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SOME CHARACTERIZATIONS OF
THE EXPONENTIAL DISTRIBUTION FUNCTION

BY
BOLESEAW KOPOCINSKI (Wroctaw) ‘

Abstract. Let X be a nonnegative random variable and let [x]
denote the integer part of x. The main result of the paper is the
following characterization: X is exponentially dlsmbuted iff [«X] and
oX —[aX] are mutually independent for every a > 0. Some modlﬁca-
tions of this theorem are also considered.

1. Results. Let X be a nonnegative random variable, and let F(x)
= Pr(X < x) be its probability distribution function: Assume that the distri-
bution is not concentrated at one atom. We say that X is exponentially
distributed if F(x) =1—e * (x> 0) for some A1 >0. We say that X is
. geometrically distributed if Pr(X = k)= pg*, k =0, 1, ..., for some 0 <p <1,
q = 1—p. Denote by [x] the 1nteger part of x.

The main result of the paper is the following characterization of the
exponential probability distribution function:

THEOREM 1. X is exponentially distributed iff, for every a > 0, [aX] and
00X —[aX] are mutually independent.

The random variables [«X] and aX —[aX], separately considered, may
be used to the characterization of the exponential probability distribution
function.

THEOREM 2 (Bosch [1]). X is exponentially distributed iff, for every x> 0,
[xX] is geometrically distributed.

THEOREM 3. X is exponentially distributed iff, for every o > 0, a X — [ocX]
has the truncated exponential probability distribution function.

The modified version of Bosch’s theorem is given by Riedl [3]. Theorem 1
has its discrete version and its continuous version formulated in terms of the
renewal theory.

THEOREM 4. Let X be a nonnegatwe integer-valued random varlable X is
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geometrically distributed iff, for every a=1,2,..., [X/a] and X —a[X/a]
are mutually independent. ,

TuEOREM 5. Let X, Y, Y,, ... be independent nonnegative random variab-
les, let X have an absolutely continuous probability distribution functzon with
bounded and continuous density, and let Yy, Y,, .., have a common probability
distribution function with the finite expected value. Let N(t) = max(n: Y; +
+Y,<t)and R(t) = t—(Y; + ... + Yyu), t = 0, be the renewal process and the
residual life process, respectively. X is exponentially distributed iff, for every
a >0, N(X) and R(xX) are mutually independent.

In the proofs which now follow, we limit our considerations merely to
the “only if” part. ‘

2. Proof of Theorem 1. Write N = [«X] and R =aX —N. Let & be the
o - field of Borel sets on [0, 1]. Define a(B+f) for a >0, —c0 <f < o0, in
such a manner that xeB iff a(x+f)ea(B+p). We have

Pr(N=n=Pr(n<aX <n+1)=F (":1)—1?(3),

Pr(ReB) = Pr (Xe 0 B+")= Y Pr (XeB:n),

n=0

B
Pr(N =n, ReB)=Pr(Xe +"), n=0,1,...,BeB, 0> 0.
The indei)endenée condition for N and R may be written as

(1) Pr (XEB: ”>_(F<%l) (n»gopr(XeBﬂ)

_ n=0,1,...,Be£,a>O.
If B=[0,y), 0<y<1, then (1) has the form

F<":Y>—F<z>='<r<%%>—F(z>> b))

- = L0yl a>0.
- For n =0 we have

G) F(£>=F(§>k§0(bk+y) )) <l a0

For a such that F(l/x) >0 we have

RGN

1,2,...,0<y<1,a>0.
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Let F = pFy+qF,+rF,, where F;, F, and F, are discrete, singular and
absolutely continuous components, p>0,g>0and r >0, p+q+r =1, are
the weights of one.

Let B={x;,i=1,2,...] be the support of the discrete component
of the distribution function F, Pr(X eB) = p. Consider a >0 such that
0 < F(1/a) < 1. For nondegenerate F the set o which satisfies that condition
contains some interval. Define B, = {ax;—[ax;],i=1,2,...}. We have

1 ‘ ' 1
Pr (Xe—(B,+n))= Pr(X = X;: Es X; <£+—>
o o o

From (1) for n =0 and B = B, it follows that

b))

which implies p=0 or p=1.
Let p=0 and B be the support of the singular component of the

distribution F (e.g. B is a set of the Lebesgue measure zero), B = [0, ), and

Pr(X €B) = q. Let B
e (o[ 1)),
k=0 o o ] o

Wé have

From (1) for n=0 and B =B, it follows that

)= o oo )

which implies g=0o0r g=1.

Now we prove that 0 < F(x) <1 for x>0. The conditions F(a)

=0, F(a+0)>0 for some a>0 and (4) imply that F is discrete and

generated by Pr(X =ka)=p,>0,k=1,2,...,p;+p,+...=1. Putting =

1/a > a and such that a/a is irrational, from (1) for n =0 and B = {_aa} it
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follows that Pr(X =k/a+a,k=1,2,..)>0, which does not hold. The
conditions F(a) <1, F(a+0)=1 and (3) imply

a a a a : a

Hence F(la—e) =1 or F(la+2) =0, which does not hold.
It is obvious that the derivative of the probability distribution function
exists almost surely. From (4) it follows that f*(0) = lim F (t)/t exists.
’ ti0o

Now we prove that f*(0) > 0.
Write 1—F = F. From (3) it follows that

()2 G ) )

that is |

F (i) > (F (%X) _F G))FG)/F G) o<y<l,a> 6.

For fixed x>0 substitute y=ax, lja=a. If 0<y<1, then
0< x<1/x, and we have

F(x)> (F(a-l:—x_)—F.'(é))F(a)/F(a), 0< x<a, |
which implies _ _
F(x) > sup(F(a+x)—F (a)) F (a)/F (a)

a=x

= sup sap (F(a+x)—F(a)F(a)/F(a)

B-x>A2xA<a<B-x

> sup (F(A/F(A)) LSup (F(a+x)—F(a)

B-~x>A4zx
F(A)F(B)—F(4)
> o,
poxsaz<F(4) B-4
and, finally,
F(x) F(A) F(B)—F(4)

—

su — > 0.
X ~ p-ssus:F(4) B-4

From (4) it follows that if n/a is the point of existence of the derivative

b))
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Hence the absolute continuous component of F has the positive weight.
There remains the case p=0,9=0,r=1 (eg. F=F,).
From (4) we get

Y (1) (r (=20 )-r () e )

(5) f("+y)f+(0) f(a>f(§), n=1,2,..:0<y<1,a>0

It is obvious that the unique solution of equation (5) in the class of
integrable functions is f(x) = de™** (x > 0) for some A > 0.

3. Proof of Theorem 3. Let X have the probability distribution func-
tion F. Then, for R =aX—[aX], we have

Hp)=Pr(R<y)=Y (F(E;’—J’)—F(f)), 0<y<1,a>0.

n=0 o

We have assumed that H is a truncated exponential probability distribﬁ-

tion function, e.g.
H@y)=(1—e*M)f1l—e*®), 0<y<1,

where A(x) is a parameter which depends on o only.

Taking the limit H(y) if « =0 and y/a — x, since F(y/a) < H(y) < F(y/o)
+1—-F(1/x), we get

—e” AMa)ax
F(x) =

e

Hence the limits, for « =0, limA(x)ox = 4 and lim A(x) = oo exist. Final-
ly, we have F(x) =1—e **(x > 0), where A > O for the nondegenerate case.

4. Proof of Theorem 4. Let Pr(X =k)=p,, k=0,1,... Then, for a
=1,2,...,we have Pr([X/a]l =n, X—a[X/a] =i) = Pr(X = an+1) = Pan+is
n=0,1,...;i=0,1, a—1. The independence condition for [X/a] and
X - a[X/a] is equlvalent to

Pan+ti =(Z p,,,,ﬂ)(z Pacsi),y n=0,1,..5i=0,1,..,a-1l;a=1,2,..,

whence
(6) Pam+i+1 =Pam+id» i=0,1,...,a-2;m=0,1,...;a=1,2,..,

where ¢; does not depend on m.
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In particular, for a = 2, we have

(7) Pan+1 = P29, 'l’l=0, 1!"'9

where ¢ does not depend on n.

Leta=4k+1.Ifn=0,1,...,2k—1in(7),and m=0,i=0, 2, ..., 4k
—2in (6),then ¢, =qfori=0,2,...,4k—2. f n=2k+1, 2k+2, ..., 4k in
M,and m=1,i=1,3,...,4k—11in (6), then g, =qfori=1,3, ..., 4k—1.
We have Pivi =Dig for i=0,1,...,4k—1. Since k is arbitrary, we have p;
=pq, i=0,1, »

5. Proof of Theorem 5. Let Go(x) = 1(0 w (%), G(x) = Pr(Y; <x), G,(x)
=Pr(Y,+ Y,+..4+Y, <x,x>0,n=1,2,...,G=1-G, EY, =py,. As-
suming the e)ustence of the probability denmty functlon f we improve the

" joint density of N(xX) and R(xX):

_%Pr(N(ozX)=n, R(@X)<y)= E ( )G( )dG, (u),
Pr(N(@X) =n) = I Eéf(%x)é(y)dydﬂ(ﬁ)
- Zéf(g)(an(z)—cm(z))dz

%Pr(R(otX)<)’) j f(“*y)c(y)kidck(u)

_ j f(u+y)G(y)dHG(i4), n=0,1,...,y>0,0>0,

where
Ho (u) = ki G (W) =EN(@), u>0.

The independence condition of N(xX) and R(aX) has the form

117 (“22 )66, = (712 600 ~Gues ) 1 (52 )60 dttet0

n=0,1,...,y=20,a>0.

For n =0 we have

1Z)60r=(§7(2)oma)(11(“2)opdnaw )
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Hence, for G(y) > 0,

ey cona
@®) S (/o) _ ([ fO/)G(y)dy |
[ f((u+)/)dG,(w) gf(y/oc)(Gn(y)_Gle () dy

Putting y = 0 in (8), we get a further simplification:

o oW O

[ f (w4 y)/2)dG,(u) ([ S (w/a)dG,(w)
' n=1,2,..,y>002>0, G >0.

Let x > 0, m = [nu;/x]. We have
1 mu
G,(mu) = Pr(Y;+...+Y, <mu)=Pr (;(Y1+ ...+Y) <_).

Since m/n — p,/x, we have G,(mu) =1, ., (). For bounded and con-
tinuous f (see [2], p. 254) we have
Sl _ 1O
Fly+x)/e) /)’
" Substituting u:=mu, a:=ma, y:=my in (9) and taking the limit if
n — o0, we get

(10) y>0,x>0,0>0.

fO £
Sy+x)e)  f(x/o)’
The unique continuous solution of (10) is f(x) = le™** (x > 0) for
some 4 > 0.

10) y=20,x>0,a>0.
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