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ON A SOLUTION OF THE DUGUE PROBLEM

BY

ANNA WOLINSKA-WELCZ (LUBLIN)

Abstract. The paper presents a general solution of the Dugué
problem of finding the characteristic functions ¢; and ¢, such that

(1-d@+cp, =092, O<c<].

1. Introduction. By D. Dugué ([1], [2]) the following problem was posed.

For which couples (@,, ¢;) of characteristic functions the condition
O+t _

0 002010 _ o 0pal), —o0 <t <o,
holds. He noticed that ¢,(f) =1/(1+it) and ¢,(t) =1/(1—ir) are the
characteristic functions satisfying (1).

Equation (1) with @,(f) = ¢, (—1t) was discussed in [7].

A more general setting of the Dugué problem is contained in the
question on couples (¢, ¢,) of characteristic functions for which

3] (1= (O)+co(t) =0, (D @2(t), c€(0,1), —0 <t <00,

is satisfied. Two couples of such characteristic functions were given in [3].
They are’
e () =c+(l—c)e ™  @,()=1—c+ce', beR;
0, (t) = af(a+it), () =(1-0af(l1-c)a—cit), a>0.
Further examples of couples of characteristic functions satisfying (2) can
be found in [6] and [8]. From the results of [5] one can conclude that if F,
and F, are distribution functions such that F,(+0) =0, F,(+0)=1 and F,
is no lattice, then the unique solution of (2) is given by the characteristic
functions: '
ac
ac—(1—-c¢)it’

a>0.

@1 (0 = @2 (t) =aiit,
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This paper tends towards achieving a general solution of the Dugué
problem.

At the begining we give some properties of distribution functions in that
question, which will be useful throughout this paper.

Lemma 1. If @, and ¢, are two characteristic functions such that
condition (2) is satisfied, then @, and @, are both characteristic functions of
purely discrete distributions or ¢, and ¢, are both characteristic functions of
continuous distributions.

LemMA 2. If Fy and F, are two purely discrete distribution functions such
that F,(0) =0, F,(+0) =1 and the condition

(1—¢)Fy+cF,=F;xF,, 0<c<l
(equivalent to (2)) is satisfied, then F, and F, determined lattice distributions
given on the same lattice with the origin as a lattice point.
2. Solution of the Dugué problem for distributions with supports on the

different semi - axises.

THEOREM 1. Let @, and @, be two characteristic functions of distribution
Sunctions F, and F,, respectively. If F,(0) = 0 and F,(+0) = 1, then condition
(2) is satisfied only by the _ following characteristic functions ¢, and @,:

(@) o (=1, o, (=1;
(i) @, =p+(1—p)er
i—c

i=1—c+c - , 0<p<e¢, h>0;
e2() (1—p)e™—(c—p) P
or—1
(i) 1) =c+1-0e™
@2(0) = 1———+ T e > 1fl—c), h>0;

r—1 r-1 ’

- r;
e“"’ @2(t) =[1—p+pe "h]—r‘—e—:m,

l<ry<1fl—c¢), r, = 1—(1——c)(r1. —1)[e+(1—-p(r;—1], 0<p<l, h>0;

(iv) @, () =[p+(1—p) e""]

oc o
(V) _ @, (0 = w—a—oi’ P2 (1) = e a>0.

- Proof. It can be easily verified that condition (2) is satisfied by the
characteristic functions (i)-(v). We shall prove that they are the unique
characteristic functions satisfying (2) and the assumptions of Theorem 1.
Assume that ¢, and ¢, are characteristic functions of distribution functions
F, and F, for which condition (2) and the assumptions of Theorem 1 are
satisfied.
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Let us consider the following functions of a complex variable z =t +is:

4] 0
g1(2) = [ dF (x), g,(2)= [ €™dF,(x), zeC.
0 - ®
The function g, is analytic in the upper half - plane, while the function g,
is analytic in the lower half-plane, and they are both continuous in those
closed domains. On the real axis we have

(3) g1 =0.(1), g0 =9¢,0), teR,
and (1—c)g,(2)+cg2(2) = 9,(2)g2(2), Im z=0.
Let '
g1 (2), Imz>0,
4) g1 = { cg2(2) I )
| n@-—g =Y

g1(z)—c
g2(2), Imz<0.

(1-0)g: (2
AL L A e 1 0,
(5) mm={ > maz

For the function §, and §, we have
(6) (1-09§1 (@) +cd2(2) =§1(2)92(2), zeC.

This allows us to replace the search of the solution of (2) by the search
of the solution of (6) on the real axis.

On the other hand, from Lemmas 1 and 2 we see that distributions F,
and F, ought to be both continuous or both lattice. Then the proof of this
theorem will be devided into two parts:

A. F, and F, are continuous distribution functions.

B. F, and F, are lattice distribution functions with a location of
discontinuity points on the same lattice with the origin as a lattice point.

A. Let F, and F, be continuous distribution functions. First we consider
the equation

) ‘ g,(is)—c=0, s5=0.

a0
The function g, (is) = {e ™ **dF,(x) strictly decreases in the interval
. 0
, [0, o0), so equation (7) has at most one real solution.

Suppose that equation (7) has no solution. Then

lim g, (is) = lim [e™*dF,(x) > c

3t 5= 0
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and so F, has the saltus p > ¢ at the origin, which is impossible as F, is
continuous. _
Let s =0a, a >0, be the solution of equation (7). Then the function §,

has a pole at the point z = ia. It can be shown that it is the only pole of 7,.

Indeed, since §, has the pole z = ix, it may. be analytic at most in the strip
[Im z| < a. It is easy to state that §, is analytic in this strnp and, moreover, it
is analytic for Im z < —a. If Im z > a, then

3 @< 5e'“dF () =g (is) < c

and so §, is also analytic in that domain. If Im z =4, then g, (z) # ¢ for
z # io. Indeed, if, for a certain ¢ # 0, g, (¢ +ix) = ¢, then the distribution F,
must be lattice as

h(t) =g, (t+ix) = Oj?e""‘d(}e"”‘dFl o)

is unnormalized characteristic function with k() = h(0), which i is 1mpossible.
Thus = =ix is the only pole of the function §,.

Following the arguments of [7] it can be proved that the function §,,
given by (5), being the analytic extension of the characteristic function ¢,,
is bounded outside a certain neighbourhood of its unique pole. Hence we
conclude that §, is the rational function of the form

P, _\2) @
z —ia)*’

where P, is the polynomial of the k-th degree at most.
Let us consider the equation

(10) g2is)—(1—c) =0, s<0.
The function

9 g2 = keN,

0
g2 (is). = __f e *dF,(x)

strictly increases in the interval (—oo, 0] and so this equation has at most
one real solution. Assume that s = —f, § >0, is the solution of equation
(10). Then the function §;, has the pole at the point z = —if. In the similar
manner as above one can show that z = —if is the only pole of §, and that
Id1| is bounded outside a neighbourhood of this pole. Thus the function §,
has the form

Qi(2)

(1) 4,2 = leN,

z+ip¥

where Q, is the polynomial of the /-th degree at most.
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On the other hand, by (6) and (9), we get

12 cPy(2)

g1 (z) = PO —(1-0)G =i} keN.

Let us observe that the numbers k and [ in representations (11) and (12),
respectively, are such that §, and §, are irreducible rational functions. Since

P,(z) and P, (z)—(1 —c)(z —ix)* are also relatively irreducible, it must be k = |
and

0,(z) = AcP,(z), (z+ipf) = A[P,(2)—(1—-¢)(z —-.-ia)’], AeR.
Hence

(@) =cz+ipf+A(l—c)c(z—in)', Pi2) = -}I(z+iﬂ)'+(l—c)(z—ia)',

and from §, (0) =F,(0) =1 we get 4 =(1/c)(—p/x)". Thus we obtain

L/ i\ 1 o\l
no=cti-a(-2)(5 ) m@-1-cre(-5JEL) en.

B \z—io
Therefore '

! - i Y TP
(pl(t)=ca (t+if)y+(Q—~c) (=B (t—iw)

13 | a'(t+ip) ’
_ (1 —c)B‘(t—ia)’+c(—a)’(t+iﬂ)'
(pZ(t)_ ﬁl(t—iot)' ’ lEN.

Since in this case lim g, (is) = 0, we conclude that ! should be odd and

s

(@/B)! = (1 —c)/c. We see then that

lim ¢,(t)=0 and

ltf >

t| 20 .

i€. @, and @, are characteristic functions of absolutely continuous distribu-
tions. Then the polynomials from the numerators of (13) have the degree I—1
and the formulae

[>2] e o]

1 . 1 .
L) =7 Ie Cei@dt, x>0, [ =5~ fe_“"fpz(t)dt,X<0,

- oo

-

determine the density functions corresponding to the characteristic functions
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¢, and ¢@,, respectively. Applying the residue theorem we get

a0

j‘h ()e™"*dt = —2niRes_;5[§, (z) e™""]

-

: z—ie Y\ _.. | 2mic . 47! . _;z
=.-—-2mcRes_,-,,[(1—(z—_;i—ﬂ—))e :] (I-—l)',l_l.-,gd‘ [z —ix) e™'*¥]

-1
=2nc(a+pe ™ Z ( )(k+1)'( ~(@+p) xf
=2nc(a+pe W (—(a+ B x)I-1!,

where

-
W (u) = kzo(k+1)( k!) u*, ueR.

It was established in [7] that the polynomial Wj(u) has /—1 different
real negative roots. Consequently, if /> 1, then

fi()=cl+pe P W(-@+hHxfI-1)!, x>0,

could not be a density function, as W, takes negative values.
If I=1, then = (1 —¢)/c and

for x <0,
for x>0,

0
(14 fil) = { et

i.e. the density function of the exponential distribution, and so ¢, () =
B/(B—it). Furthermore, from (13) we get @, (f) = a/(x+it), i.c. the characte-
ristic function of the exponential distribution given on the left semi-axis
by the density function

we®*  for x <0,
1) £t = {0 for x> 0.
Finally we obtain the following couple of characteristic functions
B kN c
16 t =, = —1a0a, s
(16) o, (1) F—it @2() = al-Ht B l—ca a>0

for which condition (2) is satisfied.
At the end we note that if equation (10) has no solution, then

0 N
lim 7,(s) = lim { e ™ dF,(x)>1—¢

P S — 0 — o

and F, has the saltus g > 1—c at the origin, in contradiction to assump-
tion A.
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Let us remark that by the consideration of part A we obtain only one
couple (16) of characteristic functions of continuous distributions satislying
condition (2)' and the assumptions of Theorem 1. '

B. Assume now that F, and F, are lattice distributions, defined on the
same lattice with the step h > 0 and the origin as a lattice point. For the
simplicity we can put h = 1. By the assumptions of Theorem 1, F, is a right -
sided distribution, while F, is-a left -sided distribution, and so the corres-
ponding characteristic functions can be written as .

VY)) o 0, () =k§oPkeM~ ‘Pz(‘) = Z ‘he—m,

. k=0
where 0<p, <1, 0<¢q, <1, k=0,1,2,.. and Zp,‘-l qu—l
k=0

Let us consider the following functions of a complex variable z = re®
(r and ¢ are real numbers):

09 0. = i B, g2 = f art, zeC

The function g, is analytic inside the circle K = {zeC: |z| = 1}, while
the function g, is analytic outside K, and they are both continuous on: K.
Moreover, we have on K

91(2) gx(e“)—% . .g'z(z)=-g,’(¢")=«p2‘(t), =1,
and S - R
(1 0)91(2)"‘002(2) yl(Z)yz(Z), Izl = 1.

Hence we see that a meromorphlc extensnon of g, to the outs:de of K
can be glven by

cgz(z) 'z'>l -

Ll
and, similarly, the equation -
R , (1-0)g: () -
Z)=——7"-—, |2|<1, -
g2(2) gi@D)—c |_| R
defines a meromorphic extension of: g, to the interior of K.
Let us write _ ,
PN 771 S - 3
(19) A (2) cg2(2) '
. _— Jzf>1,
-~ Go-a-g ¥

6 —Prob. Math. Statist. 7 (2)
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and o o
(1-9g:(2)
20 52(2)={91(Z)"C  H<b
] gz(z), |2| 21
Then o :
(21) (1- c)g,(z)+cg2(z) 7:1(2)72(2), zeC.
Note that
(22) ; lim g;(z) =

Iz 0

In order to find the lattice solutions of (2) 'or, equivalently, the solutions
of (21) on K, we cons:der the following cases: (I) go > 1—c¢, (II} go = 1 -,
() go < 1—c. ‘

) Let go > 1—c¢. From (2) for functions‘(.l7) we have

(23) (1-c)po+cdo = Y, Puthso
. k=0
(24) . (1 c— qo)Pk Z Px+ntn> k =‘1, 2: vees
(25) o ch Z Padisns k=1, 2_,‘3.4.
n=0

From (24) we get p,=0(k=1,2,..)) as qo>1 ¢, and so py=1.
Furthermore, from (23) and (25) we obtain go =1, ¢, =0(k=1,2,...).
Thus in this case we have only

(26) p=1, 0 0=1,
as the solution of equatlon (2) - '
(IT) Let go = 1—c. Then ¢, is the characteristic function of a distribu-

tion with at least two discontinuity-points and g, = 1 —c is the saltus at the
origin. Thus ¢, can be represented in the form

. 27 Q) =1— C+ap(t),

where ¢(t) is the characteristic function of a left -sided lattice distribution
without jump at the origin. From (2) we have

(28) | @) =0, (000

If ¢ is the characteristic function of the degenerated distribution, i.c.
if () =e ™, meN, then, by (27)-(28), we immediately get

(29) O =c1-0e™, gy () = 1—cHce™ ™.
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If ¢ is the characteristic function of a distribution with at least two
discontinuity points, then ¢ can be written as ' '

(30) o(t) =— Z gre” ™™, where 0 < gy, <c, koeN.
k kg
From (27)-(28) we get
(31 I—c+co@) =0, (Do), O0<c<l.

Since the product of ¢, (¢) and () is the characteristic function of the
left -sided lattice distribution based on the same lattice as ¢, we conclude
that @, (t) has the form

ko :

32 e1(1) = Zopne""-

. k=
: As a consequence, we obtain the following system of equations:
i - (33 Pro Gy = c(1— C)

(34) ZpH-ko qu+ko_0 k=1 3 9"'!k0—1’

(33%) ' Z Pidisx =Cdi,  k=ko, kot+1,.

' =0
From (33)-(34) we get
(B6) pr=pr=...=py-1=0, N
Prg # 0, Grgt1=Grg+2="-=quy-1=0

and equatlons (35) reduce to

(35) Podi+PugTk+ro = Cde» Kk = ko.

Note that 0 < po < c. Indeed, g, < ¢ and by (33), py, > 1.—c. From (32)
and (36) we see that Po+py=1 50 pp <c. Hence we get

o) =" % Po=0, and @) =po+(1- po)e % po<c.
- We now can deduce from (35') that g, # O«-q,,”o # 0 (k= ko) and

‘Iko( Po)" l, k = nko, ne N,
o = y Pko
0, :

k # nky, ne N.

If wg put r = (c— po)/(1 — Po); r< 1, then g, can be written as

_fe(@=nr~! for k=nko, n=1,2,...,
%= " fork#nke, n=1,2,...
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"Hence, by (30), we get

r—1
o(t) =—mg, koeN,
r—e

i.e. the characteristic function of the geometric distribution, and, by (27),

1-c¢ .
T osmg if po =0,

() = re1 : s
I-ct+e—ms if po# 0, po <¢, koeN.

Finally, in case (II), we obtain the couples of the ch;facteristic functions
satisfying (2) which can be written jointly as '

meN,

' -1
6D 0 0=p+(-pe™ 90 =1-cte——m,

where 0 p<c, r=(—p/l—-p).
- (III) Let go = lim g,(z) <1—c. We first show that the functlon s

given by (19), has exactly one pole on a certain circle C, = {zeC: |z} =r,},
where r; > 1.

Note that if z =ré", r > 1, then for t =0 we have

92(2) =g2() = Z art. :
k=0

Since the function g, strictly decreases in the interval [1, o) as r— o
and takes values from 1 to gq,, where g, < 1—c, there exists an r, such that
g,(ry) = 1 —c. Moreover, for t # 0, we have L

(38) lg2(re")) <g2().

Hence and by the principle of maximum it follows that g,(z) =1—c¢
only for z = r,, so the function §, has the only pole which is situated on the
circle C, = {zeC: |z} =r,} at the point z =r;, r; > 1. Furthermore, the
function §, is bounded outside a certain circle K, = {zeC: |z| < R, )}, where
R, > r;. In consequence, we can deduce that g, ls the rational: function of

" the form

Q:( )
(r—2)"

where. Q, is. the polynomial of the /-th degree at most. We.see also that in
this case

(39) R X~ eN,

(0 im g, = fim — 020 ___ .

Izl 2o Izl-'quz(Z) (1- c) do— (l—c)




(41 | g2(z) =
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We shall find the form of the function g, given by (20) when Lm g, (2)
jzl =
<1l—c. Since p, = lim g;(z), we need to consider the following cases:
: ' {z| =0
1° po <c, 2° po=c, 3° py > c.
Assume first that p, = lim g, (z) < ¢. The function
. |z{ =0 .

g9:1(r) = Z Pk"k
k=0

strictly increases in the interval [0, 1] and takes values from p, <c to 1,
so there exists r,, 0 <r, < 1, such that g, (r;) = ¢. By the similar reasoning
as previously, we can state that the function §, has only one pole which
is situated on the circle C; = {zeC: |z} =r,} at the point z=r,, 0.<r,
< 1. Besides, the function §, is bounded outside a certain circle K,
= {zeC: |z] < R,}, where R, >r,. Therefore, we conclude that §, is the
rational function of the form

Py(2)
(r;—2)’
where P, is the polynomial of the k-th degree at most.

We can assume that in representations (39) and (41) numbers ! and k are

such that §; and §, are irreducible rational functions. From condition (21)
we have :

Pz) _ (1-9Q0)
(r,—2¢  Q@)—c(r,—2)"
Hence, by (40), k =1, and
Q(2) = A(r;— 2 +clri—2), Pi(a) =(1-0)(r,—2)'+c(l—0)(r; —2)/A,

where 4 is a constant.
Since g, (1) = Q;(1)/(r;—1)' =1, we get 4 =(1—c)(r, —1)/(r,—1)". Then

. ri—1)(r,—2)
gi(@)=c+( —C)I:mja

keN,

42 (r—=D(r;—2)}
g(z) = 1—c+c[(—rl__l)_(rl_?)J, r>1,0<r,<1,leN.
1— D —
Consequently,
_ rl"‘]. ! rz_eit !
@3) Pl =c+i=9 (’z—l) <fx—e">’

—~1V i\l '
gaz,,(z}=1-c+c(r2 )(rl—i"), ri>1,0<r,<1,leN.

rr—é¢€

1‘1—-1
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We show next that ¢,,, given by formula (43), is the characteristic
function if and only if /=1 and r, < cry/(ry —(1—¢)). Indeed, if /=1 and
r, < Cl‘l/(rl '—(I—C)), then

cry (1=or, ri—1 cry, (1=oryjri—1
= . 1- - ¢
(pl'l(t) [r1—1+ r2'—1 Jrl_e"+ rl—l rz“-]. Tl—e't
is the characteristic function.

Assume now that ¢, ,, given by (43), is the characteristic function. Then,
for m=0,1,2,...,

1 iy 1 4.2 b an
pm=2-n—f<p1,,(r)e "dt = jz—,im—dz i azm 191 ¢)]

z=0*

m! dz™
lzl=1

Thus . iy

oo (N2

po=c+(1 d(r;—l)r',"

and

(=9 =1 d" (I_rl—rz "J
R s 1 =] | G

__(I—C)(H-])l —l)l(rl—rz)lzl()( 1)k(l k+m—1)! (z"l—rz)“"“I

m'(”z—l)l "'1"+1 k=0 (I—k-1)! ry

z=0

m=1,2,...

Putting now u = (r; —r,)/r;, we see that O <u <1 (ro>1,0<r, <1),
and studying the polynomials

N(l—k+m—1)!

W, () = kgo(— 1V (k)"ﬁ‘:;_—l)!*'u""" 4

it can be verified (see [7]) that for any ue(0, 1) there exists a number m such
that p, <0 if /> 1, which is impossible. If I =1, then

e R
_1 . 1—r2

Po = c+(1—c)(

v m=1,2,...,
wh11e Po=0ifr, < crl/(rl —(1—¢)). It can be easily verified that then p,, > 0
(m=1,2,..), and gp,,,=1. |

m=0

On the other hand, for I =1 we get from (43)
2‘—1 r —F, . rz—l

—1 ri—1 r,—év

@21 =1—c+c re>1,0<r, <1,
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Hence

r,—1 g =c(1""2)("1"r2) m
"1-1’ " ry(ri—1) 2

qozl—C+c m=1,2,...,
and they determine the discrete distribution if r, > (1—(1—c)r,)/c. Besides,
the fact that r, > 0 implies that », < 1/(1—c¢). Finally, we get the following
restrictions to (43):

1-(1—-2)r, cry

l<r<lfl-0d, ——21g<r,<

—_, I=1.
c . 2= =(1=-9¢)

Putting now p =cry/(r; —1)+(1 —c)r,/(r,— 1), we can rewrite (43) with
these restrictions as follows:

-1 - 1-r
(44)‘ @1(t) = [p+(1-p)é L ¢2.(t)=[1—P+Pe l:'lTrz—:'T’
where
129D sy, 0<p <t

c+{1-p)(r =1y

In the particular case for p =0, we obtain from (44)

Tl—l it 1—-1‘2
= t == —
01() rl—e"e ,  0a(b) I—r,e "
where
cr
Py = ?'IT(IL:C—), 1< < 1/(1—C),
while, for p =1, we get |
=1 _(1 —ry)e !
(pl(t)—rl_e,'p : 2() ze_,,s
where
1-(1-
’s =—~(_—cﬂ, 1<r <1(1=0).

In case 2°, when p, = ¢, we have g, (0) = ¢ and, following the previous
considerations, we can state that the function §, has only one pole at the
point z =0, and §,(2) = Py (z)/z* (ke N), where P, is the polynomial of the
k-th degree at most.

Now, by the similar reasoning as in the case 1% we obtain k =/, and

ry = 2§ 1—etcn= il 1,leN
" ), .gz(z) c+c( ),z ! ry>1,leN.

1@ =c+(1-9
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Therefore
-1
¢1.;(t):C+(1 ) i”( - !l)l’
n!
P24(1) = 1—‘f“L“"’_M((r1 1))1, ry>1,1leN.
r -

It is obvious that ¢, is the characteristic function for any positive
integer [ and r; > 1. We show now that ¢,,, given by (45), is the characte-
ristic function if and only if /=1 and r, > 1/(1 —c). Indeed, if /=1 and
ry 2 11 —¢), then

ry

e

P2,(1) = _1

is the characteristic function of the discrete dlstnbution with two discontinui-
ty points. Assuming that ¢, ,, given by (45), is the characteristic functlon we
have

—_ 1 itm — 1 52(2) m
9m =5 j‘Pz.r(f)e dt =5~ f z™d
-R

zZ
lzf=1
=——l——£iﬂbﬂﬂr—H%””+dr—ﬂ%ﬂ m=0 fz

I (r;—1)dZ’ ! ! =0 T
Hence
‘ 1 1\

”l:l—c+c(l_rl):|, m=0,

dm = 1i-m m
_ . om=1,2,...1,
Y e ™
0, m>1.

Note that q,-, < 0 for any positive integer | > 1 and any r, > 1, which -
contradicts the assumption that ¢,, is a characteristic function. Now, if
I=1, then gy =(1-0)r;—1)r;—1), g, =cr fr;—1), and we see that it
should be r, = 1/(1—c), as otherwise gy < 0. Finally, we obtain

01() = c+(1—g)er L
rl'—e

(46)
Cry Ccry —it S _
e nz o).

In the special case, where r; = 1/(1—c), we get

P2(8) = 1-

o) = 0x(0) = e,

c
1—(1—¢)é*’
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In the last case, where p, > ¢, we shall prove that §, is a bounded entire
function.

Note first that, by definition (20), §, is an analytic function for |z] > 1
Put z =ré", r < 1. For t =0 the function

m@=m®=éﬁ”

strictly increases in the interval [0, 17 and takes the values from py, > ¢ to 1,
so g, (r) > c in that interval and the equation g, (r)—c = 0 has no solution in
[0, 1]. Further, since |g,(re") <g,(r), and by the assumption lim g, (z)
" >c (lz] = 0), it follows that the function §, does not have any poles
inside the circle K = {ze C: |z] = 1}, so it is analytic there. Thus the function
g, is analytic in the entire complex plane, i.e. §, is an entire function.
Moreover, J, is a bounded function as |§, (@) < g,(F) < g, () =11if |z| 2 1,
and |7, (2) < 92(1) = (1~ g, (W91 () —c) < (1=)/(po—0) if |z| < 1. Then g,
is a bounded entire function, so it is a constant function by the Liouville’s
theorem. Thus §,(z) =§,(1) =1, ¢,(t) =1, and g, =1 in contradiction to
assumption (III).

" Remark that as a conclusion of the considerations in case (III) we
obtain the couples (44) and (46) of the characterlstlc functions satisfying
condition (2).

Putting in formulae (37), (44) and 46): @1,1(t) = @, (th), @34() = @, (th)
(h >0, heR), we obtain together with (26) all couples (¢, ,, ¢, of the
characteristic functions of one-sided lattice distributions defined on the
different semi - axises which fulfil (2).

The results of parts A and B complete the proof of Theorem.

3. Solution of the Dugué problem for distributions with supports on the
same semi-axis.

THEOREM 2. Let ¢, and @, be two characteristic functions of distributions
F, and F,, respectively. If F;(0)=0 and F,(0) =0, then condition (2) is
satisfied only by the characteristic functions of the distributions degenerated at
the origin, i.e.

@n 00 =1, ¢)=1.

Proof. Assume first that (2) holds with F, and F, being right-sided
distributions such that F;(+0) > 0 or F,(+0) > 0. The supports of F, and
F, we denote by supp(F,) and supp(F,). From (2) we know that

48) supp(F,) usupp(F,) = supp(F, * F5)
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and, therefore, under these assumptions F; has the saltus p, >0 at the
origin, while .F, has the saltus go >0 at the origin. Furthermore, condi-
tion (2) implies that

(49) (1—=o)po+cgo =Pogo, 0<c<l1,

which holds only .if pp =g, = 1.

Thus in this case we get only the trivial solution of (2).

Now assume that (2) holds with F, and F, being arbitrary right -sided
distributions. Denote by lext[F,] and lext[F,] left extremities of distribu-
tions F, and F,, respectively. We have

lext[(1—c)F,+cF,] = min{lext [F], lext [F 21},
lext [Fy * F,] = lext [F,]+lext [F,].
From (2) it follows that lext[F,] = lext[F,] =0 and

(50) 0 <(1—¢)F,(0)+cF,(x) < F,(x)F5(x), 0<c<1,x>0,xeR.

We shall show that non-trivial distributions satisfying (50) do not exist.
Let x, be an arbitrary real positive number and write p, = F,(x,),
P2 = F3{(x,). Inequality (50) implies that 0 <(1—¢}p;+cp, <pp2(0<c
< 1), but it holds true only if p; = p, = 1. Consequently, in this case the
other solution of (2) does not exist and Theorem 2 is established.
The similar result can be obtain for left -sided distributions, namely we

THeOREM 3. Let @, and ¢, be two characteristic functions of distribution

functions F, and F,, respectively. If F,(+0) =1 and F,(+0) =1, then

condition (2) holds only for the characteristic functions of the distributions
degenerated at the origin.

4. Remarks on the Dugué problem for couples of distributions when the
support of one of them is on the whole real line. Theorems 1-3 give the direct
solution of the discussed problems (1) and (2) for couples of characteristic
functions of one-sided distributions defined only on semi-axises. .

Suppose now that one of the distribution functions F, and F, in that
question has the support on the whole real line. As an example we mention
the couple of characteristic functions

1—c

1
P = T P =— s,
i it
- (1_5) 1_c(1_3).

satisfying (2). In [8] it has been shown that starting with that couple (¢,, ¢,)
we can generate many couples of characteristic functions of this type for

b>0,
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which (2) holds. Thus we see that in this case the family of couples of
characteristic functions satisfying the Dugué condition is not finite. The
above fact may elucidate the following theorem (see [8]):

THEOREM 4. If (9, ., ¢2.) is a couple of characteristic functions satisfying
(2) for each ce(0,3), then condition (2) holds true also for the characteristic
functions (D,., ¥,.), n =1, where

¢1,c(t) = (Pl,c([), qll,c(t) = (02“.({),

Qn,c(t) = [ \/Eén—l,(l — )2 (t) J2’

Py i1 \/E)/z(f)"(l‘—\/(j') _

Ve ®) = Pp i1 - o2 O Voo 1 - vy ®),  n2=2.
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