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LAW OF THE ITERATED LOGARITHM FOR WIENER PROCESSES
WITH VALUES IN ORLICZ SPACES

BY

TERESA JURLEWICZ (WrocLAw)

Abstract. Wiener processes with values in separable Orlicz
spaces are investigated. There is constructed an analogue of the
abstract Wiener space of a Wiener measure on the space of all -
continuous functions defined on [0, 1] with values in Orlicz spaces.
Moreover, the law of the iterated logarithm is proved for Wiener
processes with values in p-homogeneous Orlicz spaces.

1. Consider independent Brownian motions {B®(1):0<t < 0},
1<i<k. Let B@) =(BV(Q), ..., B¥(@), {,(t) = 2nloglogn)~ > B(nt), n > 3.
Strassen [11] proved that the sequence {(,: n >3} is relatively compact
subset of C*® with probability 1, where C* is the space of all continuous
functions defined for 0 <t <1 with values in R* vanishing at 0 with the
uniform topology. The set of its limit points coincides with the unit ball in
the reproducing kernel of k-dimensional Brownian motion.

Kuelbs and Le Page [9] generalized this result for Wiener processes
{W(t): 0 <t < oo} with values in separable Banach spaces E. They conside-
red the net {,(-) = (2slog logs)™ Y2 W (s-) for s > e. In this case the reprodu-
cing kernel of Wiener processes is a tensor product H®H,, where H, is the
kernel of a real Brownian motion and H is the kernel of the Gaussian
distribution of W (1) in .E. It is worth pointing out that techniques applied
there used essentially various properties of Banach spaces as, for example,
the existence of non-trivial dual space.

However, there are metric linear spaces, natural from the point of view
of the stochastic processes, having no non-zero continuous linear functionals
at all. The best known examples are the space L, of all measurable functions
defined on [0, 1] with Lebesgue measure, endowed with the convergence in
measure, and spaces L,, 0 < p <1 (more generally, Orlicz spaces Lg).

In this paper we investigate Wiener processes with values in Ly spaces.
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We construct an analogue of the abstract Wiener space of a Wiener measure
on the space of all continuous functions defined on [0, 1] with values in L.
Moreover, we prove the law of the iterated logarithm (LIL) for Wiener
processes with values in p-homogeneous Orlicz spaces. As an application we
obtam LIL for symmetric Gaussian measures on L.

2. Let (T, #, m) be a positive o-finite separable measure space.
Let & be a Young function, i.e. a continuous non -decreasing function defined
for u = 0 and such that @ (u) = 0 if and only if u = 0. Assume that & satisfies
A; -condition, i.e. #(2u) < CP(u) for some C >0 and for every u > 0. Let
#¢ be the collection of all & -measurable functions x: T— R for which

[@(x())dm(®) < 0.
T

For xe ¥, put

lxlq,=inf{u>o:j ('x(‘)')d © <ul.

T

By L, we denote the space of all equivalence classes of functions
belonging to ¥, which are equal a.e. with respect to the measure m. Then
Ly is a vector space and | L, is a (usuvally non-homogeneous) pseudonorm
on Ly. (Lg, |-lp), called Orlicz space, is a complete measurable metric space.

An Lg-valued random variable X will be called symmetric Gaussian (in
the sense of Fernique [4]) if for every pair X, X, of independent random
variables having the same distributions as X, and for every pair of real
numbers a, b such that ¢>+b? =1, the random variables aX,+bX, and
bX,—aX, are independent and have the same distribution as X.

Consider now an Lg-valued symmetric Gaussian random variable X.
A homogeneous Lg-valued stochastic process {W(r): 0 <t <1} with inde-
pendent increments and with a.s. continuous sample paths is called Wiener
process generated. by X if W(t) has the same distribution as t'2X for
0 <t <1 Such a proeess exists by [2]. '

Next, let H < L, be the reproducing kernel Hilbert space for the
Gaussian measure induced on L, by X [6, 10]. Let Hy = C[0, 1] be the
reproducing kerne! Hilbert space for real Brownian motion on [0, 1] (see
[5]D. Denote by (-, *)u, |'|lz and (*sJugs ll“lluy the inner products and
norms in H and H,, respectively. Let %, denote the space of continuous
functions defined on [0, 1] with values in L,, vanishing at zero, with the
uniform topology. Suppose that {a,: ne N} is an orthonormal basis in H. We
then define

H = {febe f(0)=0, f()eH for 0<1< 1, (a,,f("))ueH, for neN,

[='e) ! d 2 :
3 f (E(a,,, f(t)),,) dt < ),

o
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and
1
s s

_ . .
AL D= ) ja(an,f (t))u%(a..,g(t))ndt for fige #.

n=1
0

It is easy to see that (#, (-, *),) is an inner product space. Denote by
[|ll» the norm in 5 induced by the inner product (-, *),.

Suppose that f, he H and ¥ H,. Let ' = min{t, -)e H, for 1[0, 1].
Let {a;:ie N} and {y: ke N} be two orthonormal bases in H and in H,,
respectively. It is easy to verify that the space J#, as in the case of Banach
spaces [9], has the following propertles

(@) hy e, Iy = Al Wlino, Where () (1) = h-ys (2);
(i) (a; 4, a; )y = 5.] Outs
i) (f, W) = (B £ CDats ¥utg
(V) WA, £ CNallag < WS N llAlles
V) (FO), B = (f. W) 43
o) 1S Ol < 1f e/t
ProrosiTION 1. The canonical embedding of # into %g is continuous.

Proof. Let f,— 0 in . Suppose, to the contrary, that there exist an
£ >0 and an infinite sequence (n,) < (n) such that

sup U;':‘ Ol > .

o<1
Then for every k there exists a rke[O, 1] such that

(1) I, (tlo > ¢.

Hence, for every k,
J 5 (xf,q w (sn) dm(s) > 5.
T '

However, by (i)-(vi) we obtain that

sup 11,0l < sup W falloe </t = 1 fill e
£t=1 .

osts1l

hence
' sup llf..(t)llu—>0 as n— 0.
0<t<1
Therefore, ||f,, (t)lly— 0 as k— v and, obviously, [f,,k(tk)|m->0 This
contradicts (1) and completes the proof.
ProrosITION 2. J# is a separable Hilbert space. Moreover if {a;:ieN}

and {y: ke N} are two orthonormal bases in H and in Hg, respectively, rhen
la Yy i,keN } is an orthonormal basis in .
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Proof. First, we prove completeness of 5. Let {f,: ne N} be a Cauchy
sequence in ¥, ie. || fy—fulle— 0 as n, m— co. Then {f,: neN} is also a
Cauchy sequence in %,. Since %, is complete, there exists an foe €y such
that
2 sup [f,,(t)—fo(t)la,—>0 as n— oo,

) .

o<

On the other hand, let

b = {x =W, x?, ) xPeHy, ieN, |IXlm, = (X xOllF,)"? < oo}
) i=1

The space H, is complete, hence so is the space (IZ‘HO,_II H2my). Write

XS} =(aisfn('))HEH0, Xp =(xg)):°=1elz.ﬂo'

Since {f,: ne N} is a Cauchy sequence in J#, it follows that {x,: ne N}
«is Cauchy also in I, g,. So there exists an xelz,,,o' such that |{x,—x||2,5,— 0
as n— oo and, obviously, ||x{ —x®||z, — 0 as n— o, for every ie N. Hence,
for every ieN

(3) sup a;, fu(®)a—xP@®| -0 as n—oco.
01 .
Since
_Z,l Ix® ()% = _Zl 12, Y)mg)* <t '; Ix®lF, < e,

the function

f=3 x0a
i=1

is well defined in H for every te[0, 1]. To prove the completeness of #, it is
enough to show that f () = f, (t). However, f, (1) - fo(t) in L. By (2), (3) and
by the definition of f we have (a;, £, (1)—f ()y — 0 as n— cc, for every ie N.
Since {a;: ie N} is linearly dense in H and since, by (i)-(vi), {/,(t): ne N} is
bounded in H, it follows that f,(f) » f(t) as n— oo, in the weak topology of
H. It is easy to see that the injection of H with the weak topology into L, is
continuous, so f,(t)— f(t) in L, and hence f(t) =f, (). Let now fe H# be
such that (f, a; %), = 0 for all i, ke N. By (i)-(vi), ((a;»f(*))u> ¥i)g = O for
i,keN, so (a,f(‘)a,=0 in H for ieN. Then (a,f())y=0 for
te[0, 1], ieN. Thus f(t) =0 in H for t[0, 1], ie. f=0 in #. By (i)-(vi)
- this completes the proof. _

ProrosiTioN 3. The unit ball A" of ¢ is compact in €.

Proof. Consider a sequence {f,: ne N} from . Since X is weakly
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compact in 3, there exist a subsequence (n') < (n) and an fe A such that f,
tends weakly in # to f as #'—oo. In particular, for every he# and
te[0, 1], we have

C)) S —=fo W) ye—0 as n'— .

By @)-(vi), (B Sy C)=F (N> ¥ ),,0 — 0 as ' — oo, thus, for every heH,
(h fu@O—f ())y— 0 as n' — oo. Since the identity mapping from H with the
weak topology into L, is continuous, we get, for every te[0, 1],

(5) I —f(®ly—0 as n— .

Suppose now, to the contrary, that there exist an ¢>0 and a

subsequence (n”) < (n) such that

sup |fy (0—f Blo > 2.

[LESES i
Then for every n” there exists a t,. [0, 1] such that ot —f (te)l > &
The subsequence {n”) can be chosen in such a way that t,. tends to some
te[0, 1] as n” - oo. Then also " — ' in H, and, by (i)-(vi), we obtain
that hy'"— hy' in # for every he H. Hence

N o ) =1 €, Bl = (=1, WO™ 0]

< (for =1y O™ =) el + 1 fo =1, W0l
< W= e Ml W™ =Wl g + 1o =, 1) ]

< 2Rl I = g + 1 Fo =15 1) -

Then, by (@), fy (te)~f(tw) >0 in H, so [fp(tw)=f(ty)lo— 0 as
n" — co. This contradicts (5) and completes the proof.

3. In the sequel we assume that in L, there exists a p-homogeneous
pseudonorm |l 0< p < 1, equivalent to |‘|¢,. Such a condition holds, for
instance, if @ is a p-convex Young function [8], i.e. ®(at+bs) < a’d(y)
+b? @(s) for all a, b > 0 such that a+b < 1 and for all ¢, s = 0. It also holds
for @ (t) = @4 (t"), where &, is a convex Young function (0 < r < c0). In these
two cases the resulting p-homogeneous seminorm is ||-||?, where

[Ixllg = inf {u > 0: ftp (let)l )dm(t) <1}, xelL,.

The considered class of Orlicz spaces contains many spaces which are
neither Banach nor even locally convex spaces, for example spaces L, (0 < p
< 1).

Let now #  be the random variable with values in %, induced by
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Wiener process {W(t): 0 <t < 1}. Take now the following expansion of ¥
in %y [7]: -

(6) W= Z Z AP @ja,= Y, B,a,,
« n=1 :

n=1j=1

where {a,: neN}, {g;: je N} are two orthonormal bases in reproducing
kernels Hc L, and Hy,< C[0, 1], respectively, {i:n,jeN} is an
appropriate standard normal sequence, and {B,: ne N} is a sequence of
independent real Brownian motions. These two series converge as. in 4.

PrOPOSITION 4. # is dense in the topological support of a Gaussian
measure puy induced on (€4, By) by Wiener process {Wi(t): 0 <t < 1}, where
Ay denotes the Borel o-field in €.

Proof. Let us take an orthonormal basis {a,: ne N} in the reproducing
kernel H < Lg, of W(1). By (6) and by standard arguments it follows that uy
is a Gaussian measure (m the sense of Fermque) on (€4, #4). Moreover, by

the fact that the dlstnbutlon of the series Z ADa,p; is equal to py, it
nj=1
follows that s is dense in supp pu,,.

Remark. By Propositions 1-4 the space # may be thought of as a
‘reproducing kernel for Wiener measure p, on %,.

Let {W(): 0<t < oo} denote the standard extension of a Wiener pro-
cess {W(1): 0<t <1} over all positive numbers. Write

{(8) = (2slog logs)™ Y2 W(st).

We are now able to formulate the main result of our paper.

TueOREM. The net {{;: s > e} is relatively compact in €4 with probabi-
lity 1 and the set of its limit points coincides with the unit ball X of #.

We prove this theorem using similar arguments as in the proof of LIL
for Wiener processes with values in Banach spaces [9]. Let (E, %) be a
measurable linear space, let X be a symmetric Gaussian random variable
with values in E and let |-] be a measurable p-homogeneous pseudonorm in
E, 0 < p< 1. In our situation we need the following version of Fernique’s
estimate which is known, at present, only for p- homogeneous pseudonorm

(3, 81

() Eexp(BIXP) <o for p< 1_9§[_';/_(1_L)1

y 57 (211/2 )2/11’

where P{|X[<s} =r>1/2.
Proofs of the next three propositions are modlﬁcat:ons of those in [9].
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Write
H,={feby: lf“fla’@<8}s
I, =Qlog logs)!’?, s>e,

Ik, = sup Lol

[ EYED!
M J k
#M) =% N Dea, #W=3 B,a,
n=1j=1 - n=1
- ProposITION 5. For every ¢ >0 and r ~ 1 we have
. P ' w¢ .} < exp(—r?l})2)
Jor all sufficiently large s.
Proof. Suppose that ¢ >0, r > 1, M, J > 1_, s>e Forrg>r
8y P{'we¢x)<P{  rgt wMNg )+
' P M e o, T g M I o > e
The first term on the right-hand side of (8) is equal to
P{xRu+1 > 1312}, where %,y is a x* random variable with N(J+1)
degrees of freedom, so for all sufficiently large n and for r < rq this is less
than (1/2)exp(—r212/2). To estimate the second term, let [J'+5! %M (w)
=f(w)e A and |f ()~ 17! # (), > ¢ Since A is compact in €, and the
scalar multiplication is uniformly continuous on compact sets, we can find an

ro > 1 independent of w so that lro—1) f(w)l » < &/2. Hence, and by (7), we
have

' - . 2/ N
P{fe /- ¥y > e} <exp(—a (”i) "B)Eexp(alw — w0

and the last integral is finite for
N e T
4¢P P{lw—wl, >t}

where P {l#— w ™|, <t} > 1/2. Since, by (6),

o<

limlim P{lw'—# ™9, >} =0,
M->wJ-x
we can choose such M,J and a that 2a(¢/2%? >r? and Eexp(a|¥
- ‘W‘M"’Ié’g) < 0. For these M, J and « the second term of (8) is estimated
by (1/2)exp(—r213/2) for sufficiently large s.




166 . T. Jurlewicz

ProrosiTiON 6. For every & > 0 and r > 1 there exists a k such that, for
all sufficiently large s,

P {7 (W — W), > e} < exp(—r?2/2).

Proof. By (6), for t >0, P{|w'— w®l,_ >t} -0 as k- co. Hence and
by (7) we can choose a k and an a such that 2052 > r? and

Eexp(alw — "II/""EJ‘D) < .
Since

P (W~ WW)g, > £} < exp(—ae?’? 1) Eexp (al# — W‘"’E{g),

the left - hand side of this inequality is less than exp(-r?[%/2) for all ‘s large
enough.

ProvrosiTiON 7. For every & > Q it is possible to choose a ¢ > 1 su_[ﬁctently
close to 1, so that, for every continuous function f- [0, )— Lg satisfying
F{e 39"t 12 b1 € A, we have fis- )/(s”zi)e H 3¢ for all sufficient-
ly large n, when [c"] <s < [c""'].

Proof. This result can be proved in the same way as Lemma 6 in [9].
We use here, by Proposition 2, the boundedness of # in %, and p-
homogeneity of ||, °'

Our theorem now follows by Propositions 1-7 and by apphcatlon of
standard arguments.

Cororrary (cf. [6]). Let pu be a symmetrie Gaussian measure on a
separable Orlicz space (L.,,, B, o) with topology generated by p- homogeneous

pseudonorm (0 < p < 1). Let {X;:ie N} be a sequence of independent random
variables with values in L,,, with dzstrzbutwns u. Then the sequence {f: n =3},
defined as

1, = (2nloglog n)™ /2 Z X,
i=1 .

is relatively compact in Ly with probability 1, and the set of its limit - points
coincides with the unit ball K of the reproducing kernel H of u.

Proof. Let {W(f): 0<t < oo} be a Wiener process with values in L,
such that the distribution of W (1) is equal to u. For fe% 4 let &(f) =f(1).
Observe that finite - dimensional distributions of sequences {#,: n >3} and
{{s: n > 3} are equal. Hence, and by the continuity of @, the sequence {n,: n
> 3} is relatively compact with probability 1 in Lg. The set of its limit points
coincides with © ().

Note that &@(4) is compact in Ly and O (X) = K Indeed, by virtue of
(i) -(vi) for every fe A we have || f ()|l < I|fll# < 1. On the other hand, let
f(t) = th for some heK and for all te[0, 1]. Then fe# and ||f]l, = ||h||,,
= 1, which completes the proof of Corollary.
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