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ON THE DOBRUSHIN’S HYPOTHESIS

BY

B. S. NAHAPETIAN (YEREVAN)

Abstract. The central limit theorem for the stationary ragadom
processes under generalized mixing conditions is proved. The. well -
known Ibragimov’s results are given as a special case of the theorem
received. : S

s

1. In [3] Dobrushin has introduced certain wedk dependence conditions
for random fields, which form natural generalization of the known mixing
conditions to be found in [4]. In the same paper Dobrushin has suggested
that under these generalized mixing conditions it is possible to prove a
central limit theorem which would contain the well -known results as special
cases. Here we prove the Dobrushin hypothesis for 1-dimensional case.

2. Let X be a metric space with metric ¢(x, %), x, XX, & be its Borel
o -algebra, and P and Q be the probability distribution on 4.

The quantity R(P, Q) =infE o(n, {), where the “inf” is taken over all 2-
dimensional random vectors (, {) which marginal distributions coincide
with P and @, respectively, is a metric on the space of probability distribu-
tions on (X, %) and is called the Wasserstein or, sometimes, the Kantorovich -
Rubinstein distance [6].

In [3] it is shown that if

2

X #
X

=t =

»

0,

I

) o(x, %) = {1
then
| R(P, Q) = sup|P(B)—Q(B)),
Be®

ie. R becomes the well-known variation metric.

" 8 ~ Pams. 9.2.
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If X = R*, where k is any positive integer and
k .
Q(k) (xa f) = Z Ixi_iil! X, iERka
i=1

then (cf. [57)
R(P, Q) = | |F(x)—G(x)|dx,

RE

where F(x) and G(x) are the distribution functions of P and Q, respectively.

Let {&) = {&,teZ} be a stationary process which takes values in the
space X, where Z is the set of the integers, and let P = {P,, V< Z} be the
set of its finite - dimensional distributions. Here every. P, is a probability
measure on the o-algebra of Borel subsets of the metric space X"
={(xX1, ..., xp), €X,i=1,2,..., |V},

vl

(2) ov(x, B = Y 0(x, %), x,XeX",
t=1

where |V| denotes the number of points in a (finite) set V.
We say that a random process {£,} satisfies the generalized strong mixing
condition (g.m.c.) if

() R(P(_y,0poimntm> Pi—k,0) X Pnn+m) < 0p(n)  for any k, m, neN,

where a,(n) =0 as n —co. Here (a, b) denotes the set of integers between a
and b, a <b{a, beZ). o

It is clear that if X = R and the metric ¢ is discrete, i.e. coincides with
(1), then (3) is the usual Rosenblatt strong mixing condition

) |P(AB)—P(A) P(B)| < a(n)

for any Aeo(é,t1<0) and Beo(é,t2n),n=1,2,... and a(n) —0 as

T n—o0.

By changing the space X and the metric ¢ one can obtain various new
mixing conditions. For instance, if X =R and ¢(x, X) = [x—X]|, x, X€R,
then (3) reduces to '

(5) [ P( N @& <x)=P(N G <x)P( & <x) x
gk+m teVy ¥y teV'y teV
x [] dx<d(n),
eV UV,

where . V, = (—k, 0), ¥, =(n, n+m), a(n) >0 as n—oo independently of
k,meN. ‘ '
We will use mixing conditions (4) and (5) to illustrate our general
proposition.
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Note that various conditions under which the random field satisfies
g.m.c. have been presented in [3].

3. Let f(x), xeX, be a continuous function on (X, @) and let </ (y),

yeR,, denote the continuity modulus of f, ie.
()= sup [f()-f(F)
(x,%) 0(x, %) <y

We say that the process {¢,} satisfies the central limit theorem (CLT) with
function f if, for any seR,

. n _ n 1 § N

lim P((% ¥ £@)™ L (/@ -Ef @) <s)=—= | e™du,

n—wo =1 t=1 2T —w
where & stands for the variance. -

Our main result is as follows: .

THEOREM. Suppose that the stationary random -process {;} satzsﬁes the
g.m.c. and:

1. for some 6 >0, E|f(EN?Y < oo (or, with probability 1, |f(&) <C
< o0);

2. there exists a decreasing sequence y,€R,, y,|0 as n — o0, such that

o, (n)lﬁ(n) B(n) |0 as n— 0, and
Z o (y,) < 0, Z ﬂ"/‘”"’(n) <o (or f B < ).
. n=1.

n=1 n=1

Then the series
o7 =E(f()—Ef(£))+2 Z E(f(&)—-Ef(E))(f(E)—ESf (&)

converges and, if o} # 0, then the process satisfies the CLT with the function f.

Note that, in case of X =R and discrete metric g, the continuity

modulus 77 (y), y €R, , of any function f on X is equal to zero for y <1 and
so the well-known Ibragimov’s result [2] on CLT for stationary random
processes becomes a special case of our theorem for f(x) = x, x €R. It has
been shown in [5] and [6] that these results of Ibraglmov practically cannot
be improved.

If X =R and g(x, X)=[x— xI x, XeR, f(x) = x, then t/(y) =y, yeR,,
and we have the following

COROLLARY. Suppese that the stationary random process {&,} with values
in R satisfies the mixing condition (5) and, for some 8 > 0, E|§)**° < o. If for
some & > 0 the series

- -
Z n1+z &}(2+5)(n) < 00

n=1

If 02 # 0, then the process satisfies the CLT with f (x) = x, x€eR.
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4. We state now some necessary estimates for the covariance of random
variables.

LemMMmA 1. Suppose that a stationary random process {&,} satisfies the
gme, Vi=(—k,0),V,=(n,n+m) and & = (&, tel),I c Z. Let the func-
tions @;(x, t€V), i =1, 2, be continuous with respect to the metric gy, i
= 1, 2, respectively, and ty (7), i =1, 2, be their ,continuity moduli. Suppose
also that, for some s, u> 1 (1/s+1/u <1) the' moments El%(fvl)l and
Elgoz(ff,,z)l" exist. Then, for any y > 0,

@ |E(P1(5vl)¢z(fvz)‘EfP1 (éVI)E#’z(fVZ)l
< v, M El@2 Gy )l + v, M Elos &y )l +
+BE" o1 (&y Y EY™ @2 &y J* (v ap(m)* "7, 0 <B < 0.
If, with probability 1, |¢;(&y)l < C; <0, i =1, 2, then the rlght hand
side of (4) may be replaced by
“4) - Ty, MEI020v,)+1v, () Eles Sy )+

Proof Let o(x,teViulV,) =¢(x, t€V) o,(x, t eVs). Suppo_se.the,
random vector ny v, =", t€V;UV;) has the distribution Py, XPy,,
PViEP,i=1, 2,

2C, C, ,% (n

A, = {QVI vy vy ovss vyur,) < 8
/Iy is the complement of 4, and, with probability 1,

(&, teV) < C <00, i=1,2.
Then
[Eps(Cv,) 02(8v,) —Ee1 (v ) E@a (Ey )l
= [Eo v, ) ~Eo v, uv)
SEyloCv,ur) =0y, o)l +Ea loCv o) =@y, o))
<E4 loy Ev Moz (Ev,)— @2 (v )l +E l02(v )l o1 (v ) — @1 (v )1+
L26:Cs

a,(n)
2C, C,

<1y, @E|p; )+, ) E o, (Ev I+ 2 (n).

Thus inequality (4) is proved ().
() We acknowledge that the idea of this inequality should be attributed to Dobrushin (see

mequahty (3.8) in [3]; note that 1nequa11ty (3 8) contains a misprint: y and &(y) should be
interchanged).
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Let us prove now inequality (4). Let

" o (x) if jo;(x) < K,
o (x) =1 K; if ;(x) > K,
| —K; if ¢;(x) < =K,

KieR,, 3 () = g;(0)—¢i'(®, xeX",i=1,2,
7 (y) be the continuity modulus of pri(x). It is'easy to see that
TW<t,0. loteI<K, i=12
Further,
By (&) 92(Ev)—E@1 (& ) Eps (&)
<Elo1! &r,) 032 Ev)— 01 (1) @3ty ) +Eloi (&) 22 (Ev )+
+EIGy (&) 032 Cv JI+EI1 (€ ) P22 (v I+
+Elp1 (& ) E1@2 2y ) +E 5 (&r,)| B0z (& )l +
+E[@1' &v ) E1B22 ).
Now it is enough to put

K, = (VE o4 (év,)l’)”" K, = (yEI(Pz(évz)l")”"
a('(n) ag(n)

and by proceeding in the same way as in [2] ( § 2, p. 390) one can prove (4).
In the sequel the following statement will be important:

Lemma 2. Let ({4, {3, ..., {,) be a vector such that

EII4] <w0,i=1,2,..,n—1; [B{I<1,i=1,2,..,n

Tﬁen
& |EIlI&- l_[1 E{|
. s=1 s=

- n—1 n n n
<Y Y [EG-bEG-1) [ L—EG-DEE-1) IT ¢
i=1j=i+1 s=j+1 : _ s=j+1
Proof. It is well-known ([2], § 4, p. 429) that, under the conditions of
Lemma 2, ’ _ .
v n i n—1 n ) n
E(|< ¥ [EG [T G-ELE T &
=1

-i=1 s=it+1 s=i+1’

© £ 11 ¢,

3
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We can write

B4 11 &-EGE 12

s=i+1 s=i+1
—BG-DGes J] L-EG-0EG T o
<EG-0Gai- TT L—EG-DEGs -0 [] ¢+
. s=i+2 $=i+2
+BG=Dga T1 L-BG-DEG [T &
s=i+3 5=i+3

Continuing this procedure we obtain

@ B T] L—EGE [T &

s=i+1 s=i+1
< Z [E—-1(;~-1) H Cs E(C HE(;—-1) H Ll
J=i+1 s=j+1 s=j+1

Substituting (7) into (6) we get Lemma 2.

5. Now we are going to prove our theorem.
In the sequel p = p(n) and g = q(n), neN, denote the positive mteger-

valued functions.
LemMa 3. Let {n,)} be a real-valued stationary random process such that
En? < o0 and:

1. 98, ~cn,n— o0, where 0 <c <, §, = Zm,

2. for any function p r(n), p(n) -0, 4 —o(n) n — oo, there exists a
~ function q = q(n), q(n) >, q = o(p), n = 0, such that, for every real 1,

k k
|E [T exp {it§¥} — T] Eexp {itSV}| -0, n -0,
=1 =1

where
. . Jp+(i-1)q
Sg) = (@Sn) IZS(J')’ S(i!i) = Z (ﬂs—E"Is), j= 1,2,...,k
s=(j—1)p+ :
+(j—1)g+1

and k = k(n) = [n/(p+4)].
‘Then for this process the CLT with ldentzty functzon f jolds.

Proof. It is clear that there exists a function p = p(n) such that
(283)7 1 {(8)?dP >0 as n— oo, integrating for |SY)] >¢./2S,, where
&>0, p(n) >, p=o(n), n—>o0.
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Now, to complete the proof, it remains to apply the Bernstein method
([2], § 4, p. 426) for thls p= p(n)

Thus, in order to prove our theorem 1t is sufﬁc:lent to verify the
conditions of Lemma 3 for the process {1} = {f(&)}.

Let us verify condition 1. We have

2%, 1)~ T (EFE)E-EfES ()

= nE (f(€1)—-Ef(€j))-+2 Z (n—t+D(ESC) fE—-EfCIES ()
t=2 .

and

® limn™! 9(2 f&) =Ef(€)—Ef (€)*+2 lim i (B (D S(E)-

n—+w n—wi=72

~Ef(&)Ef(€)—2limn~! i t(ES (&) fE)—EfEIES (&)

n-+o0 =2 .
By Lemma 1 we get

52 +9) '
Ef(€)f(E)-Ef G)ES (&) < 2Cx (y,)+c(°‘_e(2) . 0<C<o,

Y

hence

0} SEfFE)42C T w+2C T P00,

The second summand in (8) vanishes as n—co by the well-known
Kronecker lemma.
It remains to check condition 2. Let

W,(x)=exp fitB ), f(x)}—1, meN,0<B <o, xeX",

s=1

X™ being a metric Aspace with metric (2). Since
W, (%)= W, < Blt| Y If (x)—f(E)l, x, FeX™,
s=1 :

we conclude that the continuity modulus of the function W(x) does not
exceed B|t| mtf (7), where 1/ (y) is the continuity modulus of f. By Lemma 1
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for j>r and s=u=2+6, 6 >0, we have 7

k
©  [E(exp {itS?} — 1) (exp {itS9) 1) [T exp {itS—

s=j+1
-~ k -~
—E(exp {itS0) — 1)E (exp {itSP} ~ 1) [] exp {itSY}
s=j+1

t
< By ! (3 ) E lexp fieS0) — 1]+

N

6/(2+ )
+ B, B2+ |exp | ztS“" lz+.s(°‘e((l ")4))
Yi-vq

/(2 + ) *
Ba[ltlpn\/l_f f(u o)+ — - (M) :,, 0<B, <w,i=1,2,3,

_ - Yi-nq
By Lemma 2 and (9) we get

k k

E [] exp {it§9 - Eexp itSY
o P = p
j=

: Y \GH2+8)
€B4 Itlp\/_ Z Tf( M) Z (Oln(]q)>

n Pj 1\ Vig
and then
B H exp {it§P} — H Eexp {itS?} < B, (1t /p ¥ @/ ) +p Y. B7**9(ig)).
i=1 i=1 j=1 j=1

The monotonicity of the members of this series- implies

2 Jq :
<= Y (),

kz2(—-1/2)q

PEag<s T pIEag, =12,

dk>(—1/2)q

hence
o} 2 © ©
2, T <= Z/ t(y), Y BIPHIig) < < Z B+,
= jza =1 iza/2
* Finally,

k k , '
(10)  |E [T exp {it§9} — [] Eexp {irﬁ‘;‘)}]
i=1 j=1

< Byt :1/‘_’ ,)+ Z ﬁ""“"’(r)

1/4/2 L JZq/2
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as it is obvious that one can choose the function q(n) = o, g = o(p), n — o0,
such that the right-hand side of (10) tends to zero as n — 0.
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