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HAAR SYSTEM AND NONPARAMETRIC DENSITY ESTIMATION
» IN SEVERAL VARIABLES

BY
Z. CIESIELSKI (Sopoy)

Abstract. Partial sums of the Fourier-Haar expansion in seve-
ral variables are used to esstimate on cubes a probability density
satisfying some Lipschitz conditions.

1. Introduction. We restrict our attention to function spaces and probabi-
lity densities on the unit cube Q=1 R% I=<0,1),d=1,2,... For
given m =0, 1, ... denote by Q, a family of dyadic cubes in R? such that

) Q=Ul:JeQ,),
(ii) / JnT' =@ forJ#J,
(i) | Wl =27,

where |J| is the d-dimensional volume of J. Now for fixed m define the
P,: L'(Q) ~ L' (Q) by

1.1 P,f(x)= |f(y)dy for xedJ, JeQ,,.

Wl

The function P, f can be also viewed as a partial sum of the Fourier-
Haar expansion of f or else {P,, f, m=0, 1, ...} can be treated as a martin-
gale (see. e.g. [5]). For the kernel corresponding to the operator (1.1) we have

(1.2) P ) =2" Y uuG),  x yel,
TeQ,,
where y, is the indicator of J. Clearly,
(1.3) P, f(x) = [ Py(x, ) f(y)dy.
e}

Since P, is symmetric, nonnegative and P, 1 =1, it follows that




2 Z. Ciesielski

P,.: D(Q) = D(Q), where D(Q) is the set of all probability densities .concen-
trated on Q, ie.

D(Q)={fel'(Q):f>00nQ, gf =1}.

It is also clear from (1.2) that P,(x, )eD(Q) for fixed xeQ.

We assume that we are given a probability space (2, #, Pr) and a
simple sample of size n, i€e. a sequence X1, X,, ... of iid. random vectors
with values in Q and such that their common distribution has a density
f €D(Q). The standard way of producing estimators for f is given by formula

(1.5) Fonn(%) ——Z P, (x X)
l
which can be written in the form .
(1.6) e =Y n) (%)
L JeQy )
with

L.
n(J) =—|{15X,- eJil, h(x0)= me(x)

Thus, the diagram of f,,,: @ = R is simply the histogram. Our aim is to
investigate the rate of convergence of f,,., to fas m and n go to infinity and f
is a Lipschitz class. For those classes the optimal relation between m and n
will be described. The first results in this direction we find in Glivenko’s

book [7] (see also [10]).

2. Preliminaries. We are going to discuss probability densities from
D(Q) nC(Q) and from D(Q) N L?(Q) with 1 < p < co. To this end we need
some properties of the operator P,. The most elementary are the following:

2.1 : P, >0,

2.2) P,f, =P,,

(2.3) P, 1=1,

24 IPafll, <Ifl, for1<p<o,fel’(Q),
where

170 = T, = ([ Wflle = 1l gy = es55up 1f (9: x Q).

' The modulus of smoothness of feL?(Q) is defined as

w,(f;0) = sup ([ If(x+h)—f ()" dx)!?,

thl oo <8 Q(h)
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where Q(h) = {xeQ: x+heQ} and, for f eC(Q),
w,(f; 8) = sup  |f(X)=FO,

[x—¥| o <d:x,y€Q

where |x|, = max(|x,|, ..., |x4).

ProrosiTioN 2.5. For f €eC(Q) we have
1

(2.6) I =Pufll S 0y (f; ?)

Conversely, let for some nondecreasiné w: Ry »R,
1

(2.7) ||f—me||wsw(?) form=0,1,...
Then )

(2.8) : 0, (f;0) £ 4dw(26) for 6 >0.

Proof. Inequality (2.6) is a simple consequence of (1.1). The converse
can be proved as follows. If for some J €@, the points x’, x'" are in J, then
P, f(x)=P, f(x") and, by (2.7),

2"!

Since f is continuous, it follows that (2.9) holds for x’, x” €J. Let now
X', x"eQ be arbitrary two different points and let m be such that

, 1
29) 1) =S NSNS )= P f NS () = P f ()] < 200 (—)

(2'10) 2 |x’—x"|w > Em.

2"
Since
d I - » j .
x'=x'= Y (P=07Y),  where ) = ¥ (x/—x)es,
=1 k=1
with e, being the k-th unit vector in R? we find by (2.10) that y*» and yU~?
belong to two neighbouring cubes from @, and therefore, by (2.9),
f ()~ £ (x) < 4do 2% —x"].0).

The converse part of Proposition 2.5 for d =1 was proved in [2].

CorOLLARY 2.11. Let 0 <a < 1 and f €eC(Q) be given. Then the following
conditions are equivalent: '

1
@12 1/ = PuSlle =0 (55

(2.13) 0, (f; 8)=0(% asd—0,.

) as m — oo,
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The LP-case is little more complicated. We have the following direct
result:
ProrosiTioN 2.14. Let 1 < p < oo and let fel?(Q). Then

) 1
(2.15) Nf—Pufll, <2 (f 2m)
Proof. For Je€Q, we have

ff(x)——jf(y)dy Cdx <~ [ {1/ ()= fONPdxdy

13

L {  dh | |4, f()"dy, whereJ(h)= ixeJ: x+hel}.

|Jl 2Mjh| €1 J(h)
It follows that J(h) < J mQ(l?) and, therefore,

. . (1Y
IF=Pafli< 2" [ db [ iy < 2 (o, (55 ).

2mp <1 Q)

IJII

The converse result depends on the following Bernstein type inéquality
(in case d =1, see [3,4], and for d > 1, [5]).
ProposITION 2.16. Define
S,(Q) = span 1,: T€Q,).

Then, for 1 < p < oo and for f €S, (Q), we have

. 3d(p (ym 1/ : il
(2.17) Ildhflle(Q{,,))<2d 397 (2™ b ) ”IIfHLp(Q) JSor lhlmézm-

‘ Proof. Let e;,...,e; be the basic unit vectors in R? and, for h
=(h1, ey hd)? let h(j) =h1 e1+ "'+hjej' Since

870 = Y Ao f(+hG=1),  h(0)=

we obtain, for J€Q,,

d
[ MaflP<d?™' Y | Aye fx+h(-D)Pdx

J RO J=1J QM
="' Y [ |fx+h() = f(x+h(G-D)Pdx.
J=1J Q)
Now, f(x+h())=f(x+h(i—1) for xe(J—h({@)N(J—h({i—1)) and,
therefore,

lf(x+h(j))—f(x+h(i-—1))|”dx

J nQ(h)

=glf(X+h(i)]——f(x+h(i-1))|”dx<2"‘1( {11+ fLAP),
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where
E=JnQW\(J—-h@)n(J—h{-1)
and ' ) '
E;=E+h() =(J nQW+h()\J n(J +he).

Let now J*={){J, e=0(g4,....8),¢=0,1, -1 nQ, where J, =
J+¢&/2". 1t should be clear that E; =J*NnE; =JJ,nE;. Now J, =J for

e=(0,...,0) and then
[JNE)| < - +[Hxe) =J12"1h -
For ¢ #0,|J,nJ] =0 and
V. NE| =|(J nQW)+h())nJ,|
' P

<T+hG) NI < Fa=1m = I71(2™ ) ),

therefore, for J, = Q,
. IE JL.I .
§oufIr= Hfl”\(lhlm-2 ) Hfl"

Ejf'\-’,;
whence we infer that

[ 14 1P < 2d)P~ 1Ihlooz X f P+ P

Q(h) ] 1-’ CQ EJﬁ-le Ej—l""’z

< (a3 |h 2" [ 11"
2

‘We are now in position, using a standard method from approximation
theory, to prove the main converse result.

THEOREM 2.18. Let 1 < p < oo and let fel?(Q). Then -

m

1\ _6d-39°
219 o, £ 2,")\ o 3 27U =P,
Proof. We have

f=P1f+§": S+ = Puf)
with f; = P; f~ — P;_, f, whence, for |h|, < 1/2",

4, f = Z Ay fi+ 4w (f = Pu f),

4l < z 14 Mg+ 215 = Pl

LP(Q(m)
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Now, (2.17) gives
”Ahff”LP(Q(h)) < 2d- 397 (|h) , 2)Y7 || £,
< 2439 (W o 20100 f = Py flly+ L = Py £1,)-
Combining these inequalities, we get (2.19).

CoroLLARY 2.20. Let feL”(Q) and let o and p be such that 0 <a
< 1/p € 1. Then the following conditions are equivalent:

Y w,(f;8) =0(8) asd—0,,

(i 15 =P fll, =0 (55

This result in the 1-dimensional case we find in [8] and in [4]. It should
be also mentioned here that Properties (2.2) and (2.4) imply

(2.21) Enp(N) SN —Pufll, <2E,,(f) forl<p<oo,
where Em,p(f) = lnf{”f_g”p g ESm Q)}

3. Estimation of continuous densities. As in Introduction, we are given a
sequence (X;, X,, ...) of iid. random vectors with values in Q and with the
common density f €eC(Q) nD(Q). The random function f,,, is defines as in
(1.5). It will be shown that, for suitable dependence of n on m, the function
S 18 @ good estimator for f. In what follows it is assumed that the sample

) as m-—ao.

-size n is a dyadic natural. For given positive f the dependence of m on n is
. defined by

3.1) n=2 and m=/[Bv/d],

where v is natural and [x] is the integer part of x. In this particular situation
the f,, , is denoted by f, ;. It is important that § is asymptotically log N/logn
for large v, N being the number of elements in @, and n the size of the
sample. Our aim is, given properties of f, to determine the best B and then to
compute N. .

The main tool in the following discussion is the Bernstein inequality (cf.
91, p. 19);

Lemma 3.2. Let Y; (j=1, 2, ..., n) be independent random variables such

that Pr{Y, =1} =y, Pr (Y, =0} —_z, y+z =1. Then

(33) Pr{ IZ ~y)| 2 20 (nyz)V?} < 2e” o for0<o< —(nyz)”z.

The rate of convergence of || f— f, 4ll » to zero as v — oo can be 1nvest1ga- :
ted with the help of inequalities (m = [Bv/d], 1 < p < )

1
(3.4) Euf_me”p SEp, <If—fplls € ||f—me||p+“Pm‘f-fv,p||p,
which hold with probability 1 by the definition of E,,, and by (2.21).
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LemMma 3.5. Let feC(Q)ND(Q) and let k>0,4>0,0<p <. Then

(36) Pr{ W . > /l} = O(8+£k 2Md)a m= [%)”:I:

where ¢ = A~ 120120 and the big O is independent of A.
Proof. Note that

[ff=n"' ¥ x(X)
= sup L =1 .

) JeQm _[f

Prnf—1os
P, f

3.7)

Now, for J €@, we put Y; = x;(X;), y = jf, y+z =1, and then apply

Lemma 3.2 to get (3.3) with o = Any/Z\ /nyz < 3. /nyz, pr0v1ded that 4 < 3z.
This condition holds in particular for 1 and m satisfying

68 2" > 3f e AL
Now,
'1‘2)’” A%n
2 _ g, = n
" IJI,[f’ T4
and therefore by Jensen’s 1nequa11ty
' (=23 /1D {r
(3.9) Z e_wz S Z e ! . } S 2md Z j‘e Alf(x)
o T JeQy - Je@, T

=2 je_llf(x) dx =2m | e MdF . (s),
) 0

where F, is the distribution of f on (0, o0) with respect to the Lebesgue

measure on Q. Now,

12
JRPS I2md(1us— )

whence, for y > 0,

) ) ) ) N_Vlw_l o 7
S (@310) N[ e MNITIRGE < N( [+ [ )ePNPTIHAGF (9
: o ; 0 . N-7,-1 .
1 ic —aNVE—-1-y4 1 1- 4 1/8-1- * -
"<IN "+ Ne / SIN "+N ZN" 4 sup xke™*
0<x<a

1 1
=0 _Nl—y _N1+k(1+y—1/ﬂ) X
(v oregres)
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where N = 2™ k is any positive number and the O depends on B, d, and k
only. Combining (3.7)-(3.10) with y = 1/2f we obtain (3.6).

ProrosiTioN 3.11. Let feC(Q)nD(Q) and let 0 <f < 1/2. Then
(3.12) ’ Pr {|lf~foglle = 0(1)asv >0} = 1.

Proof. It follows by (3.6) that taking k > 0 such that 1/28—1 > 1/k, we
obtain with probability 1 for large m

A Puf () =£ g () < APy, f(N)],

xeQ
whence ||P,, f—f, 4ll o < A1l fll 0, and therefore
Pr{||Pp f~fopllc =0(1)asv > o0} =1.
On the other hand, according to (2.15), ||f— P, fllec = 0(1) as m — 0.
Thus, (3.4) implies (3.12).

THeoREM 3.13. Let fe€C(Q)nD(Q). Then for 0<a<l1, 0<f<
d/2(ax+d) the following conditions are equivalent:

(1) L 0g(f50)=0(8") as 604,

(11) Pr{“f_fv.ﬂ”cn =0 (2ma> as m —‘FOO% = 1’ m ='[Xdéj|‘

Proof. (i)=(il). According to Corollary 2.5 we have |[f—P,fll»
= 0(1/2™), and (3.6) with A = 1/2™ and k such that (k—1)(1/2—1—a/d)
=1 gives

: 1
Pr {”me—f;,ﬂ”uo > 2_;"5} = O (2mi@ld+1-1/2))

Combining these inequalities with (3.4) we complete this part of the
proof. .

(i) =(i). Using (3.4) we find that [|f—P,ll, =0(1/2"), whence by
Proposition 2.5 the required result follows.

4. Estimation of densities in L”. Like in the previous section we consider
densities concentrated on the d-dimensional cube Q. It is also assumed that
(3.1) is satisfied. The expectation of an r.v. Y with respect to the given
probability space (@2, #, Pr) is denoted by EY.

The following result from Lorentz and Berens [1] plays an important
role in our considerations:

ProrosiTion 4.1. Let geC(I), I = (0, 1). Then, for x€l,

1 /x(1—-x)
<3wz,w(g;§\/ " )

n N

g (x)— .gog (i)(;)xf(l — Xy
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where
1
42 w,,(;0)= sup @ (x1+x2' — g(x1)+g(x2)|, 0<d<z.
’ © xp.X3el { 2 2 l 2
lx1 X2 <26

The following elementary 1nequaht1es are well known.
ProrositioN 4.3. Let I ={—1,1>, R =(—o0, o). Then

i) O<|[x+Hh?+|x—hP-2|xP<2|W" forl<p<2,x+h,x—heR,

() O<[|x+hP+|x—hP=2|x| < p(p—1)|W*> for p>2, x+h, x—hel.
ProrosiTION 44. Let $>0,1<p<oco and let fel?(Q) ~D(Q). Then

@5) NS Pufll, < ENS~1, g1 <N~ P fll,+(E NPy f~F, 4D,

Proof. Since Ef, ;(x) = P, f(x), Jensen’s _jhequality implies the first
inequality in (4.5). The second one follows by the triangle inequality.

LeMMma 4.6. Let 1 S p <o, p '+q ' =1, 8> 0and let f eLP(Q) N D(Q).
Then, under (3.1), :

@7 ElP, f=f PP < C-27™"  fory =0,

|

where
11 1
T B2vp 2nAg

(@ A b=min(a, b), a v b = max(a, b)), and C depends on p only.
Proof. Notice that with N =2™ we have

4.8) E\\Puf~fugllp =N""" Y E

Je0,
where Y;(J) = 3, (X)), y(J) = Pr{Y;(J) = 1} = EY;(J) = j f. Applying Propo-
sitions 4.1 and 4.3 to g(x) = |x—y(J)|", we obtain

L& 4 1— (2 Ap)2
(49) EF Y (KO- <G (y_____(”( : W)))

j=1

LS (500

The combination of (49) and (4.8) gives
(4.10)  E|IPy f~fugllZ < C; NP~ 10~ 02 5 (y() (1= y ()2 212,

JeQ,y,

Now, 1—-y(J) <1 and in addition, by concavity, for 1 < p <2 we have

Z y(J)(l—y(L)))(z A2 Z Y2 < Nl—P/Z( Z yu))p/z — N1-#2,

JeQ, . Je0,, JEQ,"




and, for p > 2,

(@13) 0<a<l, 1<p<oo, 0<p<
p

_ B .
(§Y) » ||f—Pkf||pfO(2k¢) ask—boo,
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Z (y(J)(l—y(J)))(ZAp)/ZS Z y(J)‘__l‘

Je@, . . JeQp
Both these inequalities and (4.10) give
(4.11) E||Py f—f,pllp S CENT"".

Now, we are in position to state our main theorem for the L"-case
namely

THEOREM 4.12. Assume (3.1) and

| d
Qvp+{2vp-1)d
Then, for fe LP(Q) " D(Q), the followmg conditions are equivalent:

1
(i) o (Ellf—fv,ﬁ”,‘,’)”" =0 (ZTM;) asv—o0.

Moreover, next condition implies (i):

i) w,(f; ) =00 asé—0,.

If, in addition to (4.13), 0 <a.< 1/p, then also (i) implies (iii). »
Proof In view of Corollary 2.7 it is sufficient to show that (&) the

model is regular, and (B) each limit of UBE’s is admissible.

1
4.149 §||f— Pty < ENf=Fo 1D < 2(l f— P fll,+ E N P f—1£,, 511D Y7).
_ This, (3.1), () and Lemma 4.6 imply

1 1
ENF-Fl" <0 5+ 555 )

where y =1/(2 v p)/f—1/(2 A g). From this (i) follows.

"~ (i) = (). It follows by (4.14) that (i) is satisfied for k =m = [fv/d].
However, by (4.13), f/d <1 and therefore éach k is of the form [Bv/d].
: (iii) = (i). This implication: holds true by Proposition 2.14. Its converse in
case 0 <a < 1/p follows by Corollary 2.20.

* COROLLARY 4.15. Let fel?(Q)YAD(Q) for some p (1 < p< ) and let (iii)
hold for some a (0 <o < 1). Then, for each B satisfying (4:13), we have

Pr{||f—f,ll, >0 asv >0} =1, ‘
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CoroLLARY 4.16. For given o, p and Psatisfying (4.13) the best choice for
with respect to (ii) is
g - d
T @2vpat(2vp-1)d
Examples. 1. Let a, § and p be as in (4.13). Let f e W} (Q) for some p’ -
satisfying the - inequalities 1< p' <p<oo and d(1/p'—1/p) <1. Then
w,(f; 6 = 0(5") witha = 1—-d(1/p'— l/p) and the f can be easily computed.
This is actually an embedding theorem which can be derived for instance
from [6]. .
2. Let d =1 and- 1 < p < 2. Then the density for the arcsin law is given
by the formula :

1 1
T Je(l—x)

One checks that fel”, f¢L? and w,(f; 8) = 0(6"?~'/?). In this case
‘a=1/p—1/2 and B = p/2.

f(x) = xeQ = (0, 1>.
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