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Abstract. The paper proves theorems of [6] which are given
here in a more general form. Moreover, some applications of the
introduced version of the Anscombe condition are discussed.

1. Introduction. Lct {)C,, n>1ilbea sequence of random variables (r.vs.)
defined on a probability space (Q, #, P). Suppose that there exists a
probability measure p such that

) : Y,=u n-oow (converges weakly);
for every & > O there exists a § > 0 such that
(A) Imsup P[ max |-V >¢]<e.

n—w li-n|<én
Suppose that {N,, n> 1} is a sequence of positive integer - valued r.vs.
defined on the same probablhty space (2, #, P). The well known Anscom-
be’s theorem [2] proves that if a sequence {Y,,, nz= 1} of r.vs. satisfies
coaditions (1) and" (A) then ‘ :

P)) 7 YN =y, n-oo,

for every sequence {N,,,.n ‘ of positive integer - valued r.VS. satnsfymg
3 ,/a,,—'-'v 1, 'n— oo (in probability),

where {a,, n> 1} is a sequence of positive integers with a,— o0 (n->c0).

Condltlon (A), called the Anscombe condition, plays very important role
in proofs of limit theorems for sequences of r.vs. with random indices. Aldous
[1] has pointed out that condition (A) is a necessary and sufficient one for (2)
when (3) holds. A more general and stronger result than that of [2] and [1]
has been given by Csorgdé and Rychlik [4]. :
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THEOREM 1 [4]). Let {k,, n > 1} be a non-decreasing sequence of positive
numbers. The followmg conditions are equivalent:

(i) the sequence {Y,, n > 1} satisfies (1) and the so-called “generalized
Anscombe condition” with norming sequence {k,, n > 1}: for every ¢ > 0 there
exists a & > 0 such that

(A°) limsup P[ max IY— Y| =ze]l<e;

n—w ki —k |<6kn

(i) Yy, = p (n— ) for every {N,, n= 1} satisfying
@. K551 @),

where {a,, n 2> 1} is a sequence of positive integers with a,— o© {(n— ).

These results essentially base on the assumption Y, = u (n— o). In [6]
we have considered the case where that fact is not known but we want to
know whether a sequence of r.vs. with random indices weakly converges to a
measure {(we are interested in, e.g., Gaussian measure). The following theorem
has been given without proof:

THEOREM 2 [6]. Let {k,, n > 1} be a non- decreasmg sequence of positive
numbers and let {v,, n > 1} be a sequence of positive integer - valued r.vs. such
that v, 5o (n—» 0). The Jollowing conditions are equivalent:

@) Y,,=p(n— x), and the sequence {Y,, n= 1} satisfies the so-called
“Anscombe random condition” with norming sequence {k,, n > 1} and filtering
sequence {v,, n=1}: for every ¢ >0 there exists a 6 >0 such that

(A*) limsupP[ _ max !Y Y, =&l <e;

N KE - k"| <o)
(i) Yy, = p(n— o0) for every {N,,, = 1} satisfying
) K /ke, 51 (n— o),

where {a,, n > 1} is a sequence of posuwe integers with a,— oo (n— o0).

We prove here Theorem 2 in a more general version and discuss some
applications of the introduced random version of the Anscombe condition.

2. Random version of the Anscombe condition. Let ! {Y,,n>=1} be a
sequence of r.vs. defined on a probability space (Q, &, P) and let {a,, n > 1}
be a non-decreasing sequence of positive r.vs. (0 <a, <a,,, as, n=> 1)
defined on the same probability space (2, &, P). Furthermore, let {7,, n > 1}
be a sequence of positive integer - valued r.vs. defined on (R, #, P) and such

that r,,—}-'» oo (n— o).
Definition (Anscombe random condition). A sequence {Y,, n > 1} is

said to satisfy the Anscombe random condition with the norming sequence
{a,, n =1} of positive r.vs. and filtering sequence {7,, n>= 1} of positive
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1nteger valued r.vs. if for every &> 0 there exists a 6 >0 such that

(A**) limsup P[ max IY Y= a]

nrw la; —-a |<6¢

One can easily see that in the special case, when «, =k, as., 7, =n as.,

> 1, (A**) reduces to (A°), and hence, when k2 = n (n > 1), (A**) reduces to
(A) On the other hand, if «, =k, as. (n > 1), then (A**) reduces to (A¥).

Moreover, we notice that if a sequence {Y,, n > 1} satisfies (A), then it
satisfies (A**) with the norming sequence 1\/; n>1} (ie a, = \/ﬁ as., n
> 1) and any filtering sequence {a,, n>> 1} of positive integers such that a,
— w0 (n— 0). ' “ .

The analogous remark refers to (A°). Namely, if a sequence [Y,, n>1}
satisfies (A°) with norming sequence {k,, n > 1}, then it satisfies (A**) w1th
the same norming sequence {k,, n>1} (ie. a, -k» as., n=1) and any
filtering sequence {a,, n > 1} of positive integers such that a, — o0 (n— 00).

The following lemma generahzes these remarks and proves Lemma 1
from [6]: :

Lemma 1. If a sequence {Y,, n > 1I of r.vs. satisfies (A°) with the norming
sequence {k,, n > 1}, then. it sat:sﬁes (A**) with the same norming sequence
rk,,, n =1} and any ﬁltermg sequence Aty n 21} mdependent of {Y,,n> 1}

Proof Let KeN be fixed. Then

PL, max I%-%)>el<Plr, <K+

Ik -—k |<6k

+ Y Plr,=rlP[ max |¥—YI>el,

r=K+1 |k2—k <]
as 1, is for every n= 1 mdependent of Y,,, nz 1} But
“lim Pz, < K] =0,

n—w

since t,,i w0 (n— o). Choosi’ng then K so large that

P[ max |Y Y| >el<e for every r >K,
K - k2| <o’
we obtain the desired result.

There arises, obyiously, a question about conditions which the filtering
sequence {ty, n =1} should satisfy in the case where’ we reject in Lemma 1
the assumption that {t,, n> 1} is independent of {Y,, n > 1}. The following
lemma gives an answer to this questlon and proves Lemma 2 from [6]:

LEMMA 2. If a sequence {Y,, n> 1} of r.vs. satisfies (A°) with the norming
sequence {k,, n > 1}, then it satlsﬁes (A**) with the same norming sequence
{tky, n 2 1} and any filtering sequence {N,, n = 1} satisfying (4).

3 —Prob. Math. Statist. 7 (2)
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Proof. By the assumption and the remark after Definition we conclude
. that the sequence {Y,, n> 1} satisfies (A**) with the norming sequence
{kn,, n =1} and any filtering sequence {a,, n > 1} of positive integers such
that a,—» oo (n— o). Let {N,,n>1} be a sequence of positive integer -
valued r.vs. satisfying (4), i.e.

(@) : | k3 fl2 51 (n— o),
where {b,, n > 1} is a sequence of positive integers with b, — o0 (n — c0). Put
B, =[lk§,~ks| <mki]1 (n>1),

where # is a fixed positive number. Then for every ¢ > 0 and § > 0 we have

() P[ max [|Yi—Yy|>e]<PB)+

2_,2
li; — kN | SOk

+P[  max [Y-L|> 8/2Bn]+P[|YN — Y| > ¢/2;B,]

2_.2
Ik ~ kN, |<akN

<SPBY+P[ , max [|%-Y,|>¢2]+P[  max |Y—%,|>¢2],

2 2_,2
“(i - kbnl ﬁﬁ*kbn Iki hd kb“| < "kb!l

where 6* =6(1+#)+#. Since the sequence {Y,,n=>1} satisfies condi-
tion (A**) with the norming sequence {k,,n> 1} and filtering sequence
{b,, n > 1} and since, by (a), P(B;) —» 0 as n— oo, inequality (b) proves that
the sequence {Y,, n> 1} satisfies (A**) with norming sequence {k,, n=> 1}
and filtering sequence {N,, n > 1}. The proof of Lemma 2 is completed.
Remark 1. Further it will be shown that (4) is in a sense necessary for
(A°) to imply (A**). It will be proved that it is not enough to assume (5).

The following lemma generalizes Lemma 2 as well as Lemma 3 of [6]:

Lemma 3. If a sequence {Y,,n= 1} of rus. satisfies (A**) with the
norming sequence {a,, n > 1} and filtering sequence {1,, n > 1}, then it satis-
fies (A**) with the same norming sequence {on, n= 1} and any filtering
sequence {N,, n> 1} such that aN/a L1 (n— o), where {a,, n=21} is a
sequence of positive integers with a,— "0 (n—> o).

Proof. Let us put

B, =[of,~e2 |<m2] (n>1),

where n is a fixed positive number. Then, for every ¢ > 0 and é > 0, we have
P[ max _ |%-Yy|> e

lj _'N l<"¢~

SPB)+P[, max [Y-Y |>¢2]+P[ fax 1%—Y, | >¢/2],

: <™
"'l I 6“1.'“"

Iu —ag, I\natz
a,
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where 6* = 6(1+n)+n. The assumption and this inequality imply the desired
result. ‘

It is easy to see that if o, =k, as. (n > 1), then Lemma 3 reduces to
Lemma 3 of [6].

3. The main theorem. The following theorem generalizes and strengthens
the statements of Theorem 1 and Theorem 2:

THeEOREM 3. Let {a,, n > 1} be a non-decreasing sequence of positive r.vs.
and let {v,,n> 1} be a sequence of positive integer -valued r.vs. such that
Vv, 5 oo (n— o). The following conditions are equivalent:

(i) Y, =pu(n—> ), and the sequence {Y,, n>1} satisfies Anscombe
random condition (A**) with norming sequence {a,, n > 1} and filtering sequen-
ce {v, n>=1};

(ii) Yy,=>p (n— o0) for every sequence {N,,n> 1} of positive integer -
valued r.vs. such that

6) o, fo%, 51 (n— o),

where {a,, n > 1} is a sequence of positive integers with a,— oo (n— 00).
Proof. Let ¢ >0 and a closed set A = R be given. Then, for every
6 >0, we have

P[Yy €A1 < P[Y, eA1+P[Yy €4; Y, ¢A7]
< P[Y, eA+P[|%y —Y, |>¢]

<P[YvaneA‘]+P[la§,"—afal >d0; J+P[  max _ |%-Y, |>e],

Iaf e, I<oay, n

where A° = {xeR: o(x, A) <&}, o(x, A) =inf{|x—y|: ye A}. Since ¢ > 0 can
be chosen arbitrarily small, we see by (6), (A**), the assumption Y, =pu
(n— o0) and Theorem 2.1 of [3] that (i) implies (ii).

If (i) holds, then putting N, =v, as. (n > 1), we conclude that Y, = pu
(n— ). Suppose that (A**) with the norming sequence {a,, n>1} and
filtering sequence {v,, n > 1} fails: Then there exist an ¢ > 0 and a subse-
quence n, <n, < ... of positive integers (n; —» o0, j — 00) such that
@ P[maxIY Y, |>s] >¢g forall j=1,

:eB

where

B, = {ieN: “\2'.., <a? < (1+1/j)a3nj} Sz
or _ _

B, = {ieN: (l—l/j)aﬁ,,j <o < af,,j} Gi=1.
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We shall only consider the first case as the second one can be treated
similarly. .
Let {G;, 1 <i < M} be disjoint and open subsets such that
M
0<p(G)=p@). w(U G)>1-¢/2,
and the diameter G; < ¢/2. Thus, by (a), there exist a set Ge {G;, 1 <i S M}

and a subsequence {m ] > 1} of the sequence {n;,j = 1} such that

Dax |, -Y, | = s} > s/(ZM} forall j=>1
mj\ﬂ \(1+lfj)m

(b) PLY,, €G;,
. _J oy

Let N;=min{C}, C}},j> 1, where
C} =max{ieN:of <(1+1/)el }, C;=min{i>v,: Y¢G}.

Since the sequence {as, n > 1} is non-decreasing, we have o} < aZ;
. i i

as. afmj < aréjl as., or,%j < (1+1/j)oc§mj as. for all j > 1. Hence

P .
ahylod, =1 (- o),

which proves that the sequence {Nj;,j> 1} satisfies (6). But
P[Yy,¢G] = P[Y,, ¢G1+P[¥y¢G; ¥, €G]

>P[Y, #G]+P[Y, €G;, ,max | > €]

u"mj Sap €1+ lllj)mvmj

%-Y

ij

> P[Y,, ¢GJ+e/(2M), |

which, by Theorem 21 of [3] proves that YN =/> u (1 - oo) Thls is a-
contradiction to (ii), and it proves that the sequence {Y,, n> 1} must satisfy
(A**) with the norming sequence {a,,n> 1} and ﬁltermg sequence {Vas 1
> 1}. - The proof of Theorem 3 is completed.

Remark 2. It is easy to see that putting a, =k, as., v,=n as, n=1,
Theorem 3 reduces to Theorem 1. It is so since in this case (A**) reduces to
(A°), whereas (6) reduces to (4). On the other hand, if a, =k, as. (n = 1), then
Theorem 3 reduces to Theorem 2.

CoroLLARY 1. Let {(k,,n>1} be a non-decreasing sequence of positive
numbers and let {a,, n> 1} be a sequence of positive integers with a,— o
(n— o). The following conditions are equivalent:

(i) Y,,= p(n— ), and the sequence {Y,, n> 1} satisfies (A**) with the
norming sequence {k,, n> 1} and filtering sequence {a,, n > 1};
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(i) Yy, =p, n— oo, for every {N,, n> 1} satisfying
(7) Ky /ke, 51 (n— ),

where .(b,, n > 1} is a sequence of positive integers with b - o0 (n— ) and
by, n 21}  {a,, n=1}.

CoroLLARY 2. Let {ky, n 21} be a non- decreasmg sequence of posmve
numbers and let {v,, n > 1} be a sequence of positive integer - valued r.vs. such
that v, L o (n— ). The following conditions are equivalent:

(i) Y,,=p (n— o), and the sequence {Y,, n> 1} satisfies (A*¥) wuh the
norming sequence {kn, n = 1} and filtering sequence (Vo n 2 1};

(i) YN,,=>ﬂ(n—> o) for every {Ny,n> 1} sattsfymg

® KR S (n— o),

where Ia,,, n>1} is a sequence of positive integers wzth a,— o0 (n— oo)
" In the particular case, where k2 = n, v, = [4n] as. (n 1), where 4 is'an
r.v. such that P[0 <1 < 0] =1, the following conditions are eqmvalent
(i) Yuq=>p(n— ), and the sequence {¥,, n>1} satisfies (A"‘"‘) with
normmg sequence {\/i_l n> 1} and filtering sequence {[in], n 1}
- (ii') Yy, =p (n— o) for every {N,, n> 1} satisfying

» P
(8) - : N,/a,— 4 (n— o),
where {a,, n > 1} is a sequence of positive integers with a, — o0 (n — o0).
CoroLLARY 3. Let {a,, n> 1} be a non-decreasing sequence of positive

r. vs. and let {a,, n>1} be a sequence of positive mtegers wzth a, — 0
(n— o). The following conditions are equtvalent '

@) Y, =u (n—> ), and the sequence {Y,, n =1} s‘atlsﬁes (A**) w:th the.

norming sequence {a,, n > 1} and filtéring sequence {a,, n > 1};
(i) Yy, = p(n— o) for every {N,, n> 1} satisfying

© ~ . d} 1 (n— ), |
where {b,, n > 1} is a sequence of posmue mtegers with b, — o (n—> oo) and
1bn, nz 1} = {a,,, hz= 1}

The following example elucidates the usefulness of these considerations.

Example 1 [12]. Let {X,, k > 1} be a sequence of independent r.vs.
defined by _ '

PLX . =2" 1] P[X ——22"‘_‘]% ’(n?li,

and X,‘, for k#2*"(n=1,k>1), has the normal distribution function
N(0, 1) with mean zero and variance one. Let us put

S—ZXk, Zo'Xk,=

k=
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and Y,:=8,/5,(n = 1). Then

1/'2:!,,_1--*.»./1/'0,1 (n— o0), Yzz,,=>X (n— o),

where 4", , denotes a normal r.v. with mean a and variance b, and the r.v.

X has the characteristic function ¢(f) = cos(t/ﬁ)e“z"‘ (cf. [12]). Let
{Npn,n> 1} be a sequence of positive integer - valued r.vs. such that

" 1 w1
(10a) P[N,=2"-1]=1-—, P[N,=2"]=> (n>1).

Theorem 1 does not allow to confirm the weak convergence of the
randomly indexed sequence {Yy,n>1}. But it is easy to see that the

sequence {Y,, n > 1} of r.vs, satisfies (A°) with norming sequence {k,, n > 1},
where k, =s, (n>1) (cf. [13], p. 11). Hence, by Lemma 1, the sequence
{Y,,, n > 1} satisfies also (A"‘*) with the norming sequence {s,, n > 1} and
any filtering sequence {a,, n > 1} of positive mtegers with a, —» oo (n— oo).
Thus, by Corollary 1, Yy =>JV 0,1 (n— ) for every {N,, n>1} satisfying

s /s,,n—-»l (n— ), where {b,,n>1}<c{2"-1,n> 1} (b, =+ 0, n— ),
and Yy = X (n— o0) for every {N,, n> 1} satisfying s,., /s,, 21 (n— ),
" where {b,n=1} {2, n>1} (b, o, n— ). For the sequence {N,, n
=1}, deﬁned by (10a), we have

P
sk, S;Z" 1 - o).

Hence we conclude that in this case Yy, = A 0,1 (n— 00).
Let us further notice that if 4 is an event independent of X, (k > 1) and
_(2"~1 on 4,
=02 on A°,

then P[Y, <x]- ®(x)P(4)+P[X < x]P(49), n— w, ie.

(10b)

(10c) Y, =N o I{A)+XI(A) ~ (n— ).

Moreover, the sequence {Y,, n> 1} satisfies (A**) with the norming
sequence {s,, n > 1} and filtering sequence {v,, n > 1}. Indeed, by the con-
' struction v, Lo (n— 00), and v, is for every n > 1 independent of Y, (k > 1).
Since the sequence {Y,, n> 1} satisfies (A°) with norming sequence {s,, n
=1}, Lemma 1 confirms the desired result. Hence, and by (10c) and
Corollary 2, we have

Yy, =N on H(A)+XI(4)  (n— o)

for every {N,, n> 1} such that an/SV L1 ), where {a,,n=1}is a
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sequence of positive integers with a,— oo (n— oo0). This fact implies the
statements after (10a), ie. putting 4 = Q or, equivalently, v, = 22"—1 as.
(n>1), we obtain Yy =A%, (n— o) for every {N,, n>1} satisfying
s /55, L1 (n— ), where ppn=13 {21, n21} (b,— o0, n— );
puttmg, however, A =@ or, equivalently, v, = 22" as. (n> 1), we obtain
Yy,=X (n—o0) for every {N, n>1} satisfying s} /sj L1(n—- ),
where {b,,n>1} <{2*" n>1} (b,— o0, n— ).

4. More about usefulneses of the Anscombe random condition. Now we
shall give two examples of sequences {Y,, n > 1} which fulfil (A**), whereas
they satisfy neither (A) nor (A°). At the end of this section we shall give an
example proving Remark 1.

Example 2. Let {X,, k> 1} be a sequence of r.vs. defined as follows:

the r.vs. X,, k# 2" (n>0, k> 1), are independent and have the normal
distribution function N (0, 1}, and

22"y
X2=—X1, X = — Z Xj (n}—l).

2'!
2 j=22""14y
Let us put S,= ) X;, Y,,:=S,,/\/ﬂ (n=1). Then
i=1

22"_1 3;/‘/'0'1 (n'—’ CXD).

{11) Yz_ =0as. (n=20), Y

Indeed, for every n > 0 we have Szz,, = 0 as., which proves that Yzz,, =0

as. (n > 0). For the proof of the second property in-(11) we put S, = S;
+S¥*(n> 1), where

(123.) S: == Z *Xi Z Xl! S:* = Z *% Xl' = Z XI"
’ : =1 leN“ =1 ie—;V“
and
(12b) N*={jeN: j#2*, n>0}, N**=N\N* ]

and note that, for every n>1, S} is the sum of independeﬁt rvs, S*,
= S:z,,_ as. for n = 0, while : 2
(12) S§*=0 as,

S:;n__l_ —S:z"—l_l as. for 1<ig2¥-2"" (m>1).
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Moreover, by the Kolmogorov's inequality we have, for every ¢ > 0,
420~ 1_

POST, /\/22" [1>e=P[] z x| o]

<22" Y22 1)50  (n> ).

Hence, and taking into account- that

22"

Eexp{ttS /~/22" ll—Eexplzt J/~/22" 11

j_
JeN*

=exp|—t (22'1 n— 1)/2(22"—1)} — €Xp (—TZ/Z} .(nﬁ 00),

we obtain

Y .
22"

/V/zz" +s "2 21Ny,  (n— ),

Wthh ends the proof of (11). .

Now we shall prove that the sequence {Y,, n > 1} does not satlsfy the
Anscombe condition (A).

Indeed, if the sequence {Y,, n> 1} fulfilled (A), then in view of
the remarks after Definition it would fu]ﬁl (A**) with norming sequence

n,n > 1} and any filtering sequence {a,, n > 1} of positive integers with
ay— 0 (n— 00), eg. with a, =22"—1(n > 1) for which

Yzzn_ = l"4/‘0 1 (n - CXJ)

Hence, by Corollary 1, Yy, =4, (n— o0) for every {N,,, nz1} such
that N, /(22"—1)—+1 (n—' oo) So then, for N, = 22 as. {(n > 1), we would
have .

Y n=>ANoy1 (n— ),

which is a contradiction to (11) Thus, the sequence {Y,, n> 1} does not
satisfy (A**) with the norming sequence {\/n, n > 1} and filtering sequence
{22"—1,n > 1}, and then, by the earlier considerations, we conclude that
the sequence {Y,, n > 1} does not satisfy (A).

And now we shall prove that the:sequence lY,,, n>1} satisfies (A*¥)
with the norming sequence {ﬁ n>1) and filtering sequence 3", n>1).
To this end we .note.that .for every ¢ >0 and for every 6 >0 we have
(13 P max [N-Y,/>cl<P[ max 5§ i>e /37254

ji-32"<432" li-32"<s32"

+P[  max |S|]32"—1|/\/_ 32">a/2]

li-32"<s32"
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<2P[ max |S; — an/F,/32"/4]+
(1 -532"<i<r+632% [(1 &3
+P[ max ISlI ? 8\/Eﬁi_5)32"j/25]’

- 832" << +932h

where [x] denotes the integral part of the real number x. Further, by (12¢)
and the Kolmogorov’s inequality, the first term on the rlght -hand side of
(13) is less than or equal to

2p max ©IS*—S /27
[ I i [(1 532n]|/$ 3 /4]

[(1 —5)32"] <i<[(1+8)32"

[(1+5)32"] [(1 —d) 32"]t/.9232"—> 646/& (n— w),
since, for [(1— 0)32"] < [(1+6)3%"], we have '

Sp _5** o = Y X;=0 . as,
=" jequ-932"+1 :
jeN

while the second term on the right - hand side of (13) is less than or equal to

P[ max IS¥ > & /[(1—0) 371/46] +

[(1-832"<i<p +832"

+P[  max 15%41 > & /[(1-6) 37"1/43]

((1-832"<i<p1+832"

1652[(1+5)32"]/s [(1-8)37"1+ PLIST,, ) ,/[(1 8)37/48]
<1652{[(1+b)32"]+22"1/a (- 5)32"]—>1652(1+5)/s (1-8) (n— o),

where 166%(1+8)/e2(1—0) < 648/e* for 0 < < 1/2.
Hence, for every ¢ >0 and 0 <J < 1/2, we have

limsup P[ max |Y— Yz,,|>s] 1285/3

n-o ji-32% <832

which proves that the sequence 11/;,, n =1} satisfies (A**) with the normmg

sequence {\ﬁ n> 1} and filtering sequence (3, nx=1}.
Let us further notlce that Y n=> N1 (n—> oo) Indeed, since for every
=1 we have

Y32n = S:2n/\/j'?+S::n/\/3ja

where, by the Kolmogorov inequality, for every ¢ >0,

PIS /371 2 61 = PIIST,,_ |2 2/371< 27723 =0 (n—o0)
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and
2"
Eexp {itS 2,,/\/13:F} = Eexp {it 32 -/\/ﬁi}
JGN”

=exp{~12(3"—n—1)2:3") s exp{~1%2) (n— o),

we have Y n=>ANp,1 (n— ). Hence, by Corollary L, Yy =AHo, (n— )
for every {N,,, n>1) satisfying N,/b, 21 (n> oo) where {by, n =1}
c{3*,n>1} (b,— 0, n— ).

Example 3. Let {X;, k > 1} be a sequence of r.vs. defined as follows:
the rvs. X, k#2*"(n>0), are mdependent and have the normal
distribution function N (0, 1) for k # 32" (n > 1) and

n—1 ' n—1 1
P[X32u =3? ]=P[X32n= —3? ]=§ (n=1),

while
. 22"y
Xo=-Xy, X u=- Y X, (n=1).
=221,y
Let us put
ki=Y o2X; for n#2"(m>=0),
j=1
and
k;z,, = k;z,, forn=0, §,= ‘Zl X;and Y,:=S/k, (n=1).
j=
Then
14 Y n=0as, n>0, Yo, =>ANo, (n— o).

Indeed, for every n>0, S ,, =0 as.,, which proves that Y »=0 as.
for n>0. For the proof of2 the second property in (14) we notice

that kzz,,_1 ~ 22" for sufficiently large n, and

L I e WAy S (3 )) |
where S¥ and S¥* are defined in (12). Furthermore, by (12c), we have
* 221
Vo = O =Spnes ey = T% X,
j=2

22"
= -y X,/kzz,,_1 for every n> 1,

j=22""14y



Anscombe condition - 137

where
Eexp {it 2~1 XJ/kZZ"_I}
j=22""" 41
_ . an—2 g2 2"_ 2"-1_ 2
= COS (t 3 /kzzn_ l)exp{ £ (2 2 . 1)/%22"_ 1}

— exp{ —t7/2_} (n— ).
Hence, )’22,,_1 = A,1 (n— ©), which completes the proof of (14).
From (14) and that

Kp=kpu (21

1

we conclude that the sequence {Y,, n> 1} satisfies neither the Anscombe
condltlon (A) nor the generalized Anscombe condition (A°) with the norming
sequence {k,, n > 1}. The proofs of these facts run similarly as in Example 2.

Now we shall prove that the sequence {Y,, n > 1} satisfies (A**) with the
- norming sequence {k,, n > 1} and filtering sequence {3%", n > 1}. To this end
- we note that, for every ¢ > 0 and for every 0 <4 < 1, we have

(19 PL, max . [N-Y,/>]
i—kz | <ok2 3

32 32"
<P max |S; — Sz,,l sk ,,/2]+

2_;2 2
k—k sk
I 13 32ﬂ| 32"

+P[ max _ |S{IK: —KZ/kk: > /2]
2 32" 32"

2_,2
Ik 132"| s.sk32"

<P max S¥--S* | >¢ek /2
= [kz pSEZS(1+ K3 | 32"I 32"/ 1+
32" 32"
+P[ max |S*| >3k /48]+ P[ max IS¥4] > sk__,/45],
kzzne;kl?suw)kz . 2 <kz<(1+mz . 3
3 32 3

since k2 o R 32" and kszn ~ 2-3%" for sufficiently large n, whence
{leN KP—K2d < K2} = lieN: k2, < kE < (1+0)K2, )
3

for sufficiently large n, and since for ie lk32" <kP<(1+96) k;z,,} we haye

Sp-Sth= Y X;=0 as

32"
v j=32"4,
JeN™
for sufficiently large n.
As S7 is the sum of independent r.vs. with finite variances, then, by the
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Kolmogorov’s inequality, the first term on the right -hand side of (15) is less
than or equal to 49/¢%, the second one is less than or equal to

1662 (1+0)k> /o2 k2 < 320/e%,
. 3 3

and the third term on the right-hand side of (15) is equal to
PSS | = ek /48] < <160%kipn_ Je*kin—0  (n— o).

Hence, for every ¢ > 0 and for every 0 < <1, we have

limsup P[ max Y, — Y;z,,l > e] < 365/¢2,

n-rop 2_,2 2
Ik~ k 2"|<ak32,l

which proves that the sequence {Y,, n> 1} satisfies (A**) with the normmg

sequence {k,, n > 1} and filtering sequence {3%, n>1}: .
“Similarly it can be proved that the sequence {Y;,, n=1} satlsﬁes (A**)

with norming sequence {k,, n > 1} and filtering sequence r32 —~1,n>1}.
Let us further notice that : ;

(16) Y o =N o (1> ), Ys'z,,zéx (n— o),

32"_
and
2 2
_k32n/ 32n_ '_'2 (n - OO),

where X is an L.v. with the characteristic function

@) =cos(t//2) e,

Then, by Corollary 1, ¥y =4, (n— o) for every {N,,, > 1} satis-
P B
fying k3 ./kb — 1 (n— ), where

bp,n=1 3" -1,n> 1} (by— 0, n— )
and YN):X(n—r o) for every {N,, n> 1} satlsfymg kN /k,, —’l(n—’oo)
where 'nb,,, n=1} 3% nx=1) (b, 0, n— ©).

Let us still notice that if A is an event indepéndent of X,, k s 2%
(n=0,k>1), and, for n> 1,

- 3-1 on A4,
(]7) Vn - {32" » on Ac,
then P[Y, < x]— @(x)P(4)+PL[X < x]P(A), n— oo, ie.
(17b) Y, =N [(A+XI(4)  (n— o),

and the sequence {Y,, n > 1} satisfies (A**) with the normmg sequence {k,, n
> 1} and filtering sequence {v,,.n > 1}. -
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Thus, by Corollary 2, .
Iy, =N o1 (A)+XI(A‘) (n— o0)
for every {N,, n > 1} satisfying k,\,,/k2 51 (n> o), where {a,n>1}is a
sequence of positive integers with a, — co (n— 00). That fact implies the
statements after (16), ie. putting A = Q or, equivalently, v, =3%" -t as.
(n>1), we obtain Yy =4 (n—o0) for every (N, n=>1} satisfying
ki, /ks, 5 1(n- ), where {b,, n=> 1} €{3”"-1,n>1} (b,~ o0, n— ©);
putting however 4 = @ or, equivalently, v, = 3*" as.’(n> 1), we obtain

Yy, :»X (n— o) for every {N,, n> 1} satisfying k} /ks; = 1 (n - o0), where

by, n=1 {3, n>1} (b,— 0, n—> ).
The followmg example proves Remark 1.

Example 4 [5]. Let U, Z,, Z,, ... be independent r.vs. such that U
has a uniform distribution on (0, 1) and for each n>1, Z, hdS a normal
distribution with mean zero and variance one. Let

Y,=n2Y Z (n>1),
i=1
J(w) ={[2"U(w)]+1,1 <n< w0},
and
Y,=Y,I{n¢J] (n=1).

The sequence {Y,, n>1} satisfies (A) [5] and then, by Lemma 2, it
satisfies as well (A*¥*) with norming sequence {ﬁ n> 1} and any filtering
sequence {N,, n> 1} of positive integer -valued r.vs. satlsfymg (3) (e 4
with k2 =n,n> 1)

Let us put N,=[2"U],n>1. The sequence {N,, n=>1} does not
satisfy (3) but satisﬁes (5). Indeed, puttmg eg. v, =[2"U]+1, n = 1, we have
(5) . Ny 21 (n— o),

ie. condition (5) with k2 =n (a, =n, n>1). Now we shall prove that the
sequence {Y,,n>1} does not satisfy (A**) with the norming sequence

{ >1} and filtering sequence {N,, n>1}. This fact will prove
Remark 1

It follows from Theorem 1 of [11] p. 472, that
(18) Yy = Ao, (n— oo), ‘where N,=[2"U]}(n = 1),

since Y, = A" (n > ), N, —»oo (n— o) and, for every n > 1, the r.v. N, is
independent of Z; (i > 1). Furthermore, by the construction of the set J(w)
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we have
P[Y,.f.n # Yy, 1=P[N,eJ1<P[U <(n—-1)27""1+
2"

+Y Plk—=1)2""< U <k27" [2"UJe{[2"Ul+1, 1< n < w}]
k=n

. . oam

<ou()+ ¥ PIk—1)27"S U <k2°" k=2<2"U <k—1
' k=n s

o for some m > 1]

2’!
<o,()+ Y y P[k—1)2""

k=n m=10g52M1 - 2/n)

SU<k2™ (k=22 "< U <(k—1)27™]
<o, (1)+ Z P[(n-22""< U <(2"=1)27"]

m=log;2”(1 - 2/n)
=0,(1)+(2"—n+1) Y 2™
m=log427(1 - 2/n)
27m " —n41) 2
> - —
1-Z2
n
since 0,(1) = P[U <(n—1)27"]> 0 (n— o). This fact and (18) imply (cf.
[71, p. 278) Yy, =A",1 (n—> 0).

=o0,(1)+ 0 (n-o0),

Since (5') holds, and _
(19) Yy =0as(n>1), wherev,=[2"Ul+1(n>1),

we conclude that the sequence {¥,, n> 1} does not satisfy (A**) with the

norming sequence {\/;1, n>1} and filtering sequence {N,, n>1}, where
N,=[2"U], n>1.

5. Applications to the martingale random limit theorems. We shall now
show that the given results allow to generalize the martingale random central
limit theorem of Rao [8].

We write Y, = p (stably), n— oo, if Y, = pu (n— o) and, for every Be &
with P(B) > 0, there exists a measure pz such that Y,=> us/P(B), n— oo,
under the conditional measure P(-|B). In the special case where uy = uP(B)
for all Be #, we write Y, = u (mixing), n— co [10].

In what follows we shall need the following simple consequence of
Theorem 3:

THeEOREM 4. Let {a,, n > 1} be a non-decreasing sequence of positive r.vs.



Anscombe condition 141

and let {v,, n>1} be a sequence of positive integer -valued r.vs. such that
P
v,— 00 (n— o0). The following conditions are equivalent:
(i) Y, = u (stably), n— oo, and the sequence {Y,,n> 1} satisfies (A**)
with the norming sequence {a,, n > 1} and filtering sequence {v,,, n=1};
(i) Yy, = u (stably), n— oo, for every sequence {Ny,n= 1} of positive
integer -valued r.vs. satisfying (6), i.e.

P
o /af,, -1 (n— o),

where {a,, n > 1} is a sequence of positive integers with a,— oo (n— oo)

Proof. Obviously, (ii) implies (i). To prove the reverse implication let B
be a random event from # with P(B) > 0. Then, by (i), there exists a
probability measure ug such that Y, = up/P(B) (n— o) under the measure
P(-| B). Furthermore, the sequence {Y,,, n > 1} satisfies (A**) with the nor-
ming sequence {a,, n > 1} and filtering sequence {v,, n > 1} under the mea- |
sure P(-|B).

Indeed, for every ¢ >0 we can choose 6 >0, § = d(g, B), such that

limsup P[ max |Y Y, | = eP(B)] < ¢P(B).

n—-w Jaj —a |<&a

Hence

Limsup P[ max |, -Y, | >¢|B]

n—+w Ja; —-av |\6av"

SlimsupP[  max _|Y,—Y, |>¢l/P(B)
n—w laj —ay, |\6a

< limsup P[ , max |- Y, | 2eP(B)J/P(B) <

n—o Ia,- —ay, |<u§av

which states the desired result.
Thus, by Theorem 3, Yy = ug/P(B), n — oo, under the measure P(- |B)

for every sequence {N,, n > 1} of positive integer - valued r.vs. satisfying (6).
Hence, Yy = u (stably) (n— oo) for every {N,, n> 1} satisfying (6).

Remark 3. We note that if ¥, =u (mixing) (n — o0) not only stably,
then in part (ii) of Theorem 4 we obtain Yy =y (mixing), n— co.

Let {X,, #,, n> 1} be a martingale difference sequence (MDS) with o7
=E(X:|F,.)) <o as. (n=1). F, need not be the trivial sigma field
{@, Q}. We put ‘

Vi=Yoi, si=EV} (=1
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and assume that s is finite for all n > 1, and s2 - o (n — o). Furthermore,
we assume that the sequence lX,,, nz 1} satlsﬁes the following (p mixing
condition:

(20) sup {|P(B| A)~P(B): Ae W, Be M3.,} < ¢ (n)

with @(n) — 0 (n— o0), where M =6 {X,, <k s-m} ‘(1 £n<<m< w).
The following theorem extends and strengthens Theorem 1 of [8]:
THeOREM 5. Let {X,, #,, n> 1} be an MDS satisfying (20). Suppose that

1) Y,:=8,/sa=>p  (n— ),

where
. o .
= Z Xk (n ? 1).
k=1 .
‘Ilf'-{N,,, n =1} is a sequence of positive integer - valued r.vs. such that

(22) 53, /5% =1 (n— ),

where {a,, n> 1} is a sequence of posmve integers with a,— © (n— ),
and A is a positive r.v. having a discrete distribution, then

Yy, = S, /sy, = p(mixing) = (n— o).

The proof of Theorem 5 bases on Theorem 4 and the following lemmas:

‘Lemma 4. If {X,, F,,n>1} is an MDS sansfymg (20) and (21), then
Y, = u(mixing), n — o0.

Lemma 5 [8]. Let {k,;n>1} and {m,, n>1} be sequences of positive
integers tending to infinity, and let A e‘))?,"" (n=1). Then, for any event A,
limsup P(A4,] A) = hm sup P(4,),

- where we set P(A,|A) =P(A,) if P(A) =
Lemma 6. Let {X,, #,, n> 1} be an MDS satzsfymg (20) and (21). If A is
a positive r.v. havtng a discrete dlS[I lbutlon then

(23) Yim = u(mixing) (n— 00)

Lemwma 7. Let {X,, #,, n> 1} be an MDS satisfying (20) and (21). If 4 is
a positive r.v. having a discrete distribution, then the sequence {Y,, n>1}
satisfies (A*¥*) with the norming sequence {s,, n>1} and filtering sequence
{[An],n>1}.

Proof of Lemma 4. Let 4, =, 4,=[Y, <x] (n=1). By Theorem
2 of [9] it is enough to prove that, for any A4,,
(24) " lim P(4,] 4) = lim P(4,).

h—aw n—w
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Let {r,,n>1} be a sequence of positive integers such that s? . — G
{(n— oc) and s,"/s,, -0 (n— o).

For every k> 1 we put r* = max(r,—k, 0), n > 1. Of course,

S,-2k+k/s3 -0 (n"') CD) for every k = 1,

and then, by the Kolmogorov inequality, we have

PDS =es,]>0(n— o0} for cvery e>0,k>1

rk+k|
n

Therefore, for every k = 1,

25) lim P(4,] 4) = lim PL(S,~ S5, )/s, < xA4.].
Note that
[(S,.—Sr:+k)/s,, < x]e ‘JJE:,?MH for all n > k,

and A, e M (k > 1). Hence, by the ¢ -mixing condition (20), for every k > 1

(26) lim P[(S,~S et J/sn <x|A] = lim P[(S,—S s Jsa < x]
since r£ — oo (n— o) for every k = 1. Again, since
S4e />0 (n— ),
we get
27 lim P[(S,—S,, Vs, < x] = lim P(4,).

Combining (25), (26) and (27), we obtain (24). The proof of Lemma 4 is
completed.

Proof of Lemma 6. Let [; (j > 1) denote the values taken on by the
r.v. 4 with positive probabilities and let ©; = [1 =1/] (j > 1). Then

P[Yug<x]= Z P[)ftjn] < xlgj] P(Qj)

=1

and, by (20), Lemma 4 and Theorem 1 of [9], we obtain

lim P[Y,;,; <x] = Z P(Q )hm P[Y[,,,]<x| A

n—+w ji=

™Ms

P(Q) lim P[Y, < x|Q;] = Z P(Q) lim P[Y, < x] = F(x)

1 n—o i= n—ow

i

4 —Prob. Math. Statist. 7 (2)
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for every continuity point x of F, where F(-) = u{(—0,")}, which proves
that ¥, =u (n'—-» oo) )

Let AY = == [YE, < x; 2] (n 1) for every j > 1. It is easy to
see that the sequence {AY, n> 0} is a mixing sequence of sets in the space
(Q;, o/;, P;), where

Indeed, for every fixed k > 1 we have
lim P, (A9 | AY) = lim P,(AD AD)/P,(AD)

n—w | A

= lim P[¥y < x| 4P Q)] P(49 Q))/P(Q Q) P,(AY).

The last expression is, by Lemma 4, equal to
lim P[YE, < x|QIP(AP|Q )/P,(Am) = lim P;(AY),
where

lim P;(AY) = lim P[Y, < x|Q,] = lim P[¥, <x]1=F(x)

[ g 5] R @ B~

for every continuity point x of F, F(-) = u{(—o0, )}, which proves that
{AY, n>1} is a mixing sequence of sets on (;, &;, P;) with the local
density F (x).

Thus, for

An = [Y[An] < x] = U Anm (n = 1)
i=1

the sequence {A4,, n>1} is a mixing sequence of sets in (2, #, P) [10].
Hence Y;, = p (mixing), n— 0.
Proof of Lemma 7. For every ¢ >0 and for every 6 > 0 we have

limsup P max 1Y, — Yl = €]

na Isiz'— s[zi.nli S<I;m
< limsup P[ , max IS; — Spanl = &/ 1—0s,/21+
T b sl SO

+limsup P[| Y, = &/1-6/26],

n—w

where

limsup P[[ ¥l = &/ 1—6/261 = u{x: |x| > 6,/1-8/28} >0 (5~ 0).

n-*w
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Thus, the sequence Y, = S,/s, (n > 1) satisfies (A**) with the norming
sequence {s,, n> 1} and filtering sequence {[in], n > 1} if, for every & >0,

(8)  lim limsup P[ , MaX |S— Syl > 6 /T-dsuy/2] = 0.
d>w n-w Is —s[;_n]iSris{Z;',,] . ’
Let 2, =[A=1](j=1). Then, by Lemma 5, the left -hand side of (28)
is equal to _

anP(Q,)hmsupP[ max |s,.-sl,j",|>s,/1—5s[,j,,,/2|g,.]

80 j=1 n=aw "6-‘5167'”6
= lim Z P(Qj) llmsupP[ max |S‘_S['j"]| =€/ l—ﬁsl,j,,}/.'l],
15"'0_,— B hnd v] Tll,ﬁ\l<Tlla

where
Tos = min {i: (1-9)sfi < st} Th=max{i: st <(1+0)sim}

Furthermore the last expression is less than or eqilal to

2lim Z P(Qj) limsupP[ max _|S;— Sr,{_,l >¢e /1-6 s[,j,,,/4],

5_'0] 1 n—+am THJ\'\TDIIS

which, by the Kolmogorov inequality for martingales, is less than of equal to

321im Z P(@)limsupE(S,2 fST:'J)z/sz(l-é)sﬁj,]

J"’OJ_

32 llm Z P(g )]lm sup {(1 + 6) S[ljn] (1 5) S[lj"]}/s (1 5) S[,jn]

50 j=1 n-am

< lim 646/e2(1-8) =0
-0

The proof of Lemma 7 is completed. |

Proof of Theorem 5. By (23) and Lemma 7 we have Y;,=u
(mixing) (n — o) and the sequence {Y,, n > 1} satisfies (A*¥) with the nor-
ming sequence {s,,n>1} and filtering sequence {[An], n>1}. Thus, by
Theorem 4, we obtain Yy =y (mixing) (n— o) for every {N,,, n>1}
satisfying (22), which is the statement of Theorem 5.

‘Now we give simple consequences of Theorem 5 which extend or
strengthen results given in [6] and [8]. :

CoROLLARY 4 (cf. [8], Theorem 1). Let {X,, n > 1} be a strictly stationa-
ry and ergodic sequence of r.vs. Assume that EX, =0, E(X,| X,, ..., X,-1)
=0as.(n>1) and EX} =1.If {N,, n > 1} is a sequence of positive integer -
valued r.vs. such that N,/a,,-ﬂ}l (n— o), where {a,, n > 1} is a sequence of
positive integers with a,— c0 (n— o), and A is a positive r.v. having a discrete

distribution, then Sy _[\/N, = .4 g, (mixing) (n— c0).
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CoroLLARy 5 (cf. [6], Theorem 4 and Remark on p. 209). Let {X,, n> 1}
be a sequence of independent r.vs. with EX, = 0, EX2 = 6% < oo (n > 1). Suppose
that S,/s,=>u (n— o), where

= Z X S'%: Z O‘i;l (n=1).
=1 =

If {N,, n > 1} is a sequence of positive integer - valued r.vs. satisfying (22),
then Sy /sy, = p (mixing) (n— ).

CoroLLARY 6. Let {X,, #,,n>= 1} be an MDS satisfying (20). Suppose
that

V.2/s? 1 (n— )

and, for every e > 0,
72 Y EXZI(X) 2 es)| Foe)) 50 (n—> ).
k=1

If IN,, n = 1} is a sequence of positive integer -valued r.vs. satisfying (22),
then Sy [sy =>4, (mixing) (n— c0).

The following result generalizes Theorem 4 of [6]:

THEOREM 6. Let {X,, #,, n> 1} be an MDS satisfying (20) and (21). If
{N,, n =1} is a sequence of posrrwe integer - valued r.vs. such that
(29) SN,,/sn,l _' A (n - w);

where {a,, n 2 1} is a sequence of positive integers with a,— « (n— o) and A
is a positive r.0. (P[0 < A < 0] = 1) such that, for any given ¢ > 0,

>8J=0,

Sn,/sn, = p (mixing)  (n— 00).

2
(30) lim lim suppns—“%ﬂlua

0€c~0 n—w n

then

Proof. Only some modifications are necessary in the proof of Theorem
4 from [6] to make it applicable in this case.

In the particular case, from Theorem 6 we get a result stronger than
that of Theorem 4 in [6]:

CoroLLarY 7. Let {X,,n> 1} be a sequence of independent r.vs. with
EX,=0,EX2=02<o(n=1). Suppose that S,/s,=p (n— ©), where

5,3 X =Y @31
k=1 k=

If {N,, n =1} is a sequence of positive integer - valued r.vs. satt.sfymg (29)
and (30), then SN /s, = p (mixing) (n— o0).
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