
PROBABILITY 
AND 

MATHEMATICAL STATiSTlCS 

Yol. 9, Fesc. 2 ( 1 M X  p. 113-121 

$ .; 
Abstract. The central limit theorem for the stationary rqndom 

processes under generalited mixing conditions i s  proved. The. well- 
known Ibragimov's results are given as a speciaI case of the theorern 
received. 

1. In [3] Dobrushin has introduced certain we& dependence conditions 
for random fields, which form natural generalization of the known mixing 
conditions to be found in [4]. In the same paper Dobruslun has suggested 
that under these generalized mixing conditions it is possible to prove a 
central limit theorem which would contain the well-known results as special 
cases. Were we prove the Dobrushin hypothesis for I-dimensional case. 

2. Let X be a metric space with metric ~ ( x ,  9, x, 2 EX, be its Bore1 
a-algebra, and P and Q be the probability distribution on B. 

The quantity R ( P ,  Q) = infE ~ ( q ,  Q, where the "inf' is taken over all 2 - 
dimensional random vectors ( p l ,  [) which marginal distributions coincide 
with P and Q, respectiveIy, is a metric on the space of probability distribu- 
tions on (X, a) and is called the Wasserstein or, sometimes, the Kantorouich- 
Rubinstein distance [6]. 

In [3] it is shown that if 

then 

i.e. R becomes the well -known variation metric. 
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If X = Rk, where k is any positive integer and 
k 

e ( k ) ( x y q =  EIxi-Zil ,  x , Z f R k ,  
i =  1 

.then (cf. 151) 

R (f', Q )  = J lF(x) - G (41 dx, 
Rk 

where F t x )  and G ( x )  are the distribution functions of P and Q, respectively. 
Let [l,) = (c,, t F Z] be a stationary process which takes values in the 

space X, where Z is the set of the integers, and let B = {Pv, V c  Zj be the 
set of its fmite-dimensional distributions. Here every P, is a probability 
measure on the o-algebra of Bore1 subsets of the metric space xlVl 
= [(xl, ..., x~), EX, i = 1, 2, ..., JVIj?  

where I Vl denotes the number of points in a (finite) set V. 
We say that a random process i l l)  satisfies the generalized strong mixing 

condition (g.m.c.1 if 

where z , (n)  + O  as n -+ co . Here (a, b) denotes the set of integers between a 
and b,  a c b (a, b €2). 

It is clear that if X = R and the metric Q is discrete, i.e. coincides with 
(I), then (3) is the usual Rosenblatt strong mixing condition 

(4) /P (AB) - P (A)  P (B)J < or (B) 
for any A E C T ( ~ , ,  t 6 0) and B E D ( & ,  t 2 n), n = 1, 2, ... and a tn)  +O as 
n +a. 

By changing the space X and the metric Q one can obtain various new 
mixing conditions. For instance, if X = R and Q (x, 3 = Ix - 21, x, 2 ER, 
then (3) reduces to 

where = (-k, 0), V,  =(n, n+m), i ( n )  -+O as n +oo independently of 
k ,  M E N .  

We will use mixing conditions (4) and (5) to illustrate our general 
proposition. 
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Note that various conditions under which the random 6eld satisfies 
g.m.c. have been presented in [3]. 

3. Let f (x), x EX, be a continuous function on (X, Q) and let i J ( y ) ,  
y GR+, denote the continuity modulus off; i.e. 

We say that the process it,} satisfies the central limir theorem (CLT) with 
function f if, for any s E R ,  

where 5: stands for the variance. 
Our main result is as follows: 
THEOREM. Suppose that the stationary random process (5 , )  satisfies the 

y.rn.c. and: 
1 ,  for some 5 > 0, E 1 f (&)I2+" cc (or, with probability 1, If (&)I < C 

< ~ 0 ) ;  

2. there exists a decreasing sequence y, E R+ , y, /O as n + m, such that 
~ ~ ~ a ~ ( n ) J P ( n ) ,  B ( n ) l o  as n+m,  and 

m m UJ 

Then the series 
cO 

converges and, if a,; # 0, then the process satisfies the C U  with the function f: 
Note that, in case of X = R and discrete metric Q, the continuity 

modulus zf(y), y ER+, of any fun~tion f on X is equal to zero for y < 1 and 
so the well-known Ibragimov's result [2] on' CLT for stationary random 
processes becomes a special case of our theorem for f (x) = x, x ER. It has 
been shown in [ 5 ]  and [6 ]  that these results of Ibragimov practically cannot 
be improved. 

If X = R and ~ ( x ,  2) = Ix-21, x, E E R ,  f (x) = x, then zf(y) = y, y ER+, 
and we have the following 

COROLLARY. Suppose that the stationary random process (t,) with values 
in R satisfies the mixing condition (5) and, for some S > 0, E (9,(2+" a. lffor 
some E > 0 the series 

n= 1 

If n2 #-0, then the process satisfies the C U  with f (x) = x, x E R .  
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4. We state now some necessary estimates for the covariance of random 
variables. 

LEMMA 1 .  Suppose that a stationary random process 15,) satisfies the 
g.m.c., Vl = ( --k, O) ,  V2 = (n,  n + m) and 5, = (t,, t E I) ,  I c 2. Let the func- 
tions qi (x,, t E W ,  i = 1, 2, be continuous with respect to the metric eVi, i 
= 1 ,  2, respectiuely, and T,, (y), i = 1, 2, he their* continuity moduli. Suppose 
also that, for some s ,  u > 1 ( l /s+ l/u < 1) the moments E]cpl ({vl)ls and 
EJq2(<V2)lU exist. Then, for any y > 0, 

IJ; with probability 1 ,  Jpi (ryi)l < Ci < a, i = 1 ,  2, then the right -hand 
side of (4) may be replaced b y  

Proof. Let cp(x,, t e V l  u V2) = q l ( x , ,  t ~ V ~ ) r p ~ ( x , ,  t ~ b ) .  Suppose the 
random vector q,,,,, = (u,, t ~ h  /lu V2) has the distribution Pvl xP,,, 
P y i f P ,  i = 1, 2, 

A., = (ev , , v ,  (5v1 uV,, V V ,  ,v,) < ~ 1 ,  
4 is the complement of A, and, with probability 1, 

Then 

Thus inequality (4') is proved (I). 

(I) We acknowledge that the idea of this inequality should be attributed to Dobrushin (see 
inkquality (3.8) in [3]; note that inequality (3.8) contains a misprint: y and S(y) should be 
interchanged). 



Dobrushin's hypothesis I 117 

Let us prove now inequality (4). Let 

K -  
qi(x) i f I ~ i ( x ) l < K i ,  
Ki if qi (x) > Ki, 
- K i  if c p i ( x ) < - K , ,  

rfi(y) be the continuity modulus of q$(x). It is 'easy to see that 

Further, 

Now it is enough to put 

and by proceeding in the same way as in [2] ( 5 2, p. 390) one can prove (4). 
In the sequel the foilowing statement will be important: 
LEMMA 2. Let (l,,, 5,, ..., in) be la vector such that 

Then 

Proof. It is well-known (121, 5 4, p. 429) that, under the conditions of 
Lemma 2, 
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We can write 
n n 

Continuing this procedure we obtain 

Substituting (7) into (6) we get Lemma 2. 

5. Now we are going to prove our theorem. 
In the sequel p = p (n) and q = q (n ) ,  n E N ,  denote the positive integer - 

valued functions. 
LEMMA 3. Let [q,) be a real -valued stationary random process such that 

Ey: < ca and: 
n 

1. 9 S n - c n , n + c o ,  where O < c < c o , S , =  Cq,; 
t =  1 

2. for any function p = p(n), p(n) -+ ao, p = o(n),  n + co, there exists a 
function q = q (n), q (n)  -, oo , q = o(p),  n + co , such that, for every real t ,  

where 

j p + U -  114 
,&I = ( . ~ s J  - 112 sf), st) = t (vs-Erls), j = 1,2,  ..., k 

s= (j- l ) p +  
+(j- 1)qf  1 

and k = k (n)  = [n/(p + q)] . 
Then for this process the CLT with identity function f jolds. 
Proof. I t  is clear that there exists a function p = p(n) such that 

I (9SY)- l(S:))' dP + 0 as n + co , integrating for ISFl 2 e & where 
E >0,  p(n)  +a, p = o ( n ) ,  n+m. 



Dobmshin's hypothesis 119 

Now, to complete the proof, it remains to apply the Bernstein method 
([2], 4 4, p. 426) for this p = p ( n ) .  

Thus, in order to prove our theorem it is sufficient to verify the 
conditions of Lemma 3 for the process (qt) = (f ({*)I. 

Let us verify condition 1. We have 

and 

n n 

(8) l i r n n - ' ~ ( Z f ( t ~ ) ) = ~ f ( ~ 1 ) - ~ f ( t 1 ) ~ + 2 l i m  C ( ~ f ( t ~ f ( t ~ -  
n-w i =  1 n-wf=  2 

By Lemma 1 we get 

hence 

The second summand in (8) vanishes as n -too by the well-known 
Kronecker lemma. 

It remains to check condition 2. Let 

Xm being a metric space with metric (2). Since 

we conclude that the continuity modulus of the function e ( x )  does not 
exceed Bltl mzr(y), where r f ( y )  is the continuity modulus off. By Lemma 1 
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for j > r  and s = u  =2+6, S > O ,  we have 
& 

(9) I E  (exp {its^!)) - 1) (exp 'itgb'l- 1 )  n exp {itf("' - 1 P 1  P 1 
8 = j + l  

k 

- E (exp (its!)) - 1 )  E (exp - 1) n exp :it$)) 1 
s = j + l  

By  emm ma 2 and (9) we get 
k k 

Q n exp {iti?:)} - n E exp {itiv)I 
j =  1 j= 1 

and then 
k k m w 

' IE exp {itfE3) - n E exp (its!)} < B4 (It1 & r J ( y j q )  + P bM" + ( i d ) .  
j= 1 j=  1 j=  1 j=  1 

The monotonicity of the members of this series implies 

2 
r ( d  -< - e T(Y~) ,  

q k 3 0 . - 1 / 2 ) ~  

2 
861'2'6'(jq)<- C f161(2+6)(k), j = I , 2 , . . . ,  

q k 3 ~ -  1/2)q 

hence 
m 2 "  w 2 "  

( 7 )  - ? ( 1  c ~ / ( 2  + 6) (iq) < - P6/(2 + 8) o. 
j=  1 4 j 2  q/2 j=  1 q jaq/2 

Finally, 



Dobl.ushin's hypothesis 

as it is obvious that one can choose the function q(n)  + a,, q = o(p),  n + m, 
such that the right -hand side of (10) tends to zero as n +m. 
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