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Abstract. The paper presents a general solution of the Dugui 
problem of finding the characteristic functions cp, and rp, such that 

1. Patrdwtion. By I). Dugud ([I], [2]) the following problem was posed. 
For which couples {rp,, q2) of characteristic functions the condition 

holds. He noticed that rp, (t) = l/(l +it) and cp2(t) = I/(1 -it) are the 
characteristic functions satisfying (1). 

Equation ( 1 )  with cp2(t) = cp l  (- t )  was discussed in [7]. 
A more general setting of the DuguC problem is contained in the 

question on couples (cp,, tp2) of characteristic functions for which 

is satisfied. Two couples of .such chara~qeristic functions were given in [3f. 
They are 

rpl (t)  = c+(l -c)e-"', cp,(t) = 1 -c+ceitb, b~ R; 
4% (0 = ~ / ( a + i t ) ,  q2 ( t )  = (1 - C) a/((1- C )  a - cit), a > 0. 

Further examples of couples of characteristic functions satisfying (2) can 
be found in 163 and [8]. From the results of [5f one can conclude that if F ,  
and F2 are distribution functions such that F1 ($0) = 0, F 2 ( + 0 )  = 1 and F1 
is no lattice, then the unique solution of (2) is given by the characteristic 
functions: 
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This paper tends towards achieving a general solution of the Dugu6 
problem. 

At the begining we give some properties of distribution functions in that 
question, which will be useful throughout this paper. 

LEMMA 1. I f  vI and rp2 are two chmacteristic functions such' that 
condition (2) is satisfied, then cp, and cp2 are bath characteristic functions of 
purely discrete distributions or rp, and rp2 are both characteristic functions of 
continuous distributions. 

LEMMA 2. J f F l  and F2 are two purely discrete distribution functions such 
that F, (0) = 0, F2 ( + 0) = 1 and the condition 

(equivalent to  (2))  is satisfied, then F ,  and F ,  determined lattice disrributions 
giuen on the same lattice with the origin as a lattice point. 

2. SoIution of the D ~ u 6  problem for distaibutiouns with supports w the 
diBfesent semi - axises. 

THEOREM 1. Let q, and yo2 be two characteristic.functions of distribzrtion 
functions F1 and F2, respectively. I f F ,  (0) = 0 and F2 (+0) = 1, then condition 
(2)  is satisfied only by the following characteristic funaions q, and yo,: 

6) Cl (0 = 1, cp, (0 = 1 ; 

ac GI 
y o  (0 = it 9 92 (0 = - a>0. a + it' 

Proof. It can be easily verified that condition (2) is satisfied by the 
characteristic functions (i) - (v). We shall prove that they are the unique 
characteristic functions satisfying (2) and the assumptions of Theorem 1. 
Assume that rp, and rp, are characteristic functions of distribution functions 
F ,  and F ,  for which condition (2) and the assumptions' of Theorem 1 are 
satisfied. 
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Let us consider the following functions of a complex variable z = t +is: 

The function gl is analytic in the upper half- plane, while the function q2 
is analytic in the lower half-plane, and they are both continuous in those 
closed domains. On the real axis we have 

and ( 1 - c ) g 1 ( z ) + c g 2 ( z )  = q 1 ( z ) g 2 ( z ) ,  Im z = 0. 
Let 

( g, (z), Im z 2 0, 

For the function #, and g', we have 

This allows us to replace the search of the solution of (2) by the search 
of the solution of (6) on the real axis. 

On the other hand, from Lemmas 1 and 2 we see that distributions F ,  
and F ,  ought to be both continuous or both lattice. Then the proof of this 
theorem will be devided into two parts: 

A. F ,  and I;, are continuous distribution functions. 
B. F ,  and F ,  are lattice distribution functions with a location of 

discontinuity points on the same lattice with the origin as a lattice point. 

A. Let F ,  and F ,  be continuous distribution functions. First we consider 
the equation 

The function g ,  (is) = J e - s x d F ,  (x)  strictly decreases in the interval 
0 

10, oo), so equation (7) has at most one reai solution. 

Suppose that equation (7) has no solution. Then 
m 

gm gl (is) = lim J e - s x d F ,  (x) 2 c 
S'm s-w 0 



and so F ,  has the saltus p 3 c at the origin, which is impossible as F, is 
continuous. 

Let s = a, a > 0, be the solution of equation (7). Then the function g2 
has a pole at the point z = ia. It can be shown that it is the only pole of &. 
Indeed, since g2 has the pole z = ia, it may be analytic at most in the strip 
JIm zl < a. It is easy to state that is analytic in this strip and, moreover, it 
is analytic for Im z < -a. If Im z > ot, then 

00 

Illl (211 4 S e-""dF, (x) = g, (is) c c 
0 

and so g2 is also analytic in that domain. If Im z = a, then g ,  (z) z)f c for 
z g h. Indeed, if, for a certain t # 0, g, (t + icr) = c, then the distribution F1 
must be lattice as 

is u~lnormdzed characteristic function with h(t)  = h(O), which is i~npossible. 
Thus z = ia is the only pole of the f~inction g2. 

Following the arguments of [7] it can be proved that the function &, 
given by (3, being the analytic extension of the characteristic function q2, 
is bounded outside a certain neighbourhood of its unique pole. Hence we 
conclude that g2 is the rational function of the form 

where P, is the polynomial of the k -th degree at most. 
Let us consider the equation 

The function 
0 

g2(is) = 1 e-sxdFZ{x)  
- m  

strictly increases in the interval (- co, 01 and so this equation has at most 
one real solution. Assume that s = -By 8 > 0, is the solution of equation 
(10). Then the function gl has the pole at the point z = -ib. In the similar 
manner as above one can show that z = -ifl is the only pole of gl and that 
lBll is bounded outside a neighbourhood of this pole. Thus the function a, 
has the form 

where Q, is the poIynornial of the l -  th degree at most. 



On the other hand, by (6) and (91, we get 
I 

Let us observe that the numbers k and 1 in representations (11) and (12), 
respectively, are such that 8, and g2 are irreducible rational functions. Since 

I 
I 

Pa (2) and P, (2) - (1 -c) (z - ia)k are also relatively irreducible, it must be k = E 
and 

I 

L 
I 
\ Qt (2) = AcPI (z) ,  ( z  + iS)' = ALPI (2) - (1 - C) (Z - ia)l], A E W. 

I Hence 

1 
Q l ( z ) = c ( z + i f i ) ' + ~ ( 1 - c ) c ( z - i a ) ' ,  P,(z)=-(z+iP)'+(l-c)(z- im)' ,  

A 

and from 9, (0) = g, (0) = 1 we get A = (l/c)(-P/a)'. Thus we obtain 

Therefore 

Since in this case lim g1 (is) = 0, we conclude that 1 should be odd and 
s - ' a  

(ct/fll = (1 - c)/c. We see then that 

lim rp, (t) = 0 and lim q2 (t) = 0, 
111 -+w ltl -'a 

i.e. q, and cp, are characteristic functions of absolutely continuous distribu- 
tions. Then the polynomials from the numerators of (13) have the degree 1 - 1 
and the formulae 

- m  - m  

determine the density functions corresponding to the characteristic functions 



q, and cp,, respectively. Applying the residue theorem we get 

where 

It was established in [7] that the polynomial W ( u )  has 1- 1 different 
real negative roots. Consequently, if E > 1, then , 

could not be a density function, as takes negative values. 
If 1 = 1, then a = p(1-c)lc and 

0 for x d 0, 
= { @ - P x  for x > 0, 

i.e. the density function of the exponential distribution, and so rpl(t) = 
/I/(#? - it). Furthermore, from (13) we get q2 (t) = a/(a +it), i.e. the characte- 
ristic function of the exponential distribution given on the left semi-axis 
by the density function 

h = {yax for x < 0, 
for x 2 0. 

Finally we obtain the following couple of characteristic functions 

(16) 
B a c ~ 1 0 )  = - 3 "2 (') = cc+ir' p = -  or, u > o ,  1 -c  

for which condition (2) is satisfied. 
At the end we note that if equation (10) has no solution, then 

0 

lim & ( i s ) =  lim e - " d ~ , ( x ) > l - c '  
s+- m s-*- Xi -a 

and F ,  has thc saltus q 2 1-c at the origin, in contradict~on to assump- 
tion A. 



1Let us remark that by the consideration of part A we obtain only one 
couple (26) of characteristic functions of continuous distributions satisfying 
condition (2)' and the assumptions of Theorem 1. 

B. Assume now that F1 and F, are lattiw distsibutions, defined on the 
same lattice with the step h > 0 and the origin as a lattice pint .  For the 
simplicity we can put h = 1. By the assumptions of Theorem 1, F, is a right - 
sided distribution, while F2 is a lellt-sided distribution, and so the wrres- 
ponding characteristic functions can be written as 

m m 

w b m  0 4 ~ ~ 1 ,  O<qk<l, k = O .  1,2 ,... a d  n=I ,  'z q k = l .  
k= 0 It= 0 

Let us consider the following functions of a complex variable z = re" 
( r  and r are ma1 numbers): 

The function g, is analytic inside the circle K = (zEC: IzI = 11, while 
the function g, i s  analytic outside K, and they are both continuous on K. 
Moreover, we have on K 

%I (2) = 9% (kt) = PI (t)t), 82 (2) = #3 (dl) = pz(t), bl = 1, ' 

and 
- + 2  = 1 lz1 = 1. 

Hence we see that a meromorphic extension of g,  to the outside of K 
can be given by 

t ? 

and, simiiarly, the equation 

defines a meromorphic extension of gz to the interior of K. 
Let us write 

/2I < l,,sr 
( 19) lzl > 1, 



and 

le2 (21 l 121 2 1 .  
- - .  

Then 

(211 (1 - (2) + cg2 (2) = $7, (2) $72 (4, z E C. 

Note that 

(22) lim gz(z1 = qo- 
I4 +41 

In order to find the lattice solutions of (2) or, equivalently, the solutions 
of (21) on K, we consider the following cases: (I) q, > 1 -c, (11) q, = 1 -c, 
(111) go < 1 - c. 

(I) Let g, > 1-c. Frorn (2) for functions (17) we have 

From (24) we get p k = O  (k=1,2 ,  ...) as go>, l -c ,  and so p o = l .  
Furthermore, from (23) and (25) we obtain qo = 1, qk = 0 (k = 1, 2, . ..). 
Thus in this case we have only 

(261 rP, ( t )  = f , (P2 0) = 1, 

as the solution of equation (2). ' 

(11) Let go = I -c. Then cp, is the characteristic function of a distribu- 
tion with at least two discontinuity points and q, = 1 - c  is the saltus at the 
origin. Thus p2 can be represented in the form 

where q{t) is the characteristic function of a left -sided lattice distribution 
without jump at the origin. From (2) we have 

If p is the characteristic function of the degenerated distribution, i.e. 
if p(t) = e-iL, n r ~  N, then, by (27)-(2$), we immediately get 
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If cp is the characteristic function of a distribution with at least two 
discontinuity points, then cp can be written as 

1 "  
(30) q ( t )  = - qk e-"', where 0 < qko < c, ko E N. 

C k = k O  

From (27) -(a) we get 

Since the product of cp,  ( t )  and q (t) is the characteristic function of the 
left -sided lattice distribution based on the same lattice as q, we conclude 
that cp, It) has the form 

to 
(32) q , ~  ( t )  = C fi ,Pk. 

k =  0 

As a consequence, we obtain the following system d equations: 

From (33) 4 3 4 )  we get 
(36) ~ ~ = p , = . . . = ~ ~ - l = O ,  

m,#o,  ( I , o + l = ~ k 0 + ~ = . . . = ~ 2 ~ 0 - ~ = o  

and equations (35) reduce to 

(353 ~ 0 q k + & ~ q k + k ~  = cqk, k 2 k0. 

Note that 0  < p, < c. Indeed, q,, < c and, by (33), hO > 1 - C. From (32) 
and (36) we see that po+m, = 1, so p, c c. Hence we get 

P , ( t ) = p O , p o = O ,  and ~ l ( t ) = p o + ( l - p o ) e " k O , p o < e .  

We now can deduce from (35') that qk # 0 c = ~ q ~ + ~ ~  # 0 (k 2 ko) and 

If w r  put r = (c-pO)/(l -pol, r c 1, then qk can be written as 

c(1 -r)ra-I for k = n k o ,  n = 1 , 2  ,..., 
9 k  = {o for k # n k o ,  n =  1 ,  2 ,  ... 



Hence, by (301, we get 

r -  1 
~ l t )  = r - e  l l N O  ko E N, 

i.e. the characteristic function of the geometric distribution, and, by (271, 

1 -c if po = 0, 
1 -ce-IA0 

g2It) = 
r - 1  

1-c+c 
r -e  atPo if ~ ~ $ 0 ,  PO < c , ~ o E N .  

Finally, in case (11), we obtain the wupfes of the characteristic functiorts 
satisfying (2) which can be written jointly as 

where OG pd c, r =(c-p)/Il-p). 
(111) Let qo = tim gz (z) < 1 - c. We first show that the function 8, , 

I=I +m 
given by (191, has exactly one pole on a certain circle C, = {zEC: /zI = r l ) ,  
where r, > 1. 

Note that if z = rdg, r 2 1, then for t = 0 we have 

Since the function g, strictly decreases in the interval [I, m) as r -, oo 
and takes values from Z to q,, where q, < 2 -c, there exists an r ,  such that 
g2(rl) = 1-C. Moreover, for t 20, we have ." 

H e m  and by the principle of maximum it follows that g,(z) = 1 -c 
only for z = r , ,  so the function gl, has the only popole which is situated on the 
circle C, = (zEC: )z( = r l )  at the point r = r , ,  r1 > I .  Furthermore, the 
fundion g, is bounded outside a certain circle K, = {z E C: 121 < R, ), where 
Ri > r , .  In consequence, we can deduce that jj, is the rational function of 
the form 

where QI is the polynomial of the 1 - th degree at most. We, see also that in 
this case 
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We shall find the form of the function ij2 given by (20) when lim g2(z) 
Izl +m 

l -c.  Since p, = lim g, (z), we need to consider the following cases: 
I4 -0 

po < c, 2" p, = c, 3 O  p, > c. 
Assume first that p ,  = lim gl (2) < c. The function 

lzl -+o 

strictly increases in the interval [O, I] and takes values from p ,  c c to 1, 
so there exists r,, 0 < r ,  c 1, such that g ,  (r,) = c. By the similar reasoning 
as previously, we can state that the function a2 has only one pole which 
is situated on the circle C, = {zEC: I z I  = r 2 )  at the poirit z = r, ,  0 < r2 
< 1. Besides, the function g2 is bounded outside a certain circle K2 
= { Z  E C: JzJ < R2), where R, > r , .  Therefore, we conclude that 8, is the 
rational function of the form 

where Pk is the polynomial of the k-th degree at most. 
We can assume that iin representations (39) and (41) numbers 1 and k are 

such that g", and ij, are irreducible rational functions. From condition (21) 
we have 

Hence, by (40), k = 1, and 

where A is a constant. 
Since g1 (1) = Q, ( l ) / ( r ,  - 1)' = 1, we get A = (1 - c) ( r ,  - l)'/(r, - 1)'. Then 

Consequently, 
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We show next that ql,ly given by formula (43), is the characteristic 
function if and only if 1 = 1 and r2 6 crl/(rl - (I  -c)). Indeed, if I = 1 and 
r, < cr,/(rl -(l-c)), then 

is the characteristic function. 
Assume now that rp,,,, given by (431, is the charaderistic function. Then, 

for m = 0 ,  1 , 2  ,..., 

Thus 

and 

Putting now u = (r, -r,)/rl,  we see that 0 < u < 1 (r, > 1 ,  0 < r1 < I), 
and studying the polynomials 

it can be verified (see [7]) that for any UE(O, 1) there exists a number rn such 
that p,,, < 0 if E > 1, which is impossible. If I = 1, then 

while po 2 0 if r ,  ,< crl / (r l  -(I -c)). It can be easily verified that then p, > 0 
m 

(m=1,2 ,... ), and p ,=1 .  
m= o 

On the other hand, for I = 1 we get from (43) 
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Hence 

and they determine the discrete distribution if r ,  2 (1 -(1 -c ) r , ) lc .  Besides, 
the fact that r2 > 0 implies that r1 < l/(l -c ) .  Finally, we get the following 
restrictions to (43): 

Putting now p = cr,/(r,  - 1 )  + ( I  - c) rd(r, - I), we can rewrite (43) with 
these rdtrictions as follows: 

P, - 1 1  - r ,  
(4.4 rp~( t )  = b + ( l -  P) &'I- rl - ,it = q2 ( t )  = [I - p +  pc-"1 1  -r2e-It' 
where 

i 

i In the particular case for p = 0, we obtain from (44) 

where 

while, for p = 1, we get 

where 

In case 24 when p, = c, we have g, (0) = c and, following the previous 
considerations, we can state that the function g2 has only one pole at the 
point z = 0, and &(z)  = P,(z)/P ( k ~ 1 V ) ,  where P, is the polynomial of the 
k -th degree at most. 

Now, by the similar reasoning as in the case lo, we obtain k = I, and 

(r1 - 1s gl (z) = c +(I - C) ------ (r1 -zY - 1 zt, g2(z)=1--c+c-  r ,  > 1, I E N .  
0.1 - z)I (r,  - I)! 
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Therefore 

It is obvious that q,,, is the characteristic function for any positive 
integer I and r, > 1. We show now that q ~ ~ , ~ ,  given by (43,  is the characte- 
ristic function if and only if 1 = 1 and r, 3 l/{l-c). Indeed, if 1 = 1 and 
rl 2 l/(l -c), then 

is the characteristic function of the discrete distribution with two discontinui- 
ty points. Assuming that cp,,,, given by (45), is the characteristic function, we 
have 

I[ 

vatl ( t )  eitm dt = 
2x i 

Hence 

Note that q , - ,  < 0 for any positive integer 1 > 1 and any r ,  > 1, which 
contradicts the assumption that q,,, is a characteristic function. Now, if 
I = 1, then q,  = ((I - c) r ,  - l)/(rl - I), q ,  = cr,/(r, - I), and we see that it 
should be r, 2 1M1-c), as otherwise go < 0. Finally, we obtain 

r , - 1  
q1 (t) = c+(1 -c)e"- rl - ,&t 

In the special case, where r ,  = l/(l- c), we get 
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In the last: case, where p, > c, we shall prove that & is a bounded entire 
function. 

Note first that, by definition (20), g2 is an analytic function for lzl 3 1. 
Put z = rk', r < 1. For t = 0 the function 

strictly increases in the interval LO, 11 and takes the values from po > c to 1, 
so g ,  (r) > c in that interval and the equation g ,  ( r ) - c  = 0 has no solution in 
[0, 11. Further, since Igl (r$)l < g, (r), and by the assumption lim g1 (z) 
> c (lzl -t O),  it follows that the function g2 does not have any poles 
inside the circle K = (zEC: IzI = I ) ,  SO it is analyhc there. Thus the function 
g', is anal9ic in the entire complex plane, i.e. iJ2 is an entire function. 
Moreover, g2 is a bounded function as ]iJ2 (z)l G g2 (r) < g2 (1) = 1 if lz/ 2 1, 
and l~2(z) l  < g 2 ( r )  = (1-c)gl(r)/(gl(r.)-c) < (1 -c)/(po-c) if lzl < 1. Then g2 
is a bounded entire function, so it is a constant function by the Liouville's 
theorem. Thus g2 (z) = g2 ( 1 )  = 1 ,  q2 ( t )  = 1, and q0 = 1 in contradiction to 
assunlption (111). 

Remark that as a conclusion of the considerations in case (111) we 
obtain the couples (44) and (46) of the characteristic functions satisfying 
condition (2), 

Putting in formulae (37), (44) and (46): q,,,(t) = rp, (th),  rp,,, (i) = 49, (th) 
( h  > 0, ~ E R ) ,  we obtain together with (26) all couples (cp,,,, q,,,) of the 
characteristic functions of one-sided lattice distributions defined on the 
different semi - axises which fulfil (2). 

The results of parts A and B complete the proof of Theorem. 

3. Solution of the Dugin6 prablern for diseributioms with supports on the 
same semi-axis. 

THEOREM 2. Let rp, a d  cp, be two characteristic functions of distributions 
F1 and F2, respectiuely. If F ,  (0) = 0 and F2(0) = 0, then condition (2) is 
satisfied only by  the characteristic functions of the distributions degenerated at 
the origin, i.e. 

Proof.  Assume first that (2) holds with F1 and F2 being right-sided 
distributions such that F1 ($0) > 0 or F2(+0) > 0. The supports of F1 and 
F2 we denote by supp(F,) and supp(F,). From (2) we know that 



and, therefore, under these assurnpti~ns F ,  has the saltus po > 0 at the 
origin, while P, has the saltus go > 0 at the origin. Furthermore, condi- 
tion (2) implies that 

which hoids only .if p, = go = 1. 
Thus in this case we get only the trivial solution of (2). 
Now assume that (2) holds with F ,  and F ,  being arbitrary right - sided 

distributions. Denote by lext [lo,] and lext [F,] left extremities of distribu- 
tions F ,  and F,,  respectively. We have 

lext [(I - c) F ,  + cF,] = min{lext [Fill lext [ F 2 ] ) ,  

lext [ F ,  $ F23 = lext [Fl] + Iext [ F z ] .  

From (2) it follows that lext [El] = lext [F,]  = 0 and 

We shall show that non-trivial distributions satisfying (50) do not exist. 
Let xo be an arbitrary real positive number and write p, = F,(x,), 

p2 = F2 ( x0 ) .  Inequality (50)  implies that 0 < (1 - c) p, + cp, < p, p2 (0 < c 
< I ) ,  but it holds true only if p ,  = p,  = 1 .  Consequently, in this case the 
other solution of (2) does not exist and Theorem 2 is established. 

The similar result can be obtain for left -sided distributions, namely we 
have 

THEOREM 3. Let cp, and rp, be two characteristic functions of distribution 
.functions F ,  and F,, respectively. I f  F ,  (+O) = 1 and F,(+O) = 1, then 
condition (2) holds only for the characteristic functions of  he distributions 
degenerated nt the origin. 

4. Remarks on the Dugla6 problem for couples of distributions when the 
support of o m  of them is on the whole real line. Theorems 1 - 3 give the direct 
solution of the discussed problems (1) and (2) for couples of characteristic 
functions of one-sided distributions defined only on semi-axises. 

Suppose now that one of the distribution functions F, and F ,  in that 
question has the support on the whole real line. As an example we mention 
the couple of characteristic functions 

satisfying (2). In [8] it has been shown that starting with that couple (q,, cp,) 
we can generate many couples of characteristic functions of this type for 



which (2) balds. Thus we see that in this case the family of couples of 
characteristic functions satisfying the Dugu6 condition is not finite. The 
above fact may elucidate the following theorem (see [S]): 

THEOREM 4. If ( v ~ , ~ ,  qf,3 is a couple of characteristic functions satisfying 
(2) for each C E ( O ,  +), then condition (2) holds true also for the characteristic 
functions (@ ,,, Y,,,), n 2 1, where 
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