ON THE DOBRUSHIN'S HYPOTHESIS

BY

Abstract

B. S. NAHAPETIAN (Yerevan)

薌: Abstract. The central limit theorem for the stationary random processes under generalized mixing conditions is proved. The wellknown Ibragimov's results are given as a special case of the theorem received.

1. In [3] Dobrushin has introduced certain weak dependence conditions for random fields, which form natural generalization of the known mixing conditions to be found in [4]. In the same paper Dobrushin has suggested that under these generalized mixing conditions it is possible to prove a central limit theorem which would contain the well-known results as special cases. Here we prove the Dobrushin hypothesis for 1-dimensional case.
2. Let X be a metric space with metric $\varrho(x, \tilde{x}), x, \tilde{x} \in X, \mathscr{B}$ be its Borel σ-algebra, and P and Q be the probability distribution on \mathscr{B}.

The quantity $R(P, Q)=\inf \mathrm{E} \varrho(\eta, \zeta)$, where the "inf" is taken over all 2dimensional random vectors (η, ζ) which marginal distributions coincide with P and Q, respectively, is a metric on the space of probability distributions on (X, \mathscr{B}) and is called the Wasserstein or, sometimes, the KantorovichRubinstein distance [6].

In [3] it is shown that if

$$
\varrho(x, \tilde{x})= \begin{cases}1, & x \neq \tilde{x} \tag{1}\\ 0, & x=\tilde{x}\end{cases}
$$

then

$$
\boldsymbol{R}(P, Q)=\sup _{B \in B}|P(B)-Q(B)|
$$

i.e. \boldsymbol{R} becomes the well -known variation metric.

If $X=R^{k}$, where k is any positive integer and

$$
\varrho^{(k)}(x, \tilde{x})=\sum_{i=1}^{k}\left|x_{i}-\tilde{x}_{i}\right|, \quad x, \tilde{x} \in R^{k}
$$

then (cf. [5])

$$
\boldsymbol{R}(P, Q)=\int_{\boldsymbol{R}^{k}}|F(x)-G(x)| d x
$$

where $F(x)$ and $G(x)$ are the distribution functions of P and Q, respectively.
Let $\left\{\xi_{t}\right\}=\left\{\xi_{t}, t \in \boldsymbol{Z}\right\}$ be a stationary process which takes values in the space X, where Z is the set of the integers, and let $\boldsymbol{P}=\left\{P_{V}, V \subset Z\right\}$ be the set of its finite-dimensional distributions. Here every. P_{V} is a probability measure on the σ-algebra of Borel subsets of the metric space $X^{|V|}$ $=\left\{\left(x_{1}, \ldots, x_{V}\right), x_{i} \in X, i=1,2, \ldots,|V|\right\}$,

$$
\begin{equation*}
\varrho_{V}(x, \tilde{x})=\sum_{t=1}^{|V|} \varrho\left(x_{t}, \tilde{x}_{t}\right), \quad x, \tilde{x} \in X^{|V|} \tag{2}
\end{equation*}
$$

where $|V|$ denotes the number of points in a (finite) set V.
We say that a random process $\left\{\xi_{t}\right\}$ satisfies the generalized strong mixing condition (g.m.c.) if

$$
\begin{equation*}
\boldsymbol{R}\left(P_{(-k, 0) \cup(n, n+m)}, P_{(-k, 0)} \times P_{(n, n+m)}\right) \leqslant \alpha_{\varrho}(n) \quad \text { for any } k, m, n \in N \tag{3}
\end{equation*}
$$

where $\alpha_{\varrho}(n) \rightarrow 0$ as $n \rightarrow \infty$. Here (a, b) denotes the set of integers between a and $b, a<b(a, b \in Z)$.

It is clear that if $X=R$ and the metric ϱ is discrete, i.e. coincides with (1), then (3) is the usual Rosenblatt strong mixing condition

$$
\begin{equation*}
|\mathrm{P}(A B)-\mathrm{P}(A) \mathrm{P}(B)| \leqslant \alpha(\tilde{n}) \tag{4}
\end{equation*}
$$

for any $A \in \sigma\left(\xi_{t}, t \leqslant 0\right)$ and $B \in \sigma\left(\xi_{t}, t \geqslant n\right), n=1,2, \ldots$ and $\alpha(n) \rightarrow 0$ as $n \rightarrow \infty$.

By changing the space X and the metric ϱ one can obtain various new mixing conditions. For instance, if $X=R$ and $\varrho(x, \tilde{x})=|x-\tilde{x}|, x, \tilde{x} \in R$, then (3) reduces to

$$
\begin{align*}
& \int_{R^{k+m}}\left|P\left(\bigcap_{t \in V_{1} \cup V_{2}}\left(\xi_{t}<x_{t}\right)\right)-\mathrm{P}\left(\bigcap_{t \in V_{1}}\left(\xi_{t}<x_{t}\right)\right) P\left(\bigcap_{t \in V_{2}}\left(\xi_{t}<x_{t}\right)\right)\right| \times \tag{5}\\
& \times \prod_{t \in V_{1} \cup V_{2}} d x^{t} \leqslant \hat{\alpha}(n),
\end{align*}
$$

where $V_{1}=(-k, 0), V_{2}=(n, n+m), \hat{\alpha}(n) \rightarrow 0$ as $n \rightarrow \infty$ independently of $k, m \in N$.

We will use mixing conditions (4) and (5) to illustrate our general proposition.

Note that various conditions under which the random field satisfies g.m.c. have been presented in [3].
3. Let $f(x), x \in X$, be a continuous function on (X, ϱ) and let $\tau^{f}(\gamma)$, $\gamma \in R_{+}$, denote the continuity modulus of f, i.e.

$$
\tau^{f}(\gamma)=\sup _{(x, \tilde{x})(x, \tilde{x})<\gamma}|f(x)-f(\tilde{x})| .
$$

We say that the process $\left\{\xi_{t}\right\}$ satisfies the central limit theorem (CLT) with function f if, for any $s \in R$,

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left(\left(\sum_{t=1}^{n} f\left(\xi_{t}\right)\right)^{-1 / 2} \sum_{t=1}^{n}\left(f\left(\xi_{t}\right)-\mathrm{E} f\left(\xi_{t}\right)\right)<s\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{s} e^{-u^{2} / 2} d u,
$$

where $\mathscr{2}$ stands for the variance.
Our main result is as follows:
Theorem. Suppose that the stationary random process $\left\{\xi_{i}\right\}$ satisfies the g.m.c. and:

1. for some $\delta>0, E\left|f\left(\xi_{t}\right)\right|^{2+\delta}<\infty$ (or, with probability $1,\left|f\left(\xi_{t}\right)\right|<C$ $<\infty$);
2. there exists a decreasing sequence $\gamma_{n} \in R_{+}, \gamma_{n} \downarrow 0$ as $n \rightarrow \infty$, such that $\gamma_{n}^{-1} \alpha_{e}(n) \downarrow \beta(n), \beta(n) \downarrow 0$ as $n \rightarrow \infty$, and

$$
\sum_{n=1}^{\infty} \tau^{f}\left(\gamma_{n}\right)<\infty, \quad \sum_{n=1}^{\infty} \beta^{\delta(2+\delta)}(n)<\infty \quad\left(\text { or } \sum_{n=1}^{\infty} \beta(n)<\infty\right) .
$$

Then the series

$$
\sigma_{f}^{2}=\mathrm{E}\left(f\left(\xi_{1}\right)-\mathrm{E} f\left(\xi_{1}\right)\right)^{2}+2 \sum_{n=2}^{\infty} \mathrm{E}\left(f\left(\xi_{1}\right)-\mathrm{E} f\left(\xi_{1}\right)\right)\left(f\left(\xi_{n}\right)-\mathrm{E} f\left(\xi_{n}\right)\right)
$$

converges and, if $\sigma_{f}^{2} \neq 0$, then the process satisfies the CLT with the function f.
Note that, in case of $X=R$ and discrete metric ϱ, the continuity modulus $\tau^{f}(\gamma), \gamma \in R_{+}$, of any function f on X is equal to zero for $\gamma<1$ and so the well-known Ibragimov's result [2] on CLT for stationary random processes becomes a special case of our theorem for $f(x)=x, x \in R$. It has been shown in [5] and [6] that these results of Ibragimov practically cannot be improved:

If $X=R$ and $\varrho(x, \tilde{x})=|x-\tilde{x}|, x, \tilde{x} \in R, f(x)=x$, then $\tau^{f}(\gamma)=\gamma, \gamma \in R_{+}$, and we have the following

Corollary. Suppose that the stationary random process $\left\{\xi_{t}\right\}$ with values in R satisfies the mixing condition (5) and, for some $\delta>0, E\left|\xi_{t}\right|^{2+\delta}<\infty$. If for some $\varepsilon>0$ the series

$$
\sum_{n=1}^{\infty} n^{1+\varepsilon} \alpha^{\delta /(2+\delta)}(n)<\infty
$$

If $\sigma^{2} \neq 0$, then the process satisfies the CLT with $f(x)=x, x \in R$.
4. We state now some necessary estimates for the covariance of random variables.

Lemma 1. Suppose that a stationary random process $\left\{\xi_{t}\right\}$ satisfies the g.m.c., $V_{1}=(-k, 0), V_{2}=(n, n+m)$ and $\xi_{I}=\left(\xi_{t}, t \in I\right), I \subset Z$. Let the functions $\varphi_{i}\left(x_{t}, t \in V_{i}\right), i=1,2$, be continuous with respect to the metric $\varrho_{V_{i}}, i$ $=1,2$, respectively, and $\tau_{V_{i}}(\gamma), i=1,2$, be their continuity moduli. Suppose also that, for some $s, u>1(1 / s+1 / u<1)$ the moments $\mathrm{E}\left|\varphi_{1}\left(\xi_{V_{1}}\right)\right|^{s}$ and $\mathrm{E}\left|\varphi_{2}\left(\xi_{\nu_{2}}\right)\right|^{u}$ exist. Then, for any $\gamma>0$,

$$
\begin{align*}
& \left|\mathrm{E} \varphi_{1}\left(\xi_{V_{1}}\right) \varphi_{2}\left(\xi_{V_{2}}\right)-\mathrm{E} \varphi_{1}\left(\xi_{V_{1}}\right) \mathrm{E} \varphi_{2}\left(\xi_{V_{2}}\right)\right| \tag{4}\\
& \quad \leqslant \tau_{V_{1}}(\gamma) \mathrm{E}\left|\varphi_{2}\left(\xi_{V_{2}}\right)\right|+\tau_{V_{2}}(\gamma) \mathrm{E}\left|\varphi_{1}\left(\xi_{V_{1}}\right)\right|+ \\
& \quad+\left.B \mathrm{E}^{1 / s}\left|\varphi_{1}\left(\xi_{V_{1}}\right)^{s} \mathrm{E}^{1 / u}\right| \varphi_{2}\left(\xi_{V_{2}}\right)\right|^{u}\left(\gamma^{-1} \alpha_{e}(n)\right)^{1-1 / s-1 / u}, \quad 0<B<\infty
\end{align*}
$$

If, with probability $1,\left|\varphi_{i}\left(\xi_{V_{i}}\right)\right| \leqslant C_{i}<\infty, i=1,2$, then the right-hand side of (4) may be replaced by

$$
\tau_{V_{1}}(\gamma) \mathrm{E}\left|\varphi_{2}\left(\xi_{V_{2}}\right)+\tau_{V_{2}}(\gamma) \mathrm{E}\right| \varphi_{1}\left(\xi_{V_{1}}\right) \left\lvert\,+\frac{2 C_{1} C_{2} \alpha_{\varrho}(n)}{\gamma}\right.
$$

Proof. Let $\varphi\left(x_{t}, t \in V_{1} \cup V_{2}\right)=\varphi_{1}\left(x_{t}, t \in V_{1}\right) \varphi_{2}\left(x_{t}, t \in V_{2}\right)$. Suppose the random vector $\eta_{V_{1} \cup V_{2}}=\left(\eta_{t}, t \in V_{1} \cup V_{2}\right)$ has the distribution $P_{V_{1}} \times P_{V_{2}}$, $P_{V_{i}} \in P, i=1,2$,

$$
A_{\gamma}=\left\{\varrho_{V_{1} \cup V_{2}}\left(\xi_{V_{1} \cup V_{2}}, \eta_{V_{1} \cup V_{2}}\right)<\gamma\right\},
$$

\bar{A}_{γ} is the complement of A_{γ} and, with probability 1 ,

$$
\left|\varphi_{i}\left(\xi_{t}, t \in V_{i}\right)\right| \leqslant C_{i}<\infty, \quad i=1,2 .
$$

Then

$$
\begin{aligned}
& \left|\mathrm{E} \varphi_{1}\left(\xi_{V_{1}}\right) \varphi_{2}\left(\xi_{V_{2}}\right)-\mathrm{E} \varphi_{1}\left(\xi_{V_{1}}\right) \mathrm{E} \varphi_{2}\left(\xi_{V_{2}}\right)\right| \\
= & \left|\mathrm{E} \varphi\left(\xi_{V_{1} \cup V_{2}}\right)-\mathrm{E} \varphi\left(\eta_{V_{1} \cup V_{2}}\right)\right| \\
\leqslant & \mathrm{E}_{A_{\gamma}}\left|\varphi\left(\xi_{V_{1} \cup V_{2}}\right)-\varphi\left(\eta_{V_{1} \cup V_{2}}\right)\right|+\mathrm{E}_{A_{\gamma}}\left|\varphi\left(\xi_{V_{1} \cup V_{2}}\right)-\varphi\left(\eta_{V_{1} \cup V_{2}}\right)\right| \\
\leqslant & \mathrm{E}_{A_{\gamma}}\left|\varphi_{1}\left(\xi_{V_{1}}\right)\right|\left|\varphi_{2}\left(\xi_{V_{2}}\right)-\varphi_{2}\left(\eta_{V_{2}}\right)\right|+\mathrm{E}_{A_{\gamma}}\left|\varphi_{2}\left(\eta_{V_{2}}\right)\right|\left|\varphi_{1}\left(\eta_{V_{1}}\right)-\varphi_{1}\left(\xi_{V_{1}}\right)\right|+ \\
& +\frac{2 C_{1} C_{2}}{\gamma} \alpha_{e}(n)
\end{aligned}
$$

$\leqslant \tau_{V_{2}}(\tau) \mathrm{E}\left|\varphi_{1}\left(\xi_{V_{1}}\right)\right|+\tau_{V_{1}}(\gamma) \mathrm{E}\left|\varphi_{2}\left(\xi_{V_{2}}\right)\right|+\frac{2 C_{1} C_{2}}{\gamma} \alpha_{\rho}(n)$.
Thus inequality $\left(4^{\prime}\right)$ is proved $\left({ }^{1}\right)$.
$\left({ }^{1}\right)$ We acknowledge that the idea of this inequality should be attributed to Dobrushin (see inequality (3.8) in [3]; note that inequality (3.8) contains a misprint: γ and $\delta(\gamma)$ should be interchanged).

Let us prove now inequality (4). Let

$$
\begin{aligned}
\varphi_{i}^{K_{i}}(x) & =\left[\begin{array}{ll}
\varphi_{i}(x) & \text { if }\left|\varphi_{i}(x)\right| \leqslant K_{i}, \\
K_{i} & \text { if } \varphi_{i}(x)>K_{i}, \\
-K_{i} & \text { if } \varphi_{i}(x)<-K_{i},
\end{array}\right. \\
K_{i} \in R_{+}, \bar{\varphi}_{i}^{K_{i}}(x) & =\varphi_{i}(x)-\varphi_{i}^{K_{i}}(x), \quad x \in X^{\left|V_{i}\right|}, i=1,2,
\end{aligned}
$$

$\tau_{i}^{K_{i}}(\gamma)$ be the continuity modulus of $\varphi_{i}^{K_{i}}(x)$. It is easy to see that

$$
\tau_{i}^{K_{i}}(\gamma) \leqslant \tau_{V_{i}}(\gamma), \quad\left|\varphi_{i}^{K_{i}}(x)\right| \leqslant K_{i}, \quad i=1,2
$$

Further,

$$
\begin{aligned}
& \left|\mathrm{E} \varphi_{1}\left(\xi_{V_{1}}\right) \varphi_{2}\left(\xi_{V_{2}}\right)-\mathrm{E} \varphi_{1}\left(\xi_{V_{1}}\right) \mathrm{E} \varphi_{2}\left(\xi_{V_{2}}\right)\right| \\
& \leqslant \mathrm{E}\left|\varphi_{1}^{K_{1}}\left(\xi_{V_{1}}\right) \varphi_{2}^{K_{2}}\left(\xi_{V_{2}}\right)-\varphi_{1}^{K_{1}}\left(\eta_{V_{1}}\right) \varphi_{2}^{K_{2}}\left(\eta_{V_{2}}\right)\right|+\mathrm{E} \mid \varphi_{1}^{K_{1}}\left(\xi_{V_{1}}\right) \bar{\varphi}_{2}^{K_{2}}\left(\xi_{V_{2}}\right)+ \\
& \quad+\mathrm{E}\left|\bar{\varphi}_{1}^{K_{1}}\left(\xi_{V_{1}}\right) \varphi_{2}^{K_{2}}\left(\xi_{V_{2}}\right)\right|+\mathrm{E}\left|\bar{\varphi}_{1}^{K_{1}}\left(\xi_{V_{1}}\right) \bar{\varphi}_{2}^{K_{2}}\left(\xi_{V_{2}}\right)\right|+ \\
& \quad+\mathrm{E}\left|\varphi_{1}^{K_{1}}\left(\xi_{V_{1}}\right)\right| \mathrm{E}\left|\bar{\varphi}_{2}^{K_{2}}\left(\xi_{V_{2}}\right)\right|+\mathrm{E}\left|\bar{\varphi}_{1}^{K_{1}}\left(\xi_{V_{1}}\right)\right| \mathrm{E}\left|\varphi_{2}^{K_{2}}\left(\xi_{V_{2}}\right)\right|+ \\
& \quad+\mathrm{E}\left|\bar{\varphi}_{1}^{K_{1}}\left(\xi_{V_{1}}\right)\right| \mathrm{E}\left|\bar{\varphi}_{2}^{K_{2}}\left(\xi_{V_{2}}\right)\right| .
\end{aligned}
$$

Now it is enough to put

$$
K_{1}=\left(\frac{\gamma \mathrm{E}\left|\varphi_{1}\left(\xi_{V_{1}}\right)\right|^{s}}{\alpha_{\varrho}(n)}\right)^{1 / s}, \quad K_{2}=\left(\frac{\gamma \mathrm{E}\left|\varphi_{2}\left(\xi_{V_{2}}\right)\right|^{u}}{\alpha_{\varrho}(n)}\right)^{1 / u}
$$

and by proceeding in the same way as in [2] (§ 2, p. 390) one can prove (4).
In the sequel the following statement will be important:
Lemma 2. Let $\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)$ be a vector such that

$$
\left|\mathrm{E} \prod_{s=i}^{n} \zeta_{s}\right|<\infty, i=1,2, \ldots, n-1 ; \quad\left|\mathrm{E} \zeta_{i}\right| \leqslant 1, i=1,2, \ldots, n
$$

Then

$$
\begin{align*}
& \left|\mathrm{E} \prod_{s=1}^{n} \zeta_{s}-\prod_{s=1}^{n} \mathrm{E} \zeta_{s}\right| \tag{5}\\
& \quad \leqslant \sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left|\mathrm{E}\left(\zeta_{i}-1\right)\left(\zeta_{j}-1\right) \prod_{s=j+1}^{n} \zeta_{s}-\mathrm{E}\left(\zeta_{i}-1\right) \mathrm{E}\left(\zeta_{j}-1\right) \prod_{s=j+1}^{n} \zeta_{s}\right|
\end{align*}
$$

Proof. It is well-known ([2], §4, p. 429) that, under the conditions of Lemma 2,

$$
\begin{equation*}
\left|\mathrm{E} \prod_{s=1}^{n} \zeta_{s}-\prod_{s=1}^{n} \mathrm{E} \zeta_{s}\right| \leqslant \sum_{i=1}^{n-1}\left|\mathrm{E} \zeta_{i} \prod_{s=i+1}^{n} \zeta_{s}-\mathrm{E} \zeta_{i} \mathrm{E} \prod_{s=i+1}^{n} \zeta_{s}\right| \tag{6}
\end{equation*}
$$

We can write

$$
\begin{aligned}
& \left|\mathrm{E} \zeta_{i} \prod_{s=i+1}^{n} \zeta_{s}-\mathrm{E} \zeta_{i} \mathrm{E} \prod_{s=i+1}^{n} \zeta_{s}\right| \\
& =\left|\mathrm{E}\left(\zeta_{i}-1\right) \zeta_{i+1} \prod_{s=i+2}^{n} \zeta_{s}-\mathrm{E}\left(\zeta_{i}-1\right) \mathrm{E} \zeta_{i+1} \prod_{s=i \neq 2}^{n} \zeta_{s}\right| \\
& \leqslant\left|\mathrm{E}\left(\zeta_{i}-1\right)\left(\zeta_{i+1}-1\right) \prod_{s=i+2}^{n} \zeta_{s}-\mathrm{E}\left(\zeta_{i}-1\right) \mathrm{E}\left(\zeta_{i+1}-1\right) \prod_{s=i+2}^{n} \zeta_{s}\right|+ \\
& +\mid \mathrm{E}\left(\zeta_{i}-1\right) \zeta_{i+2} \prod_{s=i+3}^{n} \zeta_{s}-\mathrm{E}\left(\zeta_{i}-1\right) \mathrm{E} \zeta_{i+2} \prod_{s=i+3}^{n} \zeta_{s} .
\end{aligned}
$$

Continuing this procedure we obtain

$$
\begin{align*}
& \left|\mathrm{E} \zeta_{i} \prod_{s=i+1}^{n} \zeta_{s}-\mathrm{E} \zeta_{i} \mathrm{E} \prod_{s=i+1}^{n} \zeta_{s}\right| \tag{7}\\
& \quad \leqslant \sum_{j=i+1}^{n}\left|\mathrm{E}\left(\zeta_{i}-1\right)\left(\zeta_{j}-1\right) \prod_{s=j+1}^{n} \zeta_{s}-\mathrm{E}\left(\zeta_{j}-1\right) \mathrm{E}\left(\zeta_{j}-1\right) \prod_{s=j+1}^{n} \zeta_{s}\right|
\end{align*}
$$

Substituting (7) into (6) we get Lemma 2.
5. Now we are going to prove our theorem.

In the sequel $p=p(n)$ and $q=q(n), n \in N$, denote the positive integer valued functions.

Lemma 3. Let $\left\{\eta_{t}\right\}$ be a real-valued stationary random process such that $\mathrm{E} \eta_{t}^{2}<\infty$ and:

1. $\mathscr{D} S_{n} \sim c n, n \rightarrow \infty$, where $0<c<\infty, S_{n}=\sum_{t=1}^{n} \eta_{t}$;
2. for any function $p=p(n), p(n) \rightarrow \infty, p=o(n), n \rightarrow \infty$, there exists a function $q=q(n), q(n) \rightarrow \infty, q=o(p), n \rightarrow \infty$, such that, for every real t,

$$
\left|\mathbf{E} \prod_{j=1}^{k} \exp \left\{i t \hat{S}_{p}^{(j)}\right\}-\prod_{j=1}^{k} \mathrm{E} \exp \left\{i t \hat{S}_{p}^{(j)}\right\}\right| \rightarrow 0, \quad n \rightarrow \infty
$$

where

$$
\hat{S}_{p}^{(j)}=\left(\mathscr{D} S_{n}\right)^{-1 / 2} S_{p}^{(j)}, \quad S_{p}^{(j)}=\sum_{\substack{s=(j-1) p+\\+(j-1) q+1}}^{j p+(j-1) q}\left(\eta_{s}-\mathrm{E} \eta_{s}\right), \quad j=1,2, \ldots, k
$$

and $k=k(n)=[n /(p+q)]$.
Then for this process the CLT with identity function f jolds.
Proof. It is clear that there exists a function $p=p(n)$ such that $\left(\mathscr{D} S_{p}^{(1)}\right)^{-1} \int\left(S_{p}^{(1)}\right)^{2} d P \rightarrow 0$ as $n \rightarrow \infty$, integrating for $\left|S_{p}^{(1)}\right| \geqslant \varepsilon \sqrt{\mathscr{D} S_{n}}$, where $\varepsilon>0, p(n) \rightarrow \infty, p=o(n), n \rightarrow \infty$.

Now, to complete the proof, it remains to apply the Bernstein method ([2], § 4, p. 426) for this $p=p(n)$.

Thus, in order to prove our theorem it is sufficient to verify the conditions of Lemma 3 for the process $\left\{\eta_{t}\right\}=\left\{f\left(\xi_{t}\right)\right\}$.

Let us verify condition 1 . We have

$$
\begin{aligned}
& \mathscr{D}\left(\sum_{t=1}^{n} f\left(\xi_{t}\right)\right)=\sum_{t, s=1}^{n}\left(\mathrm{E} f\left(\xi_{t}\right) f\left(\xi_{s}\right)-\mathrm{E} f\left(\xi_{t}\right) \mathrm{E} f\left(\xi_{s}\right)\right) \\
& \quad=n \mathrm{E}\left(f\left(\xi_{1}\right)-\mathrm{E} f\left(\xi_{j}\right)\right)+2 \sum_{t=2}^{n}(n-t+1)\left(\mathrm{E} f\left(\xi_{1}\right) f\left(\xi_{t}\right)-\mathrm{E} f\left(\xi_{1}\right) \mathrm{E} f\left(\xi_{t}\right)\right)
\end{aligned}
$$

and
(8) $\quad \lim _{n \rightarrow \infty} n^{-1}\left(\sum_{t=1}^{n} f\left(\xi_{t}\right)\right)=\mathrm{E} f\left(\xi_{1}\right)-\mathrm{E} f\left(\xi_{1}\right)^{2}+2 \lim _{n \rightarrow \infty} \sum_{t=2}^{n}\left(\mathrm{E} f\left(\xi_{1}\right) f\left(\xi_{t}\right)-\right.$

$$
\left.-\mathrm{E} f\left(\xi_{1}\right) \mathrm{E} f\left(\xi_{t}\right)\right)-2 \lim _{n \rightarrow \infty} n^{-1} \sum_{t=2}^{n} t\left(\mathrm{E} f\left(\xi_{1}\right) f\left(\xi_{t}\right)-\mathrm{E} f\left(\xi_{1}\right) \mathrm{E} f\left(\xi_{t}\right)\right)
$$

By Lemma 1 we get

$$
\left|\mathrm{E} f\left(\xi_{1}\right) f\left(\xi_{t}\right)-\mathrm{E} f\left(\xi_{1}\right) \mathrm{E} f\left(\xi_{t}\right)\right| \leqslant 2 C \tau\left(\gamma_{t}\right)+C\left(\frac{\alpha_{a}(t)}{\gamma_{t}}\right)^{\delta /(2+\delta)}, \quad 0<C<\infty
$$

hence

$$
\sigma_{f}^{2} \leqslant \mathrm{E} f^{2}\left(\xi_{1}\right)+2 C \sum_{t=1}^{\infty} \tau\left(\gamma_{t}\right)+2 C \sum_{t=1}^{\infty} \beta^{\delta /(2+\delta)}(t)
$$

The second summand in (8) vanishes as $n \rightarrow \infty$ by the well-known Kronecker lemma.

It remains to check condition 2. Let

$$
W_{t}(x)=\exp \left\{i t B \sum_{s=1}^{m} f\left(x_{s}\right)\right\}-1, \quad m \in N, 0<B<\infty, x \in X^{m}
$$

X^{m} being a metric space with metric (2). Since

$$
\left|W_{t}(x)-W_{t}(\tilde{x})\right| \leqslant B|t| \sum_{s=1}^{m}\left|f\left(x_{s}\right)-f\left(\tilde{x}_{s}\right)\right|, \quad x, \tilde{x} \in X^{m}
$$

we conclude that the continuity modulus of the function $W_{t}(x)$ does not exceed $B|t| m \tau^{f}(\gamma)$, where $\tau^{f}(\gamma)$ is the continuity modulus of f. By Lemma 1
for $j>r$ and $s=u=2+\delta, \delta>0$, we have
(9) $\mid \mathrm{E}\left(\exp \left\{i t \hat{S}_{p}^{(r)}\right\}-1\right)\left(\exp \left\{i t \hat{S}_{p}^{(j)}\right\}-1\right) \prod_{s=j+1}^{k} \exp \left\{i t \hat{S}_{p}^{(s)}\right\}-$

$$
-\mathrm{E}\left(\exp \left\{i t \hat{S}_{p}^{(r)}\right\}-1\right) \mathrm{E}\left(\exp \left\{i t \hat{S}_{p}^{(j)}\right\}-1\right) \prod_{s=j+1}^{k} \exp \left\{i t \hat{S}_{p}^{(s)}\right\} \mid
$$

$$
\leqslant B_{1} \frac{|t|}{\sqrt{n}} \tau^{f}\left(\gamma_{(j-\tau) q}\right) \mathrm{E}\left|\exp \left\{i t \hat{S}_{p}^{(1)}\right\}-1\right|+
$$

$$
+B_{2} \mathrm{E}^{2 /(2+\delta)}\left|\exp \left\{i t \hat{S}_{p}^{(1)}\right\}-1\right|^{2+\delta}\left(\frac{\alpha_{\rho}((j-r) q)}{\gamma_{(j-\tau) q}}\right)^{\delta /(2+\delta)}
$$

$\leqslant B_{3}\left[\frac{|t| p \sqrt{p}}{n} \tau^{f}\left(\gamma_{(j-r) q}\right)+\frac{p^{2}}{n}\left(\frac{\alpha_{e}((j-r) q)}{\gamma_{(j-r) q}}\right)^{\delta /(2+\delta)}\right], \quad 0<B_{i}<\infty, i=1,2,3$.
By Lemma 2 and (9) we get
$\left|\mathrm{E} \prod_{j=1}^{k} \exp \left\{i t \hat{S}_{p}^{(j)}\right\}-\prod_{j=1}^{k} \mathrm{E} \exp \left\{i t \hat{S}_{p}^{(j)}\right\}\right|$

$$
\leqslant B_{4}\left(|t| \frac{p \sqrt{p}}{n} \frac{n}{p} \sum_{j=1}^{\infty} \tau^{f}\left(\gamma_{j q}\right)+\frac{p^{2}}{n} \frac{n}{p} \sum_{j=1}^{\infty}\left(\frac{\alpha_{\ell}(j q)}{\gamma_{j q}}\right)^{\delta /(2+\delta)}\right.
$$

and then

$$
\mid \mathrm{E} \prod_{j=1}^{k} \exp \left\{i t \hat{S}_{p}^{(j)}\right\}-\prod_{j=1}^{k} \mathrm{E} \exp \left\{i t \hat{S}_{p}^{(j)}\right\} \leqslant B_{4}\left(|t| \sqrt{p} \sum_{j=1}^{\infty} \tau^{f}\left(\gamma_{j q}\right)+p \sum_{j=1}^{\infty} \beta^{\delta /(2+\delta)}(j q)\right)
$$

The monotonicity of the members of this series implies

$$
\begin{gathered}
\tau\left(\gamma_{j q}\right) \leqslant \frac{2}{q_{k}} \sum_{(j-1 / 2) q}^{j q} \tau\left(\gamma_{k}\right), \\
\beta^{\delta /(2+\delta)}(j q) \leqslant \frac{2}{q_{k}} \sum_{(j-1 / 2) q} \beta^{\delta /(2+\delta)}(k), \quad j=1,2, \ldots,
\end{gathered}
$$

hence

$$
\sum_{j=1}^{\infty} \tau\left(\gamma_{j q}\right) \leqslant \frac{2}{q} \sum_{j \geqslant q / 2}^{\infty} \tau\left(\gamma_{j}\right), \quad \sum_{j=1}^{\infty} \beta^{\delta /(2+\delta)}(j q) \leqslant \frac{2}{q} \sum_{j \geqslant q / 2}^{\infty} \beta^{\delta /(2+\delta)}(j) .
$$

Finally,
(10) $\left|\mathrm{E} \prod_{j=1}^{k} \exp \left\{i t \hat{S}_{p}^{(j)}\right\}-\prod_{j=1}^{k} \mathrm{E} \exp \left\{i t \hat{S}_{p}^{(j)}\right\}\right|$

$$
\leqslant B_{4}|t| \frac{2 \sqrt{p}}{q} \sum_{j \geqslant q / 2}^{\infty} \tau\left(\gamma_{j}\right)+\frac{2 p}{q} \sum_{j \geqslant q / 2}^{\infty} \beta^{\delta /(2+\delta)}(j),
$$

as it is obvious that one can choose the function $q(n) \rightarrow \infty, q=o(p), n \rightarrow \infty$, such that the right - hand side of (10) tends to zero as $n \rightarrow \infty$.

Acknowledgement. The author expresses his gratitude to Professor R. V. Ambartzumian and Professor R. L. Dobrushin for their useful comments and suggestions.

REFERENCES

[1] R. C. Bredley, On the central limit question under absolute regularity, Ann. Prob. 13 (1985), p. 1314-1315.
[2] Yu. A. Davydov, Mixing conditions for Markov chains, Theory Prob. Appl. 18 (1973), p. 321-338.
[3] R. L. Dobrushin, Definition of random variables by conditional distributions, ibidem 15 (1970), p. 469-497.
[4] I. A. Ibragimov, and Yu. V. Linnik, Independent and stationarily related variables, Nauka, Moscow 1965.
[5] S. S. Vallander, Calculation of the Wasserstein distance between probability distributions on the line, Theory Prob. Appl. 18 (1974), p. 824-827.
[6] L. N. Wasserstein, Markov processes over denumerable products of spaces, describing large systems of automata, Prob. Inform. Transm. 5 (1969), p. 64-72.

Institute of Mathematics
Armenian Academy of Sciences
375019, Erevan - 19
Marshal Bagramian av., 24 B
USSR

Received on 9. 9. 1986

