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LAW OF THE ITERATED LOGARITHM FOR WIENER PROCESSES 
WITH VALUES IN ORHCZ SPACES 

TERESA JUWLEWlCZ (WROCLAW) 

. Abstract. Wiener processes with values in separable Orlicz 
spaces are investigated. There is constructed an analogue of the 
abstract Wiener space of a Wiener measure on the space of all 
continuous functions defined on 10, 11 with values in Orlicz spaces. 
Moreover, the law of the itcrated logarithm is proved for Wiener 
pracesses with values in p-homogeneous Orlicz spaces. 

1. Consider independent Brownian motions { ~ ( ~ ) ( t ) :  0 6 t < co), 
1 ,< i ,< k. Let B(t) = (B(l) (t), . . . , BLk' (t)), rrn ( t )  = (2n log log n) - '1' 5 (nt), n 2 3. 
Strassen [11] proved that the sequence {c,: n 2 3) is relatively compact 
subset of 6") with probability 1, where 6'' is the space of all continuous 
functions defined for 0 < t f 1 with values in @ vanishing at 0 with the 
uniform topology. The set of its limit points coincides with the unit ball in 
the reproducing kernel of k-dimensional Brownian motion. 

Kuelbs and Le Page 191 generalized this result for Wiener processes 
{ W(t ) :  0 < t < oo} with values in separable Banach spaces E. They conside- 
red the net is(.) = (2slog 10gs ) -~ /~  W ( s n )  for s > e. In this case the reprodu- 
cing kernel of Wiener processes is a tensor product H@Ho, where Ho is the 
kernel of a real Brownian motion and H is the kernel of the Gaussian 
distribution of W(1) in E. It is worth pointing out that techniques applied 
there used essentially various properties of Banach spaces as, for example, 
the existence of non - trivial dual space. 

However, there are metric linear spaces, natural from the point of view 
of the stochastic processes, having no non -zero continuous linear functionals 
at all. The best known examples are the space Lo of all measurable functions 
defined on [O, 11 with Lebesgue measure, endowed with the convergence in 
measure, and spaces L,, 0 < p < 1 (more generally, Orlicz spaces L,). 

In this paper we investigate Wiener processes with values in L,  spaces. 
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We construct an analogue of the abstract Wiener space of a Wiener measure 
on the space of all continuous functions defined on [O, 11 with values in L,. 
Moreover, we prove the law of the iterated logarithm (LIL) for Wiener 
processes with values in p-homogeneous Orlicz spaces. As an application we 
obtain LBL for symmetric Gaussian measures on L,. 

2. Let {T, .F, m) be a positive a-finite separable measure space. 
Let 9 be a Young function, i.e. a continuous non-decreasing function defined 
for u 2 0 and such that @(u) = 0 if and only if u = 0. Assume that 8 satisfies 
A2 -condition, i.e. Q(2u) 4 C@(rr) for some C > 0 and far every u 2 0. Let 
Ye be the coiIection of all F-measurable functions x: T+ R for which 

For x f 9, put 

T 

By L, we denote the space of all equivalence classes of functions 
belonging to which are equal a.e. with respect to the measure m. Then 
L, is a vector space and (-I, is a (usually non -homogeneous) pseudonorm 
an L,. [L,, 1- &I, caIled Orlicz space, is a complete measurable metric space. 

An L, - valued random variable X will be called symmetric Gaussian (in 
the sense of Fernique [4J) if for every pair XI, X2 of independent random 
variables having the same distributions as X, and for every pair of real 
numbers a, b such that a2+b2 = 1, the random variables ax, +bX2 and 
bXI -ax2 are independent and have the same distribution as X. 

Consider now an L,-valued symmetric Gaussian random variable X. 
A homogeneous La-valued stochastic process {W(t):  0 < t < 1) with inde- 
pendent increments and with ass. continuous sample paths is called Wiener 
process generated by X if W(t )  has the same distribution as t1IZX for 
0 < t < 1. Such a proms exists by 12). 

Next, let H c L, be the reproducing kernel Hilbert space for the 
Gaussian measure induced on L, by X [6,  101. Let H, c C [0, 11 be the 
reproducing kernel Hilbert space for real Brownian motion on [0, 11 (see 
[5]) .  Denote by (-, .),, I / - 1 l H  and I - ,  a),,, I I - / ) H ,  the inner products and 
norms in H  and H,,  respectively. Let '6, denote the space of wntinrtous 
f~~nctions defined on EO, 11 with values in L,, vanishing at zero, with the 
uniform topology. Suppose that (a,: n~ N) is an orthonormal basis in H. We 
then define 

-# = { f EX,: f (0) = O, f ( t ) ~ H  for O < r < I ,  (a,, f ( . ) ) H ~ H O  for  EN, 
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and 
1 

It is easy to see that ( H ,  ( a ,  -),J is an inner product space. Denote by 
I).)), the norm in # induced by the inner product (., -),. 

Suppose that f , h ~ N  and t,b~H,. Let $ ' = r n i n ( t ; ) ~ H ,  for t ~ [ 0 ,  11. 
Let [ai: i E N) and {$,: k~ N) be two orthonormal bases in M and in H o ,  
respectively. It is easy to verify that the space ,#, as in the case of Banach 
spaces [9j, has the following properties: 

(i) h$ E-w, I j k $ l l ~  = l l k l l ~  11911~0, where (h$) ( t )  = ha$'(t); 
(ii] ([ti d'k 5 d j  + I )  N = dij f i k , ;  

Oii) (f 9 h$l.w = ((h, f 9)H, $)Ho; 

(iv) Il(h,f (.l)nlln, f llf l l ~ l l k l l ~ ;  
(v, (f (f), h)H = (.f* h$3.*; 

(vi) ~ l f ~ t ) l l ~  6 I I ~  I I S \ ~ *  

P~owsrrro~ 1. The cunonical embedding of Jf' into '6, is continuous. 
I 
I Proof. Let f, -, 0 in #'. Suppose, to the contrary, that there exist an 

I 
E > 0 and an infinite sequence (nJ c (n) such that 

Then for every k there exists a t k g [ O ,  13 such that 

Hence, for every k, 

However, by (i)-(vi) we obtain that 

hence 

Therefore, Ilfnk(tk)llH -r 0 as k + co and, obviously, ifk (t& -t 0. This 

contradicts (1) and completes the proof. 
PROPOSITION 2. .X is a separable Hilbert space. Moreover, $ :ai:  EN) 

and ($k:  EN) are two orthonormal bases in H and in H,, respectively, then 
:ai$,: i ,  k ~ N j  is irn orthonormal basis in gi. 



P r o  of. First, we prove completeness of S. Let (f,: n~ N ]  be a Cauchy 
sequence in .VY i.e. I 1 ~ - f m l l , +  0 as n, r n 4  a. Then J f : n E N )  is also a !" 
Cauchy sequence in %,. Since %, is complete, there ex~sts an f o ~ % ,  such 
that 

sup Cfn(t)-fo(t)L-+O a s n + c o .  
O G t 4 1  

On the other hand, let 

The space Ho is complete, hence so is the space (12,H0y , I 1  .112,HJ. Write 

x:) = ( U ~ , ~ ~ ( ' ) ) ~ E H ~ ~  xn = (x~')F=I f/2,HO- 

Since If,:  EN) is a Cauchy sequence in #, it follows that fx,:  EN) 
,*is Cauchy also in 12 ,H0 .  SO there exists an X E I ~ , ~ ~  such that I l ~ , , - ~ l l ~ , ~ ,  0 
as n + co and, obviously, ((x!] - ~ ( ~ ( j , ,  4 O as n + ao , for every i E M. Hence, 
for every i E N  

sup (ai, f, - (t)I -+ 0 as n 4 c ~ j  . 
O h t Q  1 

Since 

the function 
a, 

f ( t )  = C xu'([) ai 
i = l  

is well defined in H h r  every t E [0, I]. To prove the completeness of X y  it is 
enough to show that f (t) =So (t) . However, f,(r) -+ fo (t) in L,. By (21, (3) and 
by the definition off we have (a,, f, (t) - f (t)), -, 0 as n + oc, for every i E N. 
Since (a,: i E N )  is linearly dense in H and since, by (i) -(vi), ( f , ( t ) :  n E N )  is 
bounded in H, it follows that f,(t) + f (t) as n + cc, in the weak topology of 
H. It is easy to see that the injection of H with the weak topology into L, is 
continuous, so fn(t) + f (tj in L, and hence ,f {t) = f, (r). Let now f E # be 
such that { f ,  ait,bk),=O for all i ,   EN. By (i)-(vi), ((ai, f(.))s, $ k ) ~ =  0 for 
i ,   EN, so (a,, f (-)I,, = 0 in H for  EN. Then (q,f(t))H = O for 
t E [0, I ] ,   EN. Thus f (t) = 0 in H for t E [0, 11, i.e. f = 0 in S. By (i)-(vi) 
this completes the proof. 

hoposz~ro~ 3. The unit ball X of X is compact in %,. 

Proof.  Consider a sequence if,: n~ N )  from .X. Since X is weakly 



LJL f i r  Wiener processes 163 

compact in &', there exist a subsequence (n3 c (n) and an f~ X such that j,. 
tends weakly in 2 to f as n' 4 a. In particular, for every h E 2' and 
t E [ O ,  13, we have 

By 0 - ( v i ) ,  ( (h , f , , , ( - ) - f  (a)),, 
+ 0 as d-. GO, thus, for every ~ E H ,  

(h,fn.(t)-f (t))H-. 0 as nr+ ao. Since the identity mapping from R with the 
weak topology into L, is continuous, we get, for every t € [ O ,  11, 

( 5 )  I f , , ( t ) - f ( t ) s + ~  as n J + m .  

Suppose now, to the contrary, that there exist an E > 0 and a 
subsequence (n") c (n') such that 

sup Ifn,$ (d -f (t)& > 6 .  
04 tQ  1 

Than for every n" there exists a in,, E 10, 1 ] such that If,,. (t,,..) - f (~,,~)l > E .  

The subsequence In") can be chosen in such a way that tnj1 tends to some 
t E [ O ,  13 as ntr + co. Then also i,htn" + in H o  and, by (i}-(vi), we obtain 
that h$ttn-+ h*' in &' for every ~ E H .  Hence 

Then, by (4), fn., (t,,.) -f ( t , , )  + 0 in H ,  SO (t , ' )  -f (t,,*)k - 0 as 
n" + a. This contradicts (5) and completes the proof. 

3. In the sequel we assume that in L, there exists a p-homogeneous 
pseudonorm 1.1, 0 < p < 1, equivalent to 1. &. Such a condition holds, for 
instance, if @ is a p -convex Young function [8], i.e. 9 (at + bs) < aP B(t) 
+ bP@(s)  for all a,  b 0 such that a+ b < 1 and for all t ,  s > 0. It also holds 
for 9(t) = @,(t'), where 9, is a convex Young function (0 < r < a). In these 
two cases the resulting p-  homogeneous serninorm is 11 -119 where 

The considered class of Orlicz spaces contains many spaces which are 
neither Banach nor even local$ convex spaces, for example spaces L, (0 < p 
< 1). 

Let now W be the random variable with values in %, induced by 
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Wiener process (W(t): 0 6 t < I]. Take now the following expansion of W 
in '6, [7]: 

where (a,: n f  N), ( r p j :  j .s N )  are two orthonormal bases in reprqducing 
kernels H c L, and H ,  c C[O, 11, respectively, A :  n E N  is an 
appropriate standard normal sequence, and {B,: n E N )  is a sequence of 
independent real Brownian motions. These ,two series converge a.s. in %,. 

PROPOSITION 4. X is deme in the topological support of a Gaussian 
measure induced on ((G,, a& by Wener process : W(t): 0 < t ,< I ) ,  where 
9, denotes the Bore1 a-field in 'r;,. 

Proof. Let us take an orthonormal basis [u,: n E N) in the reproducing 
kernel H c L, of W(1). By (6) and by standard arguments it follows that pw 
is a Gaussian measure (in the sense of Fernique) on (W,, ad. Moreover, by 

e m 

the fact that the distribution of the series Rl;nanqj is equal to pw, it 
n,j= 1 

follows that #' is dense in supp pw. 
Remark. By Propositions 1 -4  the space X may be thought of as a 

reproducing kernel for Wiener measure on %,. 

Let [@(t): 0 < t c CQ) denote the standard extension of a Wiener pro- 
cess [ W(t): 0 < ; < 1) over all positive numbers. Write 

(t) = (2s log log s) - l t 2  W(st). 

We are now able to formulate the main result of our paper. 
THEOREM. The net {C,: s > e) is relatively compact in with probabi- 

lity 1 and the set of its limit points coincides with the unit ball X of Z. 
We prove this theorem using similar arguments as in the proof of LIL 

for Wiener processes with values in Banach spaces [9]. Let (E, a) be a 
measurable linear space, let X be a symmetric Gaussian random variable 
with values in E and let 1- 1 be a measurable p - homogeneous pseudonorm in 
E, 0 < p d 1. In our situation we need the folIowing version of Fernique's 
estimate which is known, at present, only for p- homogeneous pseudonorm 
13381: 

E exp(B lxlzi? < a 
for B < 1% r-r/(i - ( 2 ~ , 2  - 112,~~ 

4 s2/p 

where P (1x1 d s) = r > 1/2. 
Proofs of the next three propositions are modifications of those in [9]. 
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Write 

= (JE'L.: If- xL, < e), 

I, = (2 log log s)'/', s > a, 

P~o~osrrrow 5. For every E > 0 and r - 1 we have 

for ull suflciently large s. 
Proof. Suppose that 6 >O, r > 1, M, J 3 1, s > e .  For r ,  > r  

The first term on the right-hand side of (8) is equal to 
P 1, r rg li), where x & + , ~  is a x2 random variable with N ( J  + 1) 
degrees of freedom, so for all sufficiently large n and for r < r ,  this is less 
than (1/2) exp( - r2  132). To estimate the second term, let I;' r ,  ' % (0) 

= f (W)E S and if(@- 1;' o'(w)~, b e. Since X is compact in 42. and the 
scalar multiptication is uniformly continuous on compact sets, we can find an 
r,, > l independent of w so that tr,- 1) f (w)L* < &/2. Hence, and by (7), we 
have 

and the last integral is finite for 

where P ( Iw-  11 iMnLm < t )  > 1/2. Since, by (61, 

we can choose such M, J and a that 2 a ( ~ / 2 ) ~ ' ~  > r2  and E exp(a 1.W" 
- x ~ ~ ~ ~ ' & )  c m. For these M, J and a the second term of (8) is estimated 
by (1/2) exp ( - rZ 132) for sufficiently large s. 
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PROPOSITION 6. For every & E) 0 and r > 1 there exists a k such that, for 
all sufficiently Iarge s; 

Proof. By (6), for t > O ,  P { I W - * ~ ) L , > , ~ ] - O  as k - ~  m. Hence and 
' 

by (7) we can choose a k and an a such .that h 2 / P  > r2 and 

~ e x ~ ( c r l ~ - # ~ ) & g  < m. 
Since 

the left -hand side of this inequality is less than exp(-r21:/2) for 'all s Iarge 
enough. 

PKo~osrr~o~ 7. For every E > 0 it is possible to choose a c > 1 suficiently 
close to 1, so that, fur every continuous fiirnction f LO, c ~ )  --r L* satisfyiw 
3('cn+ .)/([cR+ ']'12 ZLn+ 6 Xe, we hace As * ) / ( s ' / ~  is) E .A';, for all sujficient- 
I)' large n, when tun] < s < [en' '1. 

Proof. This result can be proved in the same way as Lemma 6 in [9 ] .  
We use here, by Proposition 2, the boundedness of X in %, and p- 
homogeneity ot 1 - Lo. 

Our theorem now follows by Propositions 1 -7  and by application of 
standard arguments. 

COROLLARY (cf. 161). Let p be a syrnmetrie Gaussian measure on a 
separable OrZicz space (L,, WLJ with topolo~~y generated by p -  homogeneous 
pseudonorm (0 < p < I). Let {xi: i E N J  be n sequence of independent random 
uariabbes with values in L, with distributions p. Then the sequence tq,: n 2 3'1, 

qn = (2n log log n)- 'I2 Xi, 
i = I  . 

is reZatiuely cotnpacr in L, with probability 1, and the set of its limit points 
coincides with the unit ball K of the reproducing kernel H of p. 

Proof. Let { v ( t ) :  0 < t < m) be a Wiener process with values in L, 
such that the distribution of W(1) is equal to p For f E(G, Iet @(f) = f (I). 
Observe that finite -dimensional distributions of sequences (q , :  n 2 3j and 
{c,: n 2 3) are equal. Hence, and by the continuity of 0 ,  the sequence (qn: n 
2 3 )  is relatively compact with probability 1 in L,. The set of its limit points 
coincides with O (a. 

Note that 0 (&') is compact in L, and 0 (JQ = K. Indeed, by virtue of 
(i)-(vi) for every f E X we have 11 f (l)llJP < 1 1  fi(.)(n d 1 .  On the other hand, let 
f{t) = th for some ~ E K  and for all t€[O,  11. Then f ES and l l f l i J P  = lfhllR 
= 1, which completes the proof of Corollary. 
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