 1 )  satisfies (AY*) with the norming sequence 
{k,, n 2 1) and any filtering sequence {a,, n 2 1 )  of positive integers such 
that a,, + (n -, co). Let (N,,,  iz 2 1 )  be a sequence of positive integer - 
valued r.vs. satisfying (4), i.e. 

la) k,$/k& 5 1 (n - m), 

where {b,, n 2 1) is a sequence of positive integers with b, -+ oo (n 4 a). Put 

3, = [tk;,-k,2nl G vk&l (n Z 11, 
I where v is a fixed positive number. Then for every E > 0 and 6 > 0 we have 

(b) P C 2  man l ) ; - Y . , I 2 ~ l b P ( ~ ~ +  
Iki - k$ 1 h dk; 

-tP[ 2 2  max 2 IT-&,l 2 &/2;Bn]+P[IYNn-&,l 3 &/2;B,J 
Iki - k ~ , l  S a k ~ , ,  

where 6* = S (1 + rl) + q. Since the sequence (',, n 2 1) satisfies condi- 
I tion (A*') with the norrning sequence {k , ,  n >, I) and filtering sequence 

(b,, n 2 1) and since, by (a), P(B3 -+ 0 as n 4 c ~ ,  inequality (b) proves that 
the sequence {Y,, n 2 1) satisfies (A**) with norming sequence (k,, n $ 1) 
and filtering sequence {N, ,  n 2 I } .  The proof of Lemma 2 is completed. 

Remark  1. Further it will be shown that (4) is in a sense necessary for 
(A0) to imply (A**). It will be proved that it is not enough to assume (5). 

The following lemma generalizes Lemma 2 as well as Lemma 3 of 163: 
LEMMA 3. I f  a sequence (G, n 2 1 )  of r.vs. satisfies (A**) with the 

normiag sequence {a,, n >, 1)  and $ltering sequence {z,, n 2 I), then it satis- 
$es (A**) with the same norming sequence {a,, n $ 1) and any .filtering 

P 
sequence IN,, n 2 1) such that a;# 0. + 1 (n-, a), where {a,,, n 2 1) is a 

sequence of positive integers with a,  +'& (n  + 30). 

Proof.  Let us put 
2 B. = Cla;, -a:;) 6 lara> (n 2 11, 

where q is a fixed positive number. Then, for every E > 0 and S > 0, we have 

PC max I K - Y N J ~ C ] ' .  
la,? - &"I s &in 
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where 6* = S (I + q)+ q. The assumption and this inequality imply the desired 
result. 

It is easy to see that if a, = k, a.s. (n  p 1), then Lemma 3 reduces to 
Lemma 3 of [6 ] .  

3. The wain theorem. The following theorem generalizes and strengthens 
the statements of Theorem 1 and Theorem 2:  

THEOREM 3. k t  (a,, n 2 1) be a mn -decreasing sequence of positive r.vs. 
and let (v,, n 2 1) be a sequence of positive integer-valued r.vs. suck that 
v,  5 a, {n + a). The following conditions are equivalent: 

(i) Xn - p (n + a), and the sequence (Y,, n 2 1) sutisfies Anscombe 
random condition (A**) with naming sequence (or,, n 2 1 )  and-filtering sequen- 
ce (v , ,  n 2 1); 

(ii) YN, * p (n -+ GO) for every sequence ( N , ,  n 2 11 of positive integer - 
valued r.vs. such that 

w h r e  (a , ,  n 2 1 j is a sequence of positive integers with a,, + CQ (n + a). 

Proof.  Let E > 0 and a closed set A c K be given. Then, for every 
6 > 0, we have 

< I > Sa:aJ+P[ , max 14-YVaJ 2 e l ,  
lori -2 van 1<&x2 

where A" {xER: ~ ( x ,  A) < E ) ,  Q(X, A) = inf{(x-yl: Y E A ) .  Since s > 0 can 
be chosen arbitrarily small we see by (6), (A**), the assumption Yvm =z-p 
(n + oo) and Theorem 2.1 of [3] that (i) implies (ii). 

If (ii) holds, then putting N, = v ,  a.s. ( n  5 I) ,  we conclude that Yv, p 
(n+ m). Suppose that (A**) with the norming sequence {a,, n 2 1) and 
filtering sequence {v,, n 2 1) fails. Then there exist an E > 0 and a subse- 
quence n,  < n, < . . . of positive integers (nj + a ,  j -, oo) such that 

P [ m a x I x - Y , ] 2 ~ ] > ~  for a l l j 3 1 ,  
ieB, 3 i 

where 
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We shall only consider the fist case as the second one can be treated 
similarly. 

Lei (G,, 1 < i 6 M )  be disjoint and open subsets such that 

and the diameter Gi < ~/2. Thus, by (a), there exist a set GE {G,, f 4 i < Mj 
and a subsequence [mj, j 2 1) of the sequence inj, j 2 1) such that 

(b) P CXrnjg G ;  ,man 
e,, < m i  < ( I  + I,~]U; 

IT - Ynql P F] > e/(2M) for all j 3 1, 
mi "9i 

Cf = max {ie N :  a,? < ( I  + l/j) a:mj], ~f = min (i 2 vmj: q! GI. 

Since the sequence (u,2, n 3 1: is non -decreasing, we have a: < a& 
2 

"'j J 

as., E: < .,I a.s, a$ Q (1 + l/j) a:mj as. for all j 2 1. Hence 
Y j  

which proves that the sequence (Nj, j 2 1) satisfies (6). But 

5 P CKml C GI +t/(?M),  

which, by Theorem 2.1 of [3], proves that YNj + p (j + m). This is a 
contradiction to (ii), and it proves that the sequence {q, n 2 1) must satisfy 
(A**) with thk norming sequence {a,, n 2 1) and filtering sequence {vn, n 
3 I]. The proof of Theorem 3 is completed. , 

Remark 2. It is easy to see that putting a, = k, a.s, v, = n a.s., n 2 1, 
Theorem 3 reduces to Theorem 1. It is so since in this case (A**) reduces to 
(A0), whereas (6) reduces to (4). On the other hand, if a, = k, a.s. (n 2 I), then 
Theorem 3 reduces to Theorem 2. 

COROLLARY 1. Let (k,, n 2 1) be a non - decreasing sequence of positive 
numbers and let {a,, n 2 1) be a sequence of positive integers with a, -, co 
(n + m). The following conditions are equivalent: 

(i) p (n+ ao), and the sequence ( x ,  n 2 1) satisfies (A**) with the 
narming sequence {k,, n >, 1) and ,filtering sequence {a,, n 3 I]; 
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(ii) = p, n + cc, for every (Nu,  n 2 1 )  satisfying 

where Ib,, n 2 1) is a sequence of positive integers with b, + cc (n -+ co) and 
[b,, n 3 1) E {a,, n 2 1). 

I 

COROLLARY 2. Let (k , ,  n 3 1 )  be a non -decreasing sequence oj positive 
numbers and let (v,, n 2 1) be a sequence of positive integer -unlued r.vs. such 

P 
that vn 4 c~ ( n  + m). The following condilions are equiualent: 

(il p (n -r a), and the sequence f Y,, n k 1 )  satisfies (A**) with the 
norwing sequence {k,, n 3 1) and ,fiileriry sequence (v,, n 2 1); 

(ii) %,, - p (n -t co) far every [N,, n 2 1 ] satisfling 

where (a,, n 2 1 )  is a sequence of positive integers witla a, oo (n + a): 
In the particular case, where k i  = n, v, = [in] as. (n  2 I), where 1 is an 

r.v. such that PC0 < A < oo] = 1, the following conditions are equivakiit: 
(if) qIn1 = p ( la  + m), and the sequence (Y,, n >, I] satisfies (A*+) with 

norming sequence ' I&, n b 1 j and filtering sequence ([An], n 2 1 j ; 
(ii') YNa * p (n  -. co) for every {IV,,, n >, 1) satisfying 

where {a,, n 2 1) is a sequence of positive integers with a, + GO (n -, GO). 

COROLLARY 3. Let {a,, n b 1 )  be a non-decreasing sequence of positive 
r. us. and let {a,, n 2 1) be a sequence of positive integers with a, -r oo 
(n  + GO). The following conditions are equivalent: 

(i) Kn * p (n - m), and the sequence [ 5, n 2 1) satisfies (A**) with the 
norming sequence (a,, n 3 1) and ,filtering sequence (a,, n 2 1); 

(ii) YNn - p (n -, co) for every IN,, n 2 1) satisfying 

where (b,, n 2 1 )  is a sequence of positive integers with b, j cc (n  + a)  and 
(b,, n 2 1) c (a,,, n 2 1). 

The following example elucidates the usefulness of these considerations. 
Ex ample 1 1121. Let (X,,,k 2 1) be a sequence of independent r.vs. 

defined by 

and X,, for k # 22n In 2 1, k 3 I), has the normal distribution function 
N ( 0 ,  1) with mean zero and variance one. Let us put 

n I )  
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and : = SJs, (n 2 1). Then 

where Nap, denotes a normal r.v. with mean a and variance b, and the r.v. 
X has the characteristic function rp ( t )  = coa(t/$) e-"" (d. [ t 2 ] ) .  k t  
{Mm,n 2 1) be a sequence of positive integer -valued r.vs. such that 

Theorem 1 does not allow to confirm the weak convergence of the 
randomly indexed sequence {YNh, n 3 1) .  But it is easy to see that the 
sequence (K,  n 3 1 )  of r.vs, satisfies (A0) with norming sequence (k,, n 2 I ) ,  
where k ,  = s, (n 3 1 )  (cf. [13], p. 11).  Hence, by Lemma 1 ,  the sequence 
(Y,, n 3 1) satisfies also (A*") with the norming sequence (s,, n 2 1 )  and 
any filtering sequence {a,, n 3 1) of positive integers with a, 4 co (n + to). 
Thus, by Corollary 1,  YN, s No,, (n 3 a)) for every (N,, n 2 1 ) satisfying 

P 
si,,/sb",,--r1 (n -  m), where (b,, n >  1 )  ~ { 2 " ' - 1 ,  n >  1 )  (bn+ m, n--r a), 
and Y,,, =S X ( n  t m )  for every {N., n 3 1) satisfying S ~ , / S ~ ~  ' 1 ( n  - m), 

where (b:, n 2 1 )  c 1 2 ~ :  n 2 I )  (b:+ oo, n- ,  oo). For the sequence (N;, n 
2 I), defined by (lOa), we have 

(n + a,). 

Hence we conclude that in this case YNh =+-JV~,~ (n -, m ) .  
Let us further notice that if A is an event independent of X, (k 2 1) and 

then PLY, < x] + @(x) P(A)+ P [ X  < x] P(Ac), n -, m y  i.e. 

( l k )  Yvn => No, I ( A )  + XI (Ac) (n -+ a)). 

Moreover, the sequence (Y,, n 2 1 )  satisfies (A**) with the norming 
sequence (s,, n 2 1) and filtering sequence {v,, n 2 1). Indeed, by the con- 

P struction v, -, a, (n -+ m), and v, is for every n 2 1 independent of & (k 2 1 ) .  
Since the sequence {'Y,, n 2 1) satisfies (A0) with norming sequence {s,,, n 
2 11, Lemma 1 confirms the desired result. Hence, and by (10c) and 
Corollary 2, we have 

P for every {N,, n 2 1 )  such that s,$Js: --, 1 (n- ,  m) ,  where (a,, n 2 1) is a 
'=A 
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sequence of positive integers with a, -, c~ In + m). This fact implies the 

statements after (10a), i.e. putting A = D or, equjvalently, Y, = 22n- 1 a.s. 
(n 2 11, we obtain YNn *NOPI  (n -f w) for every {N,, n z 1 )  satisfying 

P 
sin/siflf  1 ( n +  GO), where {b,, n 3 1)  G {2'"-1, n 3 13 (b,-  m ,  n -  a); 
putting, however, A = 0 or, equivalently, v, = 2" as. ( n  2 I), we obtain 

Y, = X ( n  - m) for every , n 2 1 satisfying sin/sih 5 1 (n - KO), 

where {bb, ~12 1) E (22n, n 2 1) (bL- CO, n+ a). 

4. More abwt usefulnews d the Anscambe random codition. Now we 
shall give two examples of sequences (Y,, n 3 1) which fulfil (A**), whereas 
they satisfy neither (A) nor (Ao). At the end of this section we shall give an 
example proving Remark 1. 

Example 2. Let {X,, k 2 1) be a sequence of r.vs. defined as follows: 

the r.vs, Xk, k # 2" (n 3 0, k 3 I), are independent and have the normal 
distribution function N (0, I), and 

Let us put S, = X,, Y. : = s,J& (n 2 I). Then 
j= 1 

Indeed, for every n 2 0 we have S = 0 as., which proves that Y2,,, = 0 
22" 

as. (n 2 0). For the proof of the second property in (11) we put S,  = S: 
+S:*(n 2 11, where 

and 

, (1 2b) N* = (i E AT: j # 22n, n 2 01, N** = M\N*, e 

and note that, for every n 2- 1, S: is the sum of independent r.vs, S;,, 
= S* a.s. for n k 0, while 

22"-1 

' p -  1 3-, = - S ; ~ - I - ,  as. for 1 ,< i ,< 2'"- 2 (n 2 1). 
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. . Moreover, by the Kolmogorov's inequality we have, for every E > 0, 

Hence, and taking into account that 
2zn- 1 

Eexp {it s:,.- = E exp { i t  xj/,,/=) 
j =  1 
 EN"' 

= exp - t2(22"-n- 1)/2(2'"- 1)) + exp { -  t2 /2 )  (n -, a), 

we obtain 

which ends the proof of (ll), 
Now we shaIl prove that the sequence (Y,, n >, 1) does not satisfy the 

Anscornbe condition (A). 
Indeed, if the sequence (Y,, n 2 1] fuIfiIIed (A), then in view of 

the remarks after Definition it would fulfil (A**) with norming sequence 
(&, n 2 1 )  and any filtering sequence [on, n > 1 )  of positive integers with 

a,, + oo ( n  + XI), e.g. with a, = 2'"- 1 ( n  2 1 )  for which 

2 2 n * , 1  (n-m). 

Hence, by Corollary 1, YNn =s,.lr,,, ( n  -t a) for every {Nn, n 2 1) such 
that N,/(z'"- 115 1 (n -+ co). So then, for Nn = 22n as.  (n  2 I), we would 
have 

which is a contradiction to (11). Thus, the sequence (Y,, n 2 1) does not 
satisfy (A**) with the norming sequence {&, n 2 I} and filtering sequence 
(22" - 1 ,  n 2 11, and .then, by the earlier considerations, we conclude that 
the sequence (Y,, n 2 1 )  does not satisfy (A). 

And now we shall prove that the sequence [Y,, n 2 1) satisfies (A*") 
with the norming sequence (6, n 2 1) and filtering sequence j3': n 2 11. 
To this end we note that for every E > 0 and for every S > 0 we have 
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< 2 P [  max ISi - S 
[ ( 1 - ~ \ 3 ~ " ]  

I 2 E \ / / 4  J + 
[(I - 6)32n] < i  S[(I +6)32n] 

+PI: max 
[tl-s)32"]Si<[(l+6)32n] 

IS,J 3 e J[ii--6)3'.i/~], 

where [x] denotes thc integral part of the real number x. Further, by ( 1 2 ~ )  
and the Kolmogorov's inequality, the first term on the right -hand side of 
(13) is less than or equal to 

2PI: max * 
1(1 -&3 

> r / 4 ]  W-S , " j / E  
[(I -a)32'$si<[(i  + a 1 3 ~ 4  

<32{[(1+6)32"]-[(1-5)32"])./~232n+646/~2 (n-co) ,  

since, for [(I - 6) 3'"] < i 6 [(l + S) 3'"], we have 

whiIe the second term on the right -hand side of (13) is less than or equal to 

PC max IS:] 2 E -6) 32n~/461 + 
[ ( i - a ) 3 2 " ] ~ ; < [ ( 1  ta)32"1 

+PC max ISf*l 2 E d m / 4 6 ]  
[(I -6)324<i<[(1 +d)32"1 

< 16s2 [(I + 6) 3'"]/~' [(I -5 )  3'7 + P [IS* I 2 E J[(l-8) 3'7/4d] 
22"- 1 

< 16d2 ([(I +d)3'"] + 2'")/e2 [(I - ~ ) 3 ~ " ]  + 16d2(1 + 6 ) / ~ ~ ( 1 - d )  (n + m), 

where 166'(1+ S)/e2 (1 -d) < 646/E2 for 0 < 8 < 1/2. 
Hence, for every E > 0 and 0 < 5 < 1/2, we have 

lim sup P [ man 1 - q2.! 2 €1 < 1286/e2, 
n-+m li-32"1<632n 

which proves that the sequence {Y,, n 2 1) satisfies (A**) with the norming 
sequence (A, n 2 I} and filtering sequence j3': n 2 1).  

Let us further notice that Y ,, *No,, (n + co). Indeed, since for every 
~ 3 n $ 1 we have 

where, by the Kolmogorov inequality, for every a > 0, 
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and 

= e x p ~ - t ~ 3 2 n - n - l ) / 2 ~ 3 2 ~ - e x p { - t 2 / 2 )  (n-m), 

we have Y *JODI fn -. m). Hence, by Corollary 1, YNn -No,l (n+ m) 
3zn P 

for every IN,, n 2 1) satisfying NJb, + 1 (n - co) , where (b,, n 3 1) 
E {32n; n 2 1) (b,+ m, n+ co). 

Example 3. Let (Xk, k 2 1) be a sequence of r.vs. defined as follows: 
the r.vs. X,, k # 2'" (n 2 0), are independent and have the normal 
distribution function NIO, 1) for k # 32n (n 3 1) and 

3zn-1 1 ] =P[X3,. = - ] =-  ( n >  1), 
2 

while 

Let us put 
n 

k,2 = C 02Xj for n # 2'"(m> O), 
j= 1 

and 

2 
n 

- k2 for n 2 0 ,  S, = Xj and .I,:=SJkn ( n 2  1). 2 - 22"- 1 
j =  1 

Then 

(14) Y2n=Oa.s . ,n>0,  2 Y 22"- 1 *Noel (n+m) .  

Indeed, for every n 2 0, S ,, = 0 as., which proves that Y = 0 a.s. 
22" for n 2 0. For the proof o f  the second property in (14) we notice 

that k2 zz 2'" for sufficiently large n, and 22"- 1 

Y 22n- I = s* 22n- I /k  2zn- I +s** 22n- I /k 22R- I ( n  a l ) ~  

where Sf and S,** are defined in (12). Furthermore, by (12c), we have 

= XJk2,.- for every n 2 1, 
j= 22'- + 1 
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where 

22"- 1 

2"- 2 2 2 2 " - 2 Z n - l  
= cos ( r  - 3  /k2,.- exp { - t ( . - l)/?-k:2n- 1 

- - 

+ exp { - t2/2) (n + GO). 

Hence, q2.- * N*, (n -t m), which completes the proof of (14). 

From (14) and that 
2 - kt 

k 2 2 n  - 22n- (n 3 1) 

we conclude that the sequence (Yn, n 2 1) satisfies neither the Anscombe 
condition (A) nor the generalized Anscombe condition (Ao) with the norming 
'sequence {k, ,  n 3 1 ) .  The proofs of these facts run similarly as in Example 2. 

Now we shall prove that the sequence { G, n 3 1) satisfies (A**) with the 
norming sequence (k, ,  n 3 1 )  and filtering sequence {3'", n 2 1). TO this end 

- we note that, for every E > 0 and for every O < d < 1, we have 

(15)  P[. max ~ ~ - Y 3 2 n 1 2 c ]  
lk:-k2 l s d k Z  

32" 32" 

+ P [ max IS,/ /k2 - k!//ki k2 2 8/21 
lk? - k2 1 < a 2  

3Zn 
32 32" 

<PC max IS? - S* .I a ek3,J2] + 
k2 '&?6(1 +d)k2 

3 2n- 
32 

3ZA 

+ P I  ~ : ~ ~ < k f ~ ( l + d ) k ~  max IS:I 8 &k3,J4dJ + P [ k2 <k?<( l  max + g k 2  Is:*[ 3 ~ k ~ ~ J 4 6 1 ,  
32" 32" 3 2 .  

2 
s 3" and k3,. .s 2-3'" for sufficiently large n, whence since k f 2 n -  

( i s  N :  (kf - kiZa/  < 6k2 = (is N: k2 ( k,? c (1 +6) k2 ,) 
3 2  32' 3 2  

for sufficiently large n, and since for i c  {k:,, < k: < (1 +d)k:,.) we have 

for sufficiently large n. 
As St is the sum of independent r.vs. with finite variances, then, by the 
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Kolmogorov's inequality, the first term on the right -hand side of (15) is less 
than or equal to 4d/E2, the second one is less than or equal to 

16fi2(1 +S) k2 /z2 k2  < 32S/~', 
32" 32" 

and the third term on the right -hand side of (15) is equal to 
* 

P[IS,2~- , I  B tk J4d] < 166' klZn- 1 / ~ 2  ki2n + 0 (n - a). 
32 

Hence, for every E > O and for every 0 < 6 c 1, we have 

LimsupPC max )4-q2,,12r]<36b/e: 
n'a: ~kf-k:~~l<dl~ 

32" 

which proves that the sequence lx, n 2 1) satisfies (A**) with the norming 
sequence {k,, n 2 1 ] and filtering sequence {32: n 2 1). 

Similarly it can be proved that the sequence (5, n 2 1) satisfies (A**) 
with norming sequence {k,, n 2 1 )  and filtering sequence {32"-1, n 2 11. 

Let us further notice that 

I161 Y *J"o.r (n + a), Y3,. * x (n + 4, 
32"- 1 

and 

where X is an r.v. with the characteristic function 

q ( t )  = cos (r/JZ) e-"14. 

Then, by Corollary 2 ,  YN, -No, ,  (n + oo) for every {N,, n 2 1) satis- 
fying kiJkin 5 1 (n + m), where 

( b , , n 2 1 ] c ( 3 2 " - 1 , n g l )  (bn+co,n- ,m) 
P 

and YN - X (n 3 CO) for every {N,, n 2 1 )  satisfying k&/kb2;1+ 1 (n + co), 
P where ,bk, n 2  l j  E [32: n 2  1) (bh-+co, n - tm) .  

Let us still notice that if A is an event independent of X,, k # 2=" 
( n  > 0, k 2 I), and, for n 2 1, 

then P[Yvn < x]-+@(x)P(A)+P[X < xlP(A3, n- cr;, i.e. 

(17b) Yvn * .No,, I (A) + XI (Ac) (n -+ a), 

and the sequence {Y,, n 2 1) satisfies (A**) with the norrning sequence fk,, n 
2 1) and filtering sequence {v,, n 2 1). 



Anscornhe condition i39 . 

Thus, by Corollary 2, 

Y,, 3 No,, I (A) + XI (Ac) ( n  + co) 

for every (N,,, n  b 1.) satisfying keJklk: 5 1 (n + m), where [a,, n 3 1) i s  a 
O l t  sequence of positive integers with a, 4 MI (n + a). That fact implies the 

staternenls after (161, i.e. putting A = L? or, equivalently, v, = 32n- 1 as. 

( n  l), we obtain YNn 5 A",, , (n + m) for every [N, , ,  n 2 1 )  satisfying 
P k;Jk,2, -i 1 (n  -+ m), where { b , ,  n 2 11 J c - 1  (32"- 1, n 3 lj (6, + m, n -+ m); 

putting however A = (3 or, equivalently,. v,  = 3'" a.s.: n > 1 , we obtain 6 - 1  YNn 3 X (n 4 co) for every {N,, n 2- 1) satisfying k i i k i b  -+ 1 ( n  -t oo), where 

[hk, n 2 1; s (3", n  2 1) (b: -t m, n -+ a). 
The following example proves Remark 1. 
Example  4 [ 5 ] ,  Let U ,  2, , Z, ,  . . . be independent r.vs. such that U 

has a uniform distribution on (0, 1) and, for each n 3 1, Z ,  has a normal 
distribution with mean zero and variance one. Let 

and 

c = G I [ n $ J ]  (n21). 

The sequence {Yi, n 2 1) satisfies (A) [S] and then, by Lemma 2, it 
satisfies as well (A**) with norrning sequence I$, n 2 1) and any filtering 
sequence (N,, n B 1) of positive integer -valued r.vs. satisfying (3) (i.e. (4) 
with k,2 = n, n 2 1). 

Let us put N ,  = [2" U], n  Z 1 .  The sequence ( N , ,  n 2 1) does not 
satisfy (3) but satisfies (53. Indeed, putting e.g. v, = [2" U ]  + 1, n 2 2 ,  we have 

i s .  condition (5) with k,2 = n (a, = n, n 2 1) .  Now we shall prove that the 
sequence ( Yn, n  2 1) does not satisfy (A**) with the norrning sequence 
j&, n 2 1) and filtering sequence (N,, n  2 1). This fact will prove 
Remark 1. 

It follows from Theorem 1 of [ I l l ,  p. 472, that 

(18) Y , ,  ( n ,  .where Nn=[2"U] (812 11, 
P since &-.No, ,  (n + m), N ,  -+ co (n -+ a) and, for every n 2 1, the r.v. N ,  is 

independent o f  Zi (i 2 1). Furthermore, by the construction of the set J(w) 
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-. we have 
PLY$, # YNn] = P [ N , E J ]  < P [ U  <(n-1)2-"I+ 

for some m 3 11 

since o , ( l )  = P  [U < (n- 1)  2 - " 1 0  (n + a). This fact and (18) imply (cf. 
~ 7 1 ,  P. 278) Y;~ a J-O,I (n -+ a). 

Since (5') holds, and 

(19) Y = 0  a (n 2 1 ,  where v, = [2" U] + 1 ( n  2 11, 

we conclude that the sequence ( Y,', n 2 1 )  does not satisfy (A+*) with the 
norming sequence {&, n  2 1) and filtering sequence {N, ,  n  2 1 1 ,  where 
Nn = [2"U],  n 2 1 .  

5. Applicatiors to the martingale random limit theorem. We shall now 
show that the given results allow to generalize the martingale random central 
limit theorem of Rao [ 8 ] .  

We write * p  (stably), n + a, if Y, * p  (n+ CQ) and, for every B E F  
with P(B) > 0, there exists a measure p~ such that Y,-pB/P(B) ,  n +  CQ, 

under the conditional measure P ( -  13). In the special case where p~ = pP(B) 
for all  BE^, we write Y , * p  (mixing), n -, co [ l o ] .  

In what follows we shall need the following simple consequence of 
Theorem 3: 

THEOREM 4. Let {a,, n 2 1 )  be a non -decreasing sequence of positive r.vs. 
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and let (v,, n 2 1 )  be a sequence of posititre integer - valued r.vs: such that 
P 

v, -c a, (n + a). The following conditions are equivalent: 
(i) Kn = ,u (stably), n -+ co, and the sequence { 5, n 2 1 )  sati;fies (A**) 

with the mrming sequence (a,, n 2 1) a d  filtering sequence (v,, n 3 1) ; 
(ii) YNn - p (stably), n + m, for ev.ery sequence {N, ,  n 2 1 ) of positive 

integer - valued r.vs. satisfying (6), i.e. 

where (a,, a 3 1 )  is a: sequence of positive integers with a, 4 m (n 4 a ) .  
Proof.  Obviously, (ii) implies (i). To prove the reverse implication let B 

be a random event from 8 with P ( B )  > 0. Then, by {i), there exists a 
probability measure pB such that Y,,+ /iB/P(B) (n + a) under the measure 
P(-IB) .  Furthermore, the sequence {Y,, n 2 11 satisfies (A**) with the nor- 
ming sequence (a,, a > 11 and filtering sequence {v,, n > 1) under the mea- 
sure P I .  1 B). 

Indeed, for every E > 0 we can choose 6 > 0, 6 = 6 ( ~ ,  B), such that 

limsupP[ max IX-Y,,I 3 EP(B)] < EP(B). 
n+m lai -a2 "PI ~ ~ g a : ~  

Hence 

which states the desired result. 
Thus, by Theorem 3, Y,, *pB/P(B), n -, oo, under the measure P(-I  B), 

for every sequence (N,, n 2 1) of positive integer -valued r.vs. satisfying (6). 
Hence, Y,, * p (stably) (n + oo) for every (N,, n 2 1) satisfying (6). 

Remark  3. We note that if Y,, - ,u (mixing) (n + co) not only stably, 
then in part (ii) of Theorem 4 we obtain YNn p (mixing), n -+ co. 

Let (X,, 9 , ,  n 2 1) be a martingale difference sequence (MDS) with 0; 

= E(X~IF,-,) < ao as. (n  2 1). Fo need not be the trivial sigma field 
(0, a).  We put 
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and assume that s; is finite for all n 2 1, and s: -, c~ (n + a). Furthermore, 
we assume that the sequence [X,, n 2 1 ) satisfies the following cp -mixing 
condition: 
(20) sup{IP(BIA)-P(B)I:  A € f l f l  BE%"+,) 6 ~ ( n )  

with rp(n) -+ 0 (n  + m), where %It = a {X,, ~i < k < mj (1 ,< n 6 rn < CG). 

The following theorem extends and strengthens Theorem 1 of [ a ] :  
THEOREM 5. Let IX,,, .F,,, n 2 1) be nn MDS satisfying (20). Suppose thar 

(21) Y :  S s p  ( n -  a?), 

where 
n 

@ '  ( N , ,  n 3 11- is a sequence of positive integer - valued r.vs. such thar 

whme {a,, n 3 1 )  is Q sequence of positive integers with a, -. cc (n + m), 
and I is a positive r.v. having a discrete distribution, then 

YNn = SNn /sN, * p (mixing) (n -+ a). 

The proof of Theorem 5 bases on Theorem 4 and the'following lemmas: 
LEMMA 4. [f { X , ,  Fn, n 2 1 )  is an MDS saiisfying (20) and (211, then 

q-~(mixing) ,  n+ m. 

LEMMA 5 183. Let Ik,, n 2 1)  and {m,, n B 1) be sequences of positive 

integers tending to infinity, and let A,E +@," ( n  2 1). Then, for any event A, 

lim sup P ( A ,  I A) = lim sup P(An),  
!l+rT n-'m 

where we set P ( A ,  1 A) = P(AJ  if P(A)  = 0. 
LEMMA 6. Let {X,, $,, n 2 1 )  be an MDS satisfying (20) and (21). I f  l is 

a positive r.v. having a discrete distribution, then 

(23) yAnl = p (mixing) ( n  -+ m). 

LEMMA 7 .  Let (X,, SF,, la 2 1 )  be an MDS satisfying (20) and (21). I f  IZ is 
a positive r.v. having a discrete distribution, then the sequence (I.',, n 2 1) 
satisfies (A*") with the norming sequence fs,, n 2 1 )  and ,filtering sequence 
{[An], n 2 1 ) .  

Proof o f  L e m m a  4. Let A, = a, A, = [Y, < x] (n 2 1). By Theorem 
2 of E9] it is enough to prove that, for any A,, 

lim P(A,t A,) = lim P(A,J .  
11 +ID n -'a, 



Let Ir,, n 2 1) be a sequence of positive integers such that s t +  cc 
(n - s ~ )  and st/s: + 0 (n + a). 

For every k 2 1 we put 4 = max (r, - k, 01, n 3 1. Of course, 

/s; -t 0 ( n  -+ a) for every k 2 1, %k+k 
n 

and then, by the Kolmogorov inequality, we have 

Therefore, for every k 2 1, 

(25) lim P(A,I A 3  = Em P[(Sn-St, , ) /s .  c x l  A,] .  
n-m n -m 

Note that 

L-(Sn-S,k+k)/~n < XI E mI;:+k+ for all n 2 k ,  
n n 

and A, (k 3 1). Hence, by the q-mixing condition (2U), for every k 2 1, 

since rj: + GO ( n j  m) for every k 2 1. Again, since 

we get 

(27) Iim P[(Sn -Srk+,)/sn < x] = lim P(A,J. 
ntm n 11-30 

Combining (25), (26) and (27), we obtain (24). The proof of Lemma 4 is 
completed. 

P roo f  of Lemma 6. Let Zj ( j  2 1) denote the values taken on by the 
r.v. 1, with positive probabilities and let f i j  = 11, = Ij] ( j  3 1 ) .  Then 

and, by (20), Lemma 4 and Theorem 1 of 191, we obtain 
30 

am < x] = C P(Qj)  lirn PITl jnI  < x l n j l  
n-m j= 1 n-+m 
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for every continuity point x of F, where F ( - )  = p I(- oo, .)I, which proves 
that FA,, p (la -+ a). 

Let A p  = a,, A!' = [Tijml < i; Qj] ( n  3 1) for every j 3 1. It is easy to 
see that the sequence (A?, n 3 0)  is a mixing sequence of sets in the space 
(aj, .d,, Pj), where 

d i = { A ~ f : A c C I r i ) ,  Pj(A)=P(AIQj) for 

Indeed, for every fixed k 2 1 we have 

lim Pj(Ayl I AP)) = Iim P~(A:' Ap)/Pj ( A p )  
n -'m n -+q. 

= lim P [qllm, c x I AP Qj] P ( A p  d2J/P(Rj) Pj ( AP)  
n-'w 

The last expression is, by Lemma 4, equal to 

lim P [ Y l j ,  < x ( Qj7 P ( A P  I Q,)/P~(AM = Em Fj(A:'), 
n-m n-m 

I where 

lim pj(A:)) = lim P[K < ~ J i 2 ~ ]  = lim P[1:, < x] = F ( x )  
n-m R-m n - m  

for every continuity point x of F, F(.) = p{(-m, *)), which proves that 
(A?, n 2 1 )  is a mixing sequence of sets on (i, dj, Pj) with the local 
density F(x). 

Thus, for 

the sequence (A,, n 2 1; is a mixing sequence of sets in (a, 9, P) [lo]. 
Hence TI,] =- p (mixing), n + m. 

Proof  of Lemma 7. For every E > 0 and for every 6 > 0 we have 

limsup P [ y a x  I x- Tnell 2 E] 
2 

Isi -q.inlJ S ~ A , ]  

+ lim sup P [I qIn1l 2 s &%/2d], 
n-cc 

where 

lim sup P [I 2 E 4'1-6/2s] = p {x: 1x1 3 E m / 2 6 )  -+ 0 (6 -+ 0). 
n + ~  
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Thus, the sequence = S,/s,, In 2 I) satisfies (A**) with the norming 
sequence Is,,, n 2 1 ). and filtering sequence :[an], n 2 11 if, for every E > 0, 

(28) lim lim sup P [ p a x  ISi - SI~,,]l 2 E J 1 - s  51~ft1/21 = 0. 
2 

n-'m Isi - ~ ~ n l l ~ ~ ~ ~ n l  

Let Qj = [ A  = l,l (j 2 i ) . - ~ h &  by Lemma 5, the left -hand side of (28) 
is equal to 

41 

Ern  P(Rj) lirn sup P [ man. ISi - S,4,,,J 2 e slJni2 1 i2J 
6 4 0  j= 1 u'm Tnma<i 6 Tn9* 

JO 

= P(O,) lim sup P [ max ISi -SIIjn1I 2 e , ,63s141 j2 ] ,  
B+O j= 1 ti -'w ~ ; f , d ~ i <  T,,g 

where 
C = r n i n ( i : ( 1 - 8 ) ~ ~ ~ ~ , < ~ ~ ] ,  T$=max(i:s?<(1+6)$.1). 

Furthermore, the last expression is less than or equal to 

which, by the Kohogorov inequality for martingales, is less than or equal to 

32 Em 1 P(L),) Em sup E(S 2 - S I )2/~2(1 - 
a-o j= 1 u +i~, T~,a =,,a 

m 

, < 32 1im P(Gj) lim sup ((1 + 6)  sijnl - (1 - 6) S:,*~]/E~ (1 - 6) 
8-0j=1 n-00 

< lim W / c 2  (1 -8) = 0. 
d 4 0  

The proof of Lemma 7 is completed. 
Proof of Theorem 5. By (23) and Lemma 7 we have qAnI=> 

(mixing) (n + m) and the sequence f Y,, n 2 1) satisfies (A**) with the nor- 
ming sequence is,, n 2 1) and filtering sequence {[An], n > 1). Thus, by 
Theorem 4, we obtain YN,,*p (mixing) (n+ a) for every (N,, n 2 l] 
satisfying (22), which is the statement of Theorem 5. 

Now we give simple consequences of Theorem 5 which extend or 
strengthen results given in [6] and [8]. 

COROLLARY 4 (cf. [8], Theorem 1). Let {X,,, n 2 1) be a strictly stations- 
ry and ergodic sequence of r.vs. Assume that EXl = 0, E(X,I XI, ..., X,- ,) 
= 0 a.s. (n 2 1) and EX: = 1. If (N,, iz > 1) is a sequence of positive integer - 
valued r.vs. such that wa,z A (n + m), where {an, n 3 1) is a sequence of 
positive integers with a, + co (n + oo), and I is a positive r.v. having a discrete 
disrribution, then s,,/& (mix@) (n - m). 
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COROLLARY 5 (cf. [6], Theorem 4 and Remark on p. 204). k t  {X, ,  n 3 1)  
be a sequence of independent r-us. with E X ,  = 0, EX: = cri < co (n 2 1 ) .  Suppose 
rhat SJs, p (n  * cc), where 

l f  [(N,, n 3 1 )  is a sequertce of  positive integer - valued r.us. satisfying (221, 
then SNn/sN, = p (mixing) (n + a). 

COROLLARY 6. Let (X, ,  .Fn, n > 1) be an MDS satisfying (20). Suppose 
tirut 

and, for etiery E > 0, 

If ( N , ,  n 3 11 is a sequence qf'gositive integer -valued r.vs. satisfying (22), 
then SN"/sNn J+*~,, (mixing) (n + GO). 

The following result generalizes Theorem 4 of 161: 
THEOREM 6. Let {X,, 9,, n 2 1) he an MDS satidying (20) a d  (21). If 

IN,, n 2 2 1  is a sequence of  psitioe integer -oalzsed r.vs. such that 

where (a,, n B 1) is a sequence of positive integers with a, + co ( n  -, a) and R 
is a positive r.v. (PC0 < A < oo] = 1 )  such that, for any given E > 0, 

then 

SN,/sNn * p (mixing) ( n  -t a). 

Proof. Only some modifications are necessary in the proof of Theorem 
4 from [h] to make it applicable in this case. 

In the particular case, from Theorem 6 we get a result stronger than 
that of Theorem 4 in [6]: 

COROLLARY 7. Let [X,, n 2 1 )  be a sequence of independent r.vs. with 
EX, = 0, EX: = 0: < cc (n 2 1). Suppose that S./s. 3 p ( n  -. m), where 

If (N,, n 2 1) is a sequence of positive integer -valued r.us. satisfying (29) 
and (30), then SNn/sNn * p (mixing) (n  -, a). 
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