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- CONVERGENCE RATES. IN THE STRONG LAW
OF LARGE NUMBERS FOR SUMS OF RANDOM VARIABLES
WITH MULTIDIMENSIONAL INDICES

BY

Z. A. LAGODOWSKI anp Z. RYCHLIK (LuBLIN)

Abstract. We consider a set of independent random variables
indexed by Z? (d > 1), the positive integer d-dimensional lattice
points, and study the convergence rates in the strong law of large
numbers. The results presented provide us with much deeper under-
standing of the tail probability of distributions.

1. Introduction. Let Z¢, d > 1, be the positive integer d-dimensional
lattice points with coordinatewise partial ordering <. Points in Z¢ are
denoted by m, n etc. Also, for m=(n,, n,, ..., n;), we define

i =TT m

and n— oo is to be interpreted as |u| — . }
Let {X,, neZ%} be a set of independent random variables with EX, = 0

and EX? =62 <, neZ’ Let
S.=Y X, B:=Y ai=E(S).

k<m A<m

It has been shown by Smythe [12] that if {X,, ne Z?} are independent
and identically distributed (i.i.d.) random variables, then the strong law of
large numbers holds if and only if E|X,|(log. |X,])* ! < o0, where log, x
= max(1, Inx). Moreover, Gut [7, 8] has recently proved the following

Tueorem 1 [7, 8]. Let {X,, ne Z%} be i.id. random variables, ler r=1ju
and o > 1/2. The following statements are equivalent:

) E|X,[(log, |X,)* ' < oo and if r > 1, EX, =0.
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(2) Zlnl‘""zP(lS,,l =>n*) <o for all t > 0.
(3) Z|n|" 2P(max[Skl n*t) <0 fort>0.

If « = 1/2, then the following are equivalent:
4 EX}(log |X)* '< and EX,=0.
(5) > |n~'log. |n| P(IS,} > t(n}log, |n)>) < 0 for all t > 0.

n
Let h be a finite and positive function defined on [0, ). Furthermore,
let, for every t > 0, f; be an increasing and positive function. Let us put

A b f) =} h(lkl}P(lS;.I > By /i (K)),

k<n

Aoo(haf;) = lim An (ha.f;)a

n—=wx

F(h,f)=2 Zl h(ln)) (£, (In))),

where @ denotes the standard normal distribution function. This paper deals
with order of magnitude of A, (h,f) and F(h,f) as t— 0" in the case
{X,, neZ‘} are independent but necessarily identically distributed. By spe-
cializing the functions h and f;, putting, for example, h(|n)) = |n|*(log, |n})*,
fi(inl) = t|n)” (log ., |n)), &, B, 7, de(— o0, +0), we will deduce generalization
of some results obtained by Gut [7, 8], Klesov [9] and Lagodowski and
Rychlik [10]. Our results provide us with a much better and deeper
understanding of the tail probability of distributions. From the results
presented we also get extensions, for d > 2, of some theorems given by Chen
[2, 3] and Csorgd and Rychlik [4].

2. General theorem. Let us define d(x) = Card {neZ’: |n| =[x]] and
M,(x) = Card {ne Z“: |n| <[x]} = M(x), where [x] denotes the greatest
integer not exceeding x, xe[0, o0). We have (cf. [13])

(6) M,(n) = n(log, " Yfd—1)!—M,_,(n), d=2,
so that, as x — oo,
o M(x) = O(x(log, xy*"1).

Furthermore, for every é >0, d(x) = o(x? as x— co. _
THEOREM 2. Let {X,, neZ%} be independent random variables such that
EX, =0, EX? =062 < o0, neZ%. If there exists a function g such that

(8)  g(x) is nondecreasing on the interval (0, c0), is even on (— a0, o), and -
g(x)—> o0 as x— o0,
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" (9) the function x/g(x) does not decrease on (0, ),
(10) for every t >0

S(h, fis 9) = % balg) R(UmD/L+L£(nD),

nz1
g((1+/(n)B,) < oo

where
b.(9) = Y. EXig(X,)/B3,
k<n

then there exists a positive constant {(independent of the functions h, f; and g)
such that

(11) |e (1, f)—F (b, ) < CS (. £;, 9),
where o0 — o0 is to be interpreted as 0.

Proof. Let us observe that, by (10), F(h,f) < oo if and- only if
A (h, f) < . Thus suppose F(h, f;) < co. We have

(12)  |Ag(h f)—F (B, f)l < T h(n)|P(S4 > By £ () —2D(=£ (In).

21

Let ,
An(x) = 'P(Sn < XB,')—¢(JC)|.

In view of Bikyalis result (cf. [1] or [11]) we can prove that under our
assumptions

(13) A5(x) < Coby(@)/(1-+1x)*g (1+]x]) B,),

where C, is an absolute constant. Combining (12) and (13) w1th x =f,(|n}),
we see that

|4 (h, f)—F (R, f)l < 2Co S(h, £ 9)

which proves (11).
Now let us observe that

Fhf)=2Y hE®dES(—fK),
k=1

Thus if, for example, h(x) = x"(log, x)°, £,(x) = tx*, « > 0, where log., x
= max (0, Inx), then

F(h, f) =2 Z k™d (k) (log .. k)’ ®(—tk)
k=

1

f Z k" d (k) (log .. kY P(tk* < |N| < £ (k+ 1)),

n=1k=
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where N denotes a standard normal random variable. But, taking into
account Abel’s transform and (6), we get

(14) k"il krd(k)(log, k)* = n*(log, n 4~ Yr+ 1)(d——.1)!
as n— oo, provided s=0,1, 2, ..., and r # —1, so that
(15) (r+D)E-1)1rr V2 F (R, f) =+ D f n*l(log, nfti 1 x
n=1
x P(tn* < [N| < t(n+1)?)

Qo

2 (1/a)*4= 1 (2/m)2 [ X+ VP2 (log , (x/Of 4~ exp(—x%/2)dx

t

s+d—1 _ .
= (1/af* " 2 Y, (”‘f 1)(log+(1/r»"><

i=0

a
x [ X0*De(log, X9~ 1 "lexp(—x?/Ddx  as t—0".
t

On the other hand, in case of h(x)=x"!(log, x)%, f(x) =t(log, x)*
u >0, we have

H

F(h,f) = f 2 k“d(k)(16g+k)"P(tlog'i, n < |N| < tlogh (n+1)

n=1k=1

and
(16) Y k~'d(k)log’ k = (log, nf**¥/(s+d)(d—1)! as n— co.
k=1

Thus, in this case, we get

A7) (s+dy(d—1)1 e+ DE(h, £)

=(2m)~ Y2 | [x]¢* M exp(— x?/2) dx

- x

= E|N|(3+d)/u = Cu/(s+d) as t— 07,

Note that C, = n~ 122422 (1/2+1/2a).
By applying Theorem 2 and (17) we have

(18)  lim (¥ 5" |n|~ ! (log , |m)* P(|S,| > tB, (log. |n|}")
nz1 .

t-ot

= Cuyrals+d)d-1),
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provided

. ba(g) Inl~* (log., |n])
(s+d)/u n —
9 'li:)l': t ng'l (1+t(log |n)*)*g (B,

But (19) holds in case of (s+d)/u > 2 and

ba(g) (log + |n)*~>*
as1  Inlg(By)

Thus (18) gives extension of (5) not only to the case of nonidentically
distributed random variables, but (18) also gives the order of magnitude of
A (h, f) as t - 0%, for h(x) = x~(log, x), f;,(x) = t{log, x)", u > 0.

Furthermore, taking into account (15) and Theorem 2, we get

(20)  lim {"*V= ¥ |nf"(log.. |n))* P(S,|

-0t nz1
s+d—1

AT _; D, (log.. (1/1))}

< .

(2/1'[)”2(1/¢Z)s+d— lﬂf x(r+ 1)/a(log+ x)s+d— 1 exp( _x2/2) dx
_ 0
B (r+1)(d—1)!

s+d—1
_ (2/n)112(1/a)s+d—1 2(r+ 1)/2a+1/2-5~-d +dz {ln 2)s+d—l—i X
i=0

x IO ((r+ 1)/2a+3/2)/(r + 1) (d—1)!,

where I'?(x),i =1, 2, ..., denotes the i-th derivative of the function I'(x},
and I'”(x) is to be interpreted as I'(x); D;, 1 <i<s+d—2, are some
constants which depend on d, a, r, and s, and

o0

(Lfay* =1 (2/m)/? | x* Ve exp(—x?/2)dx
(V]
FTD)Ed=D!
= 20+ D73 U2 (4= 1 ()2 [ ((r+ 1) 20+ 32)/r + 1) (d — DL,

Of course (20) holds in case of r > 22 —1 and

(21) , Y. ba(9) |nl"(log [m})*/In|** g (B,) < .

r21 :

Ds+d-l =

Note that (20) gives generalization of (2). At the same time we would
like to mention that in order to get (20) or (18) we need some moment
restrictions which imply (19) and (21), respectively. Let us observe that if
{X,. neZ? are independent and identically distributed random variables
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with EX, =0, EX2 =1, we get b,(g9) = EX1g(X,) and g(B,) = g(n))'/?, so
in the case s =1, u = 1/2, (19) requires

2 Inl™ /g (m)/? < o0

=1
which, in consequence, implies a little bit stronger assumption than (4). This
fact is obvious because we get (18) from general Theorem 2. The exact order
of magnitude of (2) and (5), as t —» 0*, is presented in the next section.

3. Convergence rates in the strong law of large numbers. At first we state
and prove the following

LemMa. Let [ X,, neZ%) be independent and normally distributed random
variables such that EX, =0, EX? = ¢2 < o0, neZ". Then, for every a >0,

(22) 1im+ (In(1/6)7*7* 3 Inl™* (log, [n))* P(IS,| > tB,|n|")

t—0 =1
= 1o (s+d)(d—-1)!,
(23)  lim t‘”“”“(-lnﬂ/f))l*’_d Y. Inl"(log [nl)* P(IS,] > tB, |n|*)

t=0*t nz1i .
= (l/a)S'l"d—l (r+ 1)_1((‘1—1)!)—1 C(r+1),faa r, s = 0, 1, 2, sesy
and, for every u=1,2,...,

(24 tim (79 (g7 (log.. [nl)* P(|S,l > ¢ B,(log . |n])")

‘[—)04' a1
= Cy+af(s+d)(d—1)!.

Proof. We note that (23) and (24) follow from (20) and (18), respective-
ly. To see (22) we use the following asymptotic expansions:

(In(1/0)7>"" ¥ Inl~* (log.. n})* P(IS,| > tB,|nl"

nzl

@ n

= (In(1/8)"¢ Y. P(e(n—17 < [N) <tn®) Y d(k)k™* (log., k)*
n=1 k=1

00

= (In(1/6)™*4 Y (log, W4 P(t(n— 1) < [N| < tn®)(s+d)(d—1)!

(2/m)" 2 (1fa)* 4 (In(1/)) ¢ uj? (log+ (x/1)f "9 exp(—x%/2)dx |
: 0

R

Grd)d—1)!
=1/ ¥ (s+d)(d—1)! as t—0".
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Thus Lemma is proved.

TueoreM 3. Let {X,, neZ) be independent random variables such that
EX,=0, EX? =062 <, neZ’ and 4,=sup4,(x)—0 as n— o,

4,(x) = |P(S, < xB,)—P(x)|.

If
(25)  lim Limsup(In(1/))~>¢ Y |0~ (log, |n)* x

K—w t—0 Ill|>Kt_1/a

X Z P(IXkI = IBn ln]a) = Os

1<k<n
then (22) holds.

If
(26)  lim limsups**=(ln(1/0)* =% Y |nl"(log. | x

K—+® o0+ |l >Ke~ Ve

x Y P(X)>1B,nf) =0,

1<k<n
then (23) holds.
If _
(27)  lim limsupt®** Y |n|"!(log, in)) Y P(X4

K—-o 0t ..chk 1<5k<n
>t B, (log., [n})*) = 0,
where C& = {neZ%: |n| > exp(Kt™ ™)}, then (24) holds.
Proof. At first we prove (23). By. Lemma, it suffices to show that

(28)  lim ¢ V(ln(1/0) 4 Y [nf" (log. |nl)* x

-0t r=1

x|P(S,| 3 t B, |nf)— 26 (—t |nf%)| = 0.

Now we prove (28) in the following two steps.

Step 1. Let ny(f) be such a positive integer that ng(r) » x as t » 0"
and :

e+ Ve (log , ng(OF (e (V) /In(1/0F "1 -0 as t— 0%,
For every positive number K define
A, = {neZ4 |n| < ny(1),

Btk = {"EZd, lnl S T—II“K}, Bfk = Zd—B,k.
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Then, by (14), ‘
29 Lm VR (n(1/) 4 Y |l (log., n))* A, (¢ |nl)
t=0

neBy

< lim ( max  A4,)t"* Ve (in(1/0) 57 x
'_.0+ heByx— A,

x Y IkP(log, [kly+2 lim ¢+ V=(in(1/0)!~*~4 T |k{"(log. |kl = 0.

BeByg— A, t=-0t keA,

Step 2. By the result of Fuk [6] (Corollary 3 with t =2, y, = ... = y,
= atB,|n|"/2, where a is a positive constant such that a < 2a/(r+1)), we get

(B0)  P(Su 2 tBylnl) < Y P(X4 > atB,|nf/2)+

1<k<a
21428 (4 4 p? |m|25) = Y 4 Dexp(— 2 |n|2*/8e?).

Let us observe that by Abel’s transform

(1) lim im0 2 (1/n) 7574 Y nl"m 2 (log , |n|)“

K—-aot—0

neB’ (K
= lim limt('Jr1”“"'2/"(ln(1/l'))l_S_d Z k"z"/"log"i,kd(k)
K-~ -0 k=1~ Vg
= lim Eim"* Y= 24(In(1/)) ~*~4Qufa—r) | x4 (log, xPFLdx/d —1)!
K—-wt—0 o~ ag
1

= l 11 2d _ t(r+1)la—2/a
@) Qafa-r—1) o Pm(2fa=r) x

% (ln(‘l/t))l—s.—dt—(r+ Dfa+2/a grr=2aja+ 1 (lbg+ (l/t)l/u K)s+d— 1
On the other hand, '
x'exp(—yx) < (ay9)™ ', a,p,x>0,
so that
(32 exp(—12|n|?*/8e?) < t~ 2% |n|~ 227 (8¢/a)'/e. .

Thus, similarly as in (31), we get

(33)  lim limsupt™* V2 (In(1/0))' "¢ Y |n"(log. |n])* x

K-om ;0% IEB:"K

xexp(—t?|n|?*/8¢%) = 0
Now let us observe that, by Lemma 2 ([5], p. 166),

d(— x) (2m) =12 x"lexp(—x%2) as x— .
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Thus if K is sufficiently large, then, for every me By,
O(—t|n) < (2m)~ V217t |n| "% exp(—12 |n|**/2).
Hence, taking into account inequality (32), we get
B (—t|nl") < (2m) ™ V2 (ae/2) ™ a1 20 |~ 2,
so that
(34)  lim limsupt®* Y2 (In(1/)) >~ Y (ol (log. |nl)* @(—1|nl*)

K- +
-0 nerK

< lim ﬁmsupt"*”’“‘zl“‘l(ln(l/t))l‘“““ Z I"Ir—Za/a—ax
K=o 50t .eB“:k

x(log + [nl)*/(2m)"/* (ae/2)! = 0.

Now (28) follows from (29), (30), (31), (33), (34) and (26).

The proofs of (22) and (24) can be get by some modifications of the
proof of (23). Namely, in the proof of (24) we use the set Cjy instead of the
set B and apply Abels transform as well as Fuk’s inequality with the
functions from (22) and (24), respectively. Thus the details are omitted.

Let us observe that if, for example, {X,, neZ?} are independent and
identically distributed random variables such that EX, =0, EX2 =1, then

A, =sup|P(S, < x|n[')—®(x) -0 as n— oo,

and

lim limsupt®*Y* 3 |nf"(log. [n) P(IX4} = t B, |nl")
1

K—w t—0 |n|>l\'l_lll¢ <k<n

< lim limsup(2/(1+ 2+ 1 g+t - 2a/ali+22) 5
K- t—=0

XE{‘XI'Z(r+ 1)/(1+20¢)(10g+ (lXI /r))s+d—l I(IXII >t~ 1/21Kl/2+a)},
so that if (r+1)/2>a >0 and
E{|X,[27 20029 (g, 1X, )47} < oo,

then (26) holds. Furthermore, it is not difficult to show that if X,, ne Z are
independent and identically distributed such that EX, =0, EX2=1 and
EX?loghts '~ 24|X | < 0, s+d > 2u, then (27) also holds. Similarly, one can
check that if

lim limsup (In(1/5)=*4¢= 24 +20 E| X, (210 +29

K- t-0

x(logy X, 111X, | >t~ VK2 =0,
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then (25) also holds. Thus Theorem 3 and the remarks given above not only
give some assertions obtained in [2]-[4] and [7]-[10], but extend them to
nonidentically distributed random variables and provide us with a much
better and deeper understanding of the tail probability of distributions.
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