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Abstract. Given a point process { N ( t ) ,  t 3 O] with the stock- 
stic intensity Alt) of the farm IL(t) = aO(t)  Y ( i ) ,  i t  is shown that using 
the sieves tcchniquc one can construct a strongly consistent maxi- 
mum likelihood estimator of the functional factor a(r). The latter is 
assumed to be periodic with the known period T = 1, and the 
"censoring process" Y(t}  fulfills some mild regularity assumptions. As 
an easy consequentx i t  follows that the maximum likelihood estima- 
tor (NILE) can similarly be computed if {WJ(tj, t e [O, 11, 
i = 1, 2, . . .) are ntjt independent and identically dislributd but 
satisfy some mixing conditions. 

This paper extends the results of Karr CI.33. 

I. Hmtadwtion. We consider the following problem: on a probability 
space (82, 9, P) we observe a point process (N(E) ,  t 2 Of adapted to a 
standard filtration {St, t 2 0). The stochastic intensity h(t)  of the process 
N(t j  (for the definition, see [1]j  is assumed to be of the form 

where ao(t j  is a deterministic, unknown periodic function integrable on 
LO, 11 with the known period equal to 1. The stochastic process Y ( t ) ,  
sometimes called "the censoring process", satisfies the usual assumptions of 
.IFr, t 3 0 )  predictability and nonnegalivity. 

The aim of this paper is to show that maximum likelihood estimator of 
the function a. 3s strongly consistent if a. is periodic, and a single realization 
of the process N ( t )  on R+ is observed. 

Multiplicative intensity model (1.1) was introduced by Aalen El]. Karr 
[I31 applied the theory to estimate a ,  ( t )  when {ivli)(tt) t E [O, 11, i 
= 1, 2, . . .) is a family of i.i.d processes. Our approach, based on a single 
realization of the process N [ t )  and assumptions of periodicity of a,-,(t) 
(somewhat artificial at the first glance), is quite natural when considering 



such phenorncna as, e.g., arrivals of customers to a store, a work-load of 
a service station or arrivals of patients at an Intensive Care Unit. 

WecentIy Rolski [I81 has demonstrated how to compute characteristics 
irr queues at which arrivals are according to Poisson process with a periodic 
intensity function octt). Vere-Jones [l9] and Mardia [161 considered a cyclic 
Poisson process as well. The former author proposed a maximum likelihood 
estimate for such processes. Lewis 1141 presented data collected at an 
Intensive Care Unit of a l~ospital. The '"time-of-day" effect, described above, 
had allowed to assume that the intensity was periodic with tihe known period 
equal to 24 hours. The same author had also given another example 
concerning thunderstorm severity in Great Britain that showed a tendency to 
have a seasonal effect. 

In above-mentioned papers I ( t )  (see (1.1)) was assumed to be nonran- 
dom, i.e. N(t) was a nonhomogeneous Poisson process. The estimation 
problem was a parametric one. Our model is more general because R(t)  may 
well be random. Moreover, the setup, being nonparametric, makes applica- 
tions Inore feasible. 

In Section 2 we formulate our central results together with remarks. 
Section 3 carries the task of proving the results. 

2. Candstenr madmum OkeEhood ~stimahoo. We consider a countable 
family of the points processes [N"')(t), t E [O, 11, i = 1, 2, . . .) obtained by 
splitting a single realization of M [ t )  on 63'. Formally, let 

Using the recipe 

(2.21 Y("(t) = V(t+ i - I ) ,  

we can divide the process T( t )  into a countable number of pieces 
{14')(t), ~E[O, 11, i = I, 2, ...). Since the function ao( t )  is periodic with the 
known period equal to 1, the stochastic intensity of the process N(')(t) can be 
written in the following form: 

ACi) (t) = a, (t) Y(') (t). 

Observe that we can consider processes { ~ ( ~ ' ( t ) ,  t 6 KO, I], i = 1, 2, . . . j  
that do not correspond to a single realization {N(t), t 2 0 )  but fulfill certain 
mixing conditions. Since the methods and calculations are identical in that 
case as in the former one, we restrict ourselves to the case where observa- 
tions are engendered by the point process (NCt), t 2 0). 

A natural model for observations engendered by the p i n t  process 
{ N ( t ) ,  t 2 0) is a family of probability measures 9' = {P:, EEI" ) ,  where I" is 
a set of periodic, nonnegative functions thae are left-continuous with right- 
hand limits and period equal to 1. It is well known [I33 that if fl is 
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integrable on every bounded interval of R", then the family is dominated, i s .  
there exists a measure Po such that P: 4 Po for every ?is and Po corres- 
ponds to r ( t )  = 1.  

On the other hand, we can make use of the construction of processes 
N(il(t) and Yci) ( t )  and periodicity of a to consider an alternative model 9 
= (P,, a E I ] ,  where I consists d nonnegative 1efi-continuous functions with 
right-hand limits defined on [O, 11. We also assume that the underlying 
functions are integrable on [0, 11. Thus, the set I can be equipped with the 
usual norm 

1 

(2.4) Ilall = jls(s)l ds. 
0 

Let N" = and Y" -: Fi{ where N(" and Y ' ~ )  were defined 
i= l i =  I 

above. From Theorem 19.7 of [l5] and the considerations above we have the 
following 

LEMMA 1. Ler P ~ E  9 a d  let P: correspond to the process iN( t ) ,  t 2 O!, 
where E{s) = ol [s), s E 10, l] and a E I .  Then 

d P i  1 1 
--(n) = exp [ jyn(s )  (1 -a (s))ds + [log a: (s)  dlVn(s)] . 
dRO o b 

Proof. Observe that 

= exp [J Yn (s) (1 - a(s)) ds + J' log a (s) dNn{s)] . 
0 0 

The likelihood function 
1 1 

(2.51 Ln (4 = 5 Y n  (3) (1 - a ($3 ds + J log a (s) dNn (s )  
0 0 

can therefore be parametrized by functions from the functional space I. 
For the sake of technical convenience we define "formal entropy'" 

1 

(2.6) Hn (a) = - E,, L, (a) = - jmn (ao (s)) (1 - a (s) +ao (s) log a: (s)) ds, 
0 

where 

12.7) 
n 

mn(oco(s)) = C E,, Y("(s), 
i =  1 



and the function ao(s) is the true unknown parameter. k t e  that or, minimi- 
zes H,{a) for cx E I. 

It is known that the unconstrained optimization d L,(m) does not lead 
to worthy results (see e.g. [8] for numerous examples), Grenander Ell] 
proposed a method of sieves, b a s 4  on maximization of (2.5) over a subspace 
S ,  of I ,  as a remedy in lths situatiorr. 

A family IS,, n = 1, 2, . . .) of subsets of I is called a sieve if 5, is 
compact for every n, S ,  is increasing in n and US, is dense in I. Note that 
different sieves give rise to diffment ML estimators (see [8] and /9] for 
numerous examples). 

Let [la,) be an arbitrary sequence of positive numbers such that a, -t 0. 
For the technical convenience we denote by S(aJ the subset of d (instead 
of SJ" 

Following Karr [13] and Grenander [ I l l  we define S(a,) to be the set 
of absolutely continuous functions satisfying 

It can be shown [13] that $(aa) is compact in L!, US(a,) is dense for 
a, + 0, and that in S(a,) there exists a function &(n. ad such that 

(2.10) L, (6 (n, a,)) 2 L, (a) for a E S (a3 . 
A function Lu (̂n,uJ, fulfilling (2.10), will be called the maxiwrurn likelihood 

estimator (MLE). 
Furthermore, let M(')(s) be a martingale corresponding to the point 

process Nti)(s), and [M(il](s) be the quadratic variation process of M(')(s) (for 
the definition see [4]). In the sequel we suppress the argument SE [ O ,  11 and 
the double index (n ,  aJ. We have the folbwing 

THEOREM 1. Assume that (A.1)-(A.4) hold true, where: 
(A.l) C1 d n-' rnn(ao) < Cz for nz" defined in (2.7); 

1 

(A.2) n- ' 1 Var Y n  (s) ds < C ,  ; 
0 

n 

(A.3) E ( M ( ~ ) ( I ) M ~ ~ ( ~ ) )  = 0 and n-'&, [c M ( ~ ) ] ' ( I )  6 C, for i # j; 
i =  1 

(A.4) the process Y(s)  is strongiy mixing with the mixing function q(s) 
= o ( ~ - ~ / ~ l o g - ~ s ) .  

C,, . . ., C, are coastants not depending on S E  [0, 11 and n. 
Then, for an = n-U4", 6 > 0, and MLE satisfjjing (2.10) we have, far 

n -r cc, Itcx, -aoll -+ O Pa, -almost everywhere. 
As we have mentioned, the result of Theorem 1 remains valid when the 

observations {Nci)( t ) ,  t E [0, 11, i = 1 ,  2, . . .] do not correspond to a single 
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realization of the point process N ( t )  on R'. However, the very fornulation 
should be adjusted to that case. Namely, (A.4) is replaced by 

(A.4') The processes Yfi'(s) are strongly mixing with the mixing function 
rp(0 = ~ ( i - ~ ~ ~ [ l o ~ i ) - " ) o r  SECO, 11, i = 1, 2, ... 

We have then the following 
THEOREM 2. Let (A.1)-(A.3) and (3.4') be fulfilled. Then MLE Gn is 

strongly consisrent, i.e., jbs  n + co, Il12,--a~lI -t 0 P,,-a.e., where iR is abtained 
by the method of sieues (2.10). 

Under (A.1)-(A-3) a weak consistencj result for 6" in a singk realization 
model can be obtained. Since the proof of that result follows closely the 
patterns oS proofs of our Theorem 1 and that of Karr [U], we present the 
assertion only. 

THEOREM 3. Assunze that (A.1)-(A.3) care satisj'ied and the rate of growth 
ofthe sieve a, is a, = n-1i2(loglog n)li2. Then, for M E  o?,, we have Il&n-a,ll 
+ O in Pa),, probability for n -+ co . 

Remarks. (i) It will be seen from the proof in Section 3 that the rate of 
convergence is related to the growth of c:, where 

1 

c: = E,, I N("(1) - f ao  (s) Y(i )  (s) dsI2. 
b 

If c i  = O(nP-'1, where 3 r p > 2, then we can take a, = nmY and y = 
(3-p-&)/4, 8 > 0. 

(ii) Assumption (A.4) seems to be very restrictive. However, it is well 
known (see e.g. [12] and [6 ] )  that if Y(s)'is a Markov process with 
stationary transition probabilities satisfying Doeblin condition, then P(s) is 
strongly mixing with q(s) decreasing geometrically. This enables us to 
enlarge the class of possible applications of the method of sieves to the 
processes whose stochastic intensity fulfills mixing condition (A.4). Such 
considerations were not possible within the frames of the theory developed in 
[13]. Thus, our model seems to be adequate when observing the p i o d i c  
phenomena (a (t))  with random censorship Y (t). 

(iii) In Theorem 2 the sieve S(a,) is allowed to grow faster than that of 
Theorem 1. 

(iv) Since, for' fixed la, the likelihood function L, is continuous in I!+ on 
S(a,) and is concave, the solution of (2.103 is unique (for details see e.g. [7], 
Proposition 1.1 and Proposition 6.2, p. 35). 

3. Proof af Tgherarem 1. Let us forst note that if (X,, Sn, n $ 1) is a 
strong mixing sequence with a mixing function q(n), then {X,, F,,) is a 
mixingale with constants c, =  EX:)'/' and ll/m = qli2(m). Thus, in view of 
(A.4), the sequence ( r - m " }  is mixingale with c, = 2(Var yn)li2 and $, as 



(A.4). For the definition of the strong mixing sequence and that of a 
mixingale we refer the reader to [3] and [12], respectively. 

Note that since the sieve i s  dense in the space I, given the "true" 
parameter a. and any 3 > 0, one can find a, sufficiently small such that 
(/a*-uol~ <S, where ol*~S(ca, ) .  Therefore? due to (2.61, (A.1) and the 
inequality logx < x-1 for x > 0. we have 

Moreover, it can easily be seen that, for fixed n, 

In the second inequality in (3.2) we applied the inequality Ln(i) B L,(cc*) 
which is true for any a * ~ s ( a , J .  It is known (see [ll]) that if 
lim n - I  [H,(&,)-H,(E~)~ = 0, i.e. 
n'm 

then &n 3 a0 PaO a.e. in I for h (y) = y - Eog (1 f y). 
Therefore, to show that the right-hand side of (3.2) tends to zero observe 

that the third term can be made arbitrarily small when the sieve grows. In 
order to estimate the other two terms we follow Karr [13]. We have 

1 I 1 t 

+ - (Nn(l) - Ja (s)  Y n  (s) dsJ + --sup IN: - j a  (s) Y(s) ds[ . 
m, 0 na, , G I  0 

We prove now that the three terms of (3.3) converge to zero almost 
everywhere. Due to (A.4) and the strong law of large numbers for mixingales 
[12], the first term in (3.3) tends to zero for fixed se[O, 11, namely 



Es~i'sbirnatinn of the periodic function 109 

if a, = 1 1 - 1 j 4 * 6 ,  S > 0. 
Applying now Fubini's theorem (see e.g. formula (35.51, Chapter V, in 

[17]) we have P,,-a.e. 

with respect to the Lebesgue measure. Taking into account (A.2) and the 
dominated convergence theorem, we have 

for the prescribed choice of a,,. 
Similar considerations can be applied to the second term in (3.31, 

namely, for a, = n - 1 / 4 + d  

1 

since Yii), and hence Nn(l)- Sol(s) Yn(s), is also a mixingale with the 
0 

desired asymptotic properties. 
By a theorem of Burkholder [ 5 ] ,  (A.3) and an argument analogous to 

that of Karr [1'3] we obtain the following bounds for the third term: 
1 

- sup INn@)- Ja(s)Yn(sJ > E = O ( n - 2 ~ : ~ - 2 ) .  
0 

Hence, applying Borel-Cantelli lemma for a, = n-  u4+a, we get the 
convergence to zero a.e. This completes the proof, as the second term in (3.2) 
can be handled analogously. 
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