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Abstract. Partial sums of the Fourier-Haar expansion in seve- 
ral variables are used to esstimate on cubes a probability density 
satisfying some Lipschitz conditions. 

1. Introduction. We restrict our attention to function spaces and probabi- 
lity densities on the unit cube Q = Id c Rd, 1 = (0, I ) ,  d = 1, 2, .. . For 
given m = 0, 1, . . . denote by Qm a family of dyadic cubes in R~ such that 

(ii) J n J' = 0 for 3 # J', 

where (JI is the'd-dimensional volume of J. Now, for fixed m define the 
P,: L1 (Q) +L1 (Q> by 

The function P, f can be also viewed as a partial sum of the Fourier- 
Haar expansion off or else { P ,  f, m = 0, 1, . . .) can be treated as a martin- 
gale (see, e.g. [5 ] ) .  For the kernel corresponding to the operator (1.1) we have 

(1.2) P m ( x , ~ ) = P m  1 X J ( X ) X J ( Y ) ,  x , Y E ~ ~ ,  
J E  an 

where X, is the indicator of J. Clearly, 

(1.3) P m  f (x) = J Pm (x, Y) f (Y) d y .  
Q 

Since P ,  is symmetric, nonnegative and P, 1 = 1, it follows that 
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P,: D (Q) +D(Q), where D(Q)  is tbe set of all probability densities concen- 
trated on Q, i.e. 

It is also clear from (1.2) that P ,  (x, .) ED (Q) for fixed x EQ . 
We assume that we are given a probability space (B, 9, Pr) and a 

simple sample of size n, i.e. a sequence X I ,  X2, . . . of i.i.d. random vectors 
with values in Q and such that their common distribution has a density 
f E D ( Q ) .  The standard way of producing estimators for f is given by formula 

which can be written in the form 

(1.61 

with 

Thus, the diagram off,,,: Q -, R is simply the histogram. Our aim is to 
investigate the rate of convergence off,,, to f as pn and n go to infinity and f 
is a Lipschitz class. For those classes the optimal relation between m and n 
will be described. The .first results in this direction we find in Glivenko's 
book 171 (see also [lo]). 

2. Preliminaries. We are going to  discuss probability densities from 
D (Q) n C (Q) and from D (Q) n LP (Q) with 1 < p < oo . To this end we need 
some properties of the operator P,. The most elementary are the following: 

(2.2) P; = P,, 

where 

If I = If I p  = I f  I Ilf ll, = Ilf II,,,,, = esssup ilf (dl: x € Q l .  
Q 

The modulus of smoothness off €LP(Q) is defined as 
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where Q ( h )  = {xEQ: x + h ~ Q )  and, for f EC(Q), 

w, (f; 6 )  = sup tf (4 -f b)I, 
Ix-YI,<~;x,YEQ 

where Ixlm = max(lx,l, . . ., fxdl).  

PROP€)SITION 2.5. FQY f EC(Q) we have 

Converseiy, let for some nondecreasing o: R ,  -+R+ 

I I / - P ~ ~ I I = ~  m($) for m = 0, 1, ... 

(2.8) w , (.f; 6) 4 4dw (26) for d > 0 .  

Proof. Inequality (2.6) is a simple consequence of (1.1). The converse 
can be proved as follows. If for some J EQ, the points x ' ,  x" are in J,  then 
P,  f (x ' )  = P, f (x") and, by (2.7, 

Since f is continuous, it follows that (2.9) hoIds for x', x" €3. Let now 
I x', x" EQ be arbitrary two different points and let rn be such that 

Since 
d j 

X" - x f  = CyU) - y L j -  I)),  where yw = (x [  - xi) e,, 
\ 
I j=  l k =  1 

j with e, being the k-th unit vector in R ~ ,  we find by (2.10) that yu3 and yU-') 
I belong to two neighbouring cubes from Q, and therefore, by (2.9), 
! 

The converse part of Proposition 2.5 for d = 1 was proved in [2] .  
COROLLARY 2.11. Let 0 < a ,< 1 and f E C (Q) be given. Then the following 

conditions are equivalent: 
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The LP-case is little more complicated. We have the following direct 
result : 

PROPOSITION 2.14. Ler 1 < p < m and Iet f €LP(Q). Then 

Proof.  For JEQ, we have 

- 
1 -- [ dh j Id, . f (y) lPdy,  w h e r e J ( h ) = ( x ~ J : x + h ~ J ~ .  

l J i  2mlki,s 1 JW 

It follows that J { h )  c J  n Q (h)  and, therefore, 

The converse result depends on the following Bernstein type inequality 
(in case d = 1, see [3,4], and for d > 1, [ 5 ] ) .  

PRoPOS~TION 2.16. Define 
S,(Q) = span jxJ: J EQ,). 

Then, for 1 < p < ;o and for f €Sm(Q), we have 

Proof .  Let e l ,  ..., ed be the basic unit vectors in Rd and, for h 
= (h , ,  ..., hd), Iet h(j) = hie, + ... + h j g j =  Since 

d 

we obtain, for J E Q,, 

Now, f ( x + h ( j ) ) =  f(x+h(j-1)) for x € ( J - h ( j ) ) n ( ~ - h G - 1 ) )  and, 
therefore, 
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where 

and 
Ej  = ~ + h ( i )  = ( J  n ~ ( h ) + h m ) \ J n ( J + h ~ e , ) .  

Let now J* = U (J,: E ..., E ~ ) , E ~ = O ,  1, -1: nQ, where Jt = 

J + E / ~ " .  It should be clear that E, = J* n Ej = u J ,  n E j .  Now JE = J  for 
E 

8 = (0, . . . , 0) and then 

For E # O , I J , ~ J I  = O  and - 

lhl m < I ( J  + hO) n J.1 S p = IJI  (2'14 ,I, 
therefore, for J, c Q ,  

whence we infer that 
d 

f I A h f  l P  (2d)P-1 lhlca ( 5 If l P +  If 1') 
~i h) j= 1 J ,  4 E j n J E  E j -  1 nJ, 

< (2d)P3dlh1,2mj/fIP. 
Q 

We are now in position, using a standard method from approximation 
theory, to prove the main converse result. 

THEOKEM 2.18. Let I < p < and let f E LP(Q). Then 

Proof. We have 

with fj = Pj f - P j - ,  f, whence, for Ihl, < 1/2", 
m 

A h f  = Ahfj+Ah(f  -Pmf), 
j=  1 



6 Z. Ciesielski 

Now, (2.17) gives 

11 A h  f j l l , ~ ( ~ ~ h ) )  < 2 d .  3d/p ((hi ro 2*)1'p ( ( ~ ( I p  
< 2 d .  3d1p(lhlm2j)11p)llf - p j f  l l y + [ I f  - p j - l  f I I J -  -. - 

- 

Combining these inequalities, we get (2.19). 
COROLLARY 2.20. Let f €LP(Q) and let o: and p be such that 0 < a  

< l/p < I .  Then the following conditions are eqeriualcnt: 

(ii) 

This result in the 1-dimensional case we h d  in 181 and in [4]. It should 
be also mentioned here that Properties (2.2) and (2.4) imply 

(2.21) & , , I f )  I l f  - Pmf l l p  < 2Em, , ( f )  for 1 < p 6 a, 

3. Estimation of cosltinlsoms densities. As in Introduction, we are given a 
sequence (X,, X,, . . .) of i.i.d. random vectors with values in Q and with the 
common density f fC(Q) nD(Q). The random function f,,, is defines as in 
(1.5). It will be shown that, for suitable dependence of n on m, the function 
fm,, is a good estimator for f In what follows it is assumed that the sample 
size n is a dyadic natural. For given positive fl  the dependence of m on n is 
defined by 
(3.1) n = 2v and rn = [flvld], 
where v is natural and [x] is the integer part of x. In this particular situation 
the f,,, is denoted by fv,8. It is important that fl  is asymptotically log Nllog n 
for large v, N being the number of elements in Qm and n the size of the 
sample. Our aim is, given properties off; to determine the best f l  and then to 
compute N.  , 

The main tool in the following discussion is the Bernstein inequality (cf. 
193, P. 19); 

LEMMA 3.2. Let Yj 0' = 1,  2 ,  . . . , n) be independent random variables such 
that P r ( & = l } = y , P r ( Y , = O ) = z , y + z = 1 .  Then 

. - 

3 
(3.3) ~r {I ( ~ j  - y)l 2 2w (nyz)ll2 ,< 2e-w2 for o < w c 2(ny.z)1~2. 

j= 1 

The rate of convergence of 1 1  f - fy,BII to zero as v + cc can be investiga- 
ted with the help of inequalities (m = [Pv/d], 1 < p < &) 

1 
(3.4) ? I l f  - P m f  l l ,  6 Em, ,  I I f  -fv,BIIzi G l l f  -Pmf  lI,+llPdf -fv,,711p, 

L 
-- - 

whch hold with probability 1 by the definition of Em,, and by (2.21). 



LEMMA 3.5, Let f EC(Q) n D ( Q )  and let k > 0, R > 0,0 < P < 3. Then ' 

where E = A - I  .2*(l- ' I2f l )  und the big 0 is independent of A. 
Proof .  Note that 

J 
+ '  

Now, for J E & ,  we put Y j = x r ( X j ] ,  y = j f ,  y + z = l ,  and then apply 
r 

Lemma 3.2 to get (3.3) with w = ,Iny/2& < :&, provided that i d 31.  
This condition holds in particular for R and m satisfying 

(3.8) 2 d m > ; ] l f l l m ,  J G 1 .  
Now, 

and, therefore, by Jensen's inequality 

where Ff is the distribution o f f  on (0, co) with respect to the Lebesgue 
measure on Q. Now, 

whence, for y > 0, 

1 1 < - N l - ~ + N e - ~ ~ 1 1 B - 1 - y / 4  < - N ~ - Y + N  
" A  ' 1 ,  

sup xke-" 
O < x < m  
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where N = 2md, k is any positive number and the 0 depends on fi, d, and k 
only. Combining (3.7)-(3.10) with y = 1/2P we obtain (3.6). 

PROPOSITION 3.1 1. Let f f C (Q) n D(Q)  and let 0 < /I < 1/2. Then 

Proof. It follows by (3.6) that taking k > 0 such that 1/2/?- 1 > l/k, we 
obtain with probability 1 for Iarge tn 

I P M f  (XI -.La (x)l G 1 lp, .ft.y)l , 
xfQ 

whel~ce IIPmi-fv,bllm G All film, and therefore 

On the other hand, according to (2.15), ( I f -Pm f l l ,  = o(1) as m +a. 
Thus, (3.4) implies (3.12). 
THEOREM 3.13. Let f € C ( Q ) n D ( Q ) .  Then for 0 <'a < 1,  O < P  < 

@(a + d )  f he following conditions are equivalent: 

Proof.  (i) =t (ii). According to Corollary 2.5 we have I l f -  Pm f 11 rn 

= 0 (1/2""), and (3.6) with ;1 = 1/2ma and k such that (k - 1) (1128- 1 - m / 6 )  
2 1 gives 

Combining these inequalities with (3.4) we complete this part of the 
proof. 

(ii)*(i). Using (3.4) we find that [If-Pml(, ='0(1/2""), whence by 
Proposition 2.5 the required result follows. 

4. Estimation of densities in L1'. Like in the previous section we consider 
densities concentrated on the d-dimensional cube Q. It is also assumed that 
(3.1) is satistied. The expectation of an r.v. Y with respect to the given 
probability space ( S Z ,  9, Pr) is denoted by EX 

The following result from Lorentz and Berens [I) plays an important 
role in our considerations: 

PROPOSITION 4.1. Let g E C ( I ) ,  I = (0, 1). Then, for x ~ l ,  
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where 

The following elementary inequalities are well known. 
PROPOSITION 4.3. Let I = <- 1, 1 ), R = ( - co , co). Then 

(i) O ~ ] ~ + h ~ ~ + ( x - h ( ~ - 2 ~ ~ ~ ~ < 2 ~ h ~ ~  for1 < p < 2 ,  x+h, x - ~ E R ,  

(ii) 0 < I , Y + ~ ) ~ + ) X - ~ ~ ~ - ~ I X ] ~  <p(p-l)Ih(' for p > 2, x f h ,  x - h ~ i .  

PROPOSITION 4.4. Let P > 0, 1 < p < co and let f E LP(Q) n D (Q). Then 

(4.5) 1lf-P,f Ilp IEIlf-I,~II~''' 4 Ilf- p m f  llp+~Ellpmf-f,,pl131'P~ 

Proof .  Since E fv,p (x) = P ,  f (x), Jensen's inequality implies the first 
inequality in (4.5). The second one follows by the triangle inequality. 

 LEMMA^,^.^^ 1 < p  < W ,  p - l + q - l  = 1, P >Oand ie t f  €LP(Q)nD(Q). 
Then, under (3.1), I 

(4.71 (E IP,f - f , , B l l ~ l l P  < C . 2-md7 for v + a, 

where 

(a A b = rnin (a, b), a v b = max(a, b)), and C depends on p only. 
P r o  of. Notice that with N = 2& we have 

where q(3) = xJ(Xj), y ( J )  = PI {I;.(J) = 1) = EqfJ)  = Sf. Applying Propo- 
J 

sitions 4.1 and 4.3 to g(x) = ]x- y (J)IP, we obtain 

The combination of (4.9) and (4.8) gives 

(4.10) EJIPmf-fm,slJi < C2NP- l  n-(2 c p ) / 2  C ( Y ( J ) ( ~ - Y ( J ) ) ) ' ~ ~ ~ " ~ .  
JE% 

Now, I - y (J) < 1 and in addition, by concavity, for 1 < p < 2 we have 
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and, for p > 2, 

Both these inequalities and (4.10) give 

Now, we are in position to state our main theorem for the LP-case, 
namely 

. , THEOREM 4.12, Assume (3.1) and 
d 

(4.13) O < a , < l ,  l , < p < m ,  O < B <  
(2 v p)+((2 v ~ ) - l ) d '  

Then, for f~ LP(Q) n D(Q) ,  the following conditions are equivalent: 

Moreover, next condition implies (i): 

If; in addition to (4.13), 0 < a.< l/p, then also (i) implies (iii). 
Proof.  In view of Corollary 2.7 it is sufficient to show that (a) the 

model is regular, and ($) each limit of UBE's is admissible. 

This, (3.1), (i) and Lemma 4.6 imply 

where y = 1/(2 v p)//3- 1/(2 A q). From this (ii) follows. 
(ii) =. (i). It follows by (4.14) that (i) is satisiied for k = rn = [flvld]. 

However, by (4.13), fl/d < 1 and therefore each k is of the form [ B V / ~ .  
' 

(iii) *ti). This implication holds true by Proposition 2.14. Its converse in 
case 0 < or < l/p fol16ws by Corollary 2.20. 
- 

COROLLARY 4.15. Let f E L ~ ( Q ) ' ~ D ( Q )  for some p ( 1  < p < co) and let (iii) 
hold for some cx (0 < a f 1). Then, for each /3 satisfying (4.13), we have 
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COROLLARY 4.16. For given or, g and Psatisfying (4.13) the best choice for ji 
with respect to (ii) is 

E ~ a r n - ~ l e s .  1. Let a,  P and p be as in (4.13). ~ e t  f EW$(Q) for some p' . 
satisfying the inequalities 1 < p' G p, < rn and d (l/p' - l/p) < 1 . Then 
o,(f; 6) = O(6") with a = 1 -d(l/pf- l/p), and the can be easily computed. 
This is actdally an embedding theorem which can be derived for instance 
from [6] .  

2. Let d = 1 and. 1 ,< p < 2. Then the density for the arcsin law is given 
by the formula 

I 

One checks that f EL!', f 4 L~ and wg(f; S) = O(S11p-112). In this case 
a = l/p-1/2 and /3 = p/2. 
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