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Abstract. A supplementary characterization of Banach spaces 
in terms of conditions on the tail behavior of L h y  measurcs is given. 
A criterion for attraction to a stable law in the operator setting IS 
proved as well. In  the case of the Banach space C ( T )  some consc- 
quences are derived. 

1. Introduction. It is well known that every infinitely divisible probability 
measure (p.m.) p on a real Banach space B admits (up to translation by point 
measures) a unique decomposition into a convolution product p = p + e, ( F )  
of a Gaussian measure Q and a generalized Poisson measure e , (F) .  The last 
measure is characterized by its associated Levy measure (L.m.) F .  In the case 
of a general Banach space it is known (see [4], [lo], [34], [15], [21]) that 
the integrability condition 

is sufficient (necessary) for the a -  finite Radon measure (R.m.) F on B with 
F ( i O ] )  = 0  to be an L.m. iff B is of type p, 0 < p < 2 (cotype p, 2 < p < cc). 

In this note we consider the case where the measure F satisfies a 
condition different from (1.1). For example, the relation 

(1.2) sup t p  ~ ( ( x :  ((xi( > t ) )  < oo, 0 c p < 2, 
0 < r  < 1 

can hold (note that (1.1) is equivalent to 
1 

Jtp- '  F ( [ x :  I I x H  > t ) ) d t  < GO). 

0 

It is worth noticing that the L.m. F  of a p-stable p.m. satisfies the 
condition 

(1.3) F ( { x :  Ilxl\ > t } )  = t W P  for all t > 0. 



Therefore theorem 2.11 contains the well known result on stable p.m.'s 
due to Mouchtari [ 3 1 ]  and de Acosta [2]. Namely, for any finite R.m. r on 
the unit sphere of B the a -finite R.m. dF (t, x) = dt -dr(x)/tl '"is the L.m. of 
a p-stable p.m. iff B is of stable type p. 

We use an inequality due to Rosinski [36] and the characterization of 
Banach spaces of stable type given in [32] in order to describe those Banach 
spaces in which condition (1.2) implies that the a - finite R.m. is an L.m. This 
allows us to extend Zinn's [42] operator approach to the central limit 
theorem (CLT), i.e. the domain of normal attraction (DNA) of 2-stable 
p.m.'s, to the case of the domain of attraction @A) of p-stable laws, 1 < p 
< 2 (see theorem 4.7). Theorem 4.6 via the notion of prestability seems to be 
the correct extension of a well known result on the CLT in Banach spaces 
due to Hoffmann-lbrgensen and Pisier [18]. 

We describe the DA via some type of regular variation of measures, 
going back to Meerschaert 1301 (see section 3). In theorem 3.2 it is proved 
that this regular variation is equivalent to the conditions known ti11 now. 
This completes proposition 3.1 in Gine's paper [12], where a unified account 
of the theory of DA's in Banach spaces is given. It is worth noticing that all 
properties of the norming sequence depend on the special structure of the a- 
finite meahre F defined .by condition (1.3). 

As an immediate consequence we get also some recent results on the 
almost sure continuity and the DNA of p-stable continuous processes due to 
Marcus and Pisier [27]. 

Not  a t  i o  n. Throughout the paper the following notation will be used. 
Let B be the unit ball in the Banach space, 9 ( B )  be the family of finite- 
dimensional subspaces of the Banach space B and q,(x) be a ,seminorm 
defined by q, (x) = d (x, F) if F E 9 ( B ) .  

Given a Borel measure p on B, a real number a and Borel sets A and C, 
C(p)  denotes the class of Borel sets with boundary of p-measure zero, 
measures a o p  and ,uI, are defined by (a op)(A) = p(m-'A) and pt,(C) 
= p ( A  n C )  respectively; Jp1 = p ( B )  For a function f on the Banach space B 
we write p ( f )  = J f d p  and f (p) = p(f -I(.)). We write sfl (A  1; p) if 
p, (f) + p (f), as t + a, for all real continuous and bounded functions 
(vanishing on some neighbourhood of the origin in addition). 

By a B -random uariable X (B - r.v.) we mean a Borel measurable map on 
some probability space (a, F, P), provided that 2 ( X )  is an R.m. on B. If 

-- 
X, X I ,  . . . , Xn are i.i.d. B-r.v.'s, we write X, = XItllxli <a,, XB = ,a) 
and Sn(X) = XI + . . . + X,. If IX,,: 1 6 i 6 k,, n 2 1) is a triangular array, 
then 

kn 



b'uy measures 125 

Iff and g are functions, then f (t) - g (t) and f (t) V, g ( r ) ,  as t -t oc , means 
that lim f ( ~ ) / g ( t )  = 1 and there exist constants cl and c, such that 

t - r m  

respectively. 

2. U v y  meraswes. For any finite R.m. F on the Banach space B, there 
exists a Radon p.m. 

We will study the image measure u(F) using operator u with u ( F ) ( i O ] )  
= F (ker u).  On the other hand, e(G)  = e (G - G ( 10)) aO) for any finite R ~ G .  
Hence, for the sake of uniqueness, it is worth to suppose that two measures 
F and G are eguivalent if Fl[o lc  = GIio\c holds. By %RIB) we denote the set of 
equivalence classes of a- finite R.m.'s on the Banach space B which are finite 
outside of any neighbourhood of the origin. Let us now recall the concept of 
the exponent of a g-finite measure. 

Defini t ion 2.1. Let # ( x ,  x*) = & ' " 3 * * ' - 1 - j  <x, x*)ln(x), for ~ ' E B * ,  
x G B .  A symmetric measure F E%JI(B) is called an L.m. if the function 

x* hexp  {[ReK(x, x*) F(dx ) )  

is the characteristic function (ch.f.) of a Radon p.m. (which we also denote by 
e, (F)-(x*)  = exp [JK ( x ,  x*) F ( d x ) ) .  9ilOZ(B) will denote the set of all L.m.'s 
symmetrized measure is an L.m.. In this case associated p.m. has ch.f. 
e , ( f i (x*)  = exp { ~ K ( X ,  x*) F ( d x ) ) .  Y!IR(B) will denote the set of all L.m.'s 
(of equivalence classes) in (B). 

Next we state and prove a supplementary characterization (statement 3, 
in the proposition 2.2) of a symmetric L.m. For this we define the class 
Y ( B )  of vector Hausdorff topologies Y on B which are weaker than the 
norm topology, and for which exists a countable set r c (B, F)* separating 
points on B, and the a - algebra of cylinders $(B, r )  coincides with the Bore1 
a-algebra on B. An example of such a topology on a separable Banach 
space is the weak topology. 

h o ~ o s r ~ r o ~  2.2. For a symmetric measure F ~11I1(B) the following state- 
ments are equivalent: 

1. F E ~ W ( B ) ;  
,2. for every sequence of ,finite measures F, 7 F ,  the sequence {e (FA) ,  is 

weakly convergent (to e (F)); 



3. there exist a  sequence of ,finite measures F ,  TF and a 9 - c o m p a c t  set 
K for some .T E F ( B )  such that 

lim e (F,) (K) > 0. 
n 

P r o  of. 1 = 2. The statement follows according to Ito - Nisio theorem 
from the definition of L.m.'s. 

2 3 3 .  Obvious. 
-- - -  

3 *I. Let G , = F ,  and G,=F,-FnII for n22. Then e(F,)  
= e (GI)  * . . . * e (G j. By the assumptions and theorem 3.4.2 in [9j (the proof 
i n  our setting is the same), there exists a Radon p.m. v on 5 such that 
( F .  Furthermore, since F , l F ,  we get that the ch.f.- v^(x*) 
= exp {J Re K (x, x*) F (dx) ) for all x* E B* which implies 1. 

I n  tliis note we consider sets of a-bite R.ni.'s delined as follows: 
I m 

for y < x , 
(2.1) 

Tor ~1 = -L . 

We write IIXllp,Y instead of 1 1  Y(X)II , ,  if F = I/'(X). For 0 < p < scl and 
0 - q < x  put 

Condition (1.1) means for a a - [inite R . m .  F that F 1, ~!1.11,,,(5). 
Now we deIine a class of Banach spaces in which the relation 

?l.llJip,,(B) c Y'!1JZ(B) holds (see theorem 2.1 1). We recall the definition of 
Lorrllrr - Mcrr.c.i~lkrewic: seyue17ce spuces 

where 

i ( x i * ) )  for y < a, 

sup i l i "  llsillb for q = x,  

and an asterisk denotes a non-increasing rearrangement of the sequence. 
Let (r i ) i , ,  denote a Rademacher sequence. 
Def in i t ion  2.3. Let 0 < p  < 2 ,  p d q  $ co, and E ,  F, 5 be Banach 

spaces. An operator u: E + F  is of type (p, q) if there exists a constant c > 0 
such that the inequality 

holds for any finite collection x,, . . ., xn c E.  A Banach space B is of type 
( p ,  q)  if the identity map on B is of type ( p ,  q ) .  



Remark  2.4. The notion of type ( p ,  p) coincides with the notion of 
Rademacher iype 11. A Banach space 5 is of type (17,  z) iff B is of stable type 
p [32J It is easy to see that if B is of type ( p ,  ql)  and p d q ,  < q ,  < m, then 
B is of type (p, q2), but we do not know whether t h s  inclusion is strict 
(except the cases q ,  = co and q ,  = p). As usual, the notion of cotype (p, q) 
can be defined by means of the converse inequality to (2.2) a ~ ~ d  wit I1 2 <. p 
< m, 1 < q 6 p. 'If B is of type (p, q),  then B* is of cotype (p', q'), where l/p 
+ l/p' = 1 and l /q  + l/ql = 1. The proof of t h s  and some other properties of 
the class of type (p, q) will appear elsewhere. 

The following property of the Banach spaces, introduced above, will be 
useful' for us. For the proof see [33] (or 1321 if q = m). 

PROPOSITION 2.5. Let 1 < p < 2, 11 < y d z ulttl E,  F he Bat~ucll spaces. 
For an operator u: E + F  the following statements are equivalent: 

1. u is of type ( p , q ) ;  
2. there exists a constant c > 0 such that the inequaliry 

1 holds for all symmetric independent E - r.v.'s X i ,  . . . , X,; 
3 .  there exists a constant c > 0 such that the inequality 

(u W))IIp,, s eniiP llXIlP,4 

holrls jbr ail symmetric independerzr E - r.v.'s X , ,  . . . , X,,; 
The following result on integrability with respect to infinitely divisible 

p.m.'s on Banach spaces will serve as a tool in the proof of theorem 2.11. 
Proposition 2.6 is an extension of some results proved in [3], [20], 1211 and 
[38] and has a nonvoid intersection with some of them if p = q .  It is worth 
noticing that a more result is known for a class of subexponential p.m.'s (see 
Ell]) and a more general result holds for R' -r.v.'s (see [a]). 

PROPOSITION 2.6, k t  O < p < c o ,  1 G q G c o  a n d p = d 6 , r ~ * e s ( F )  be an 
injnitely divisible p.m. on the Banach space B.  Then I(,ul/,,, < oo i f f  

lBC ' 'l'p,q (B)  ' 
LEMMA 2.7. Let p ,  q  be as above alzd F ,  G ,  F , ,  . . ., FA be Ilnite R.m.'s 

on B. Then the inequalities 

(2.3) F1IP(tB) llGllp,q G llF * + t C-F (tB) IGllllP, 

hold for all t > 0 and any integer k 2 1. 



Proof.  Let us rewrite (2.1) as 

( s l lP  f s  (F)Y ds/s)ll4 for q < a, 
(2.5) 

SUP s1IP fS(O for q = mi 

where f s  (F) = inf (t  > 0:  F (tBc) 6 s ) .  From the s -additivity it follows that 
F * G ( a m  6 s. By the definition of the convolution and Fubini's theorem we 
have, for all t > 0, 

F * G ( W  = F @G(((x,, x,): I ( x ~ + x ~ ~ ~  >'XI) 

therefore the inequality $slF(rB) (G) < Xs ( F  * G) + t holds for all s > 0. Hence, 
by (2.51, we get (2.3). . 

Let us now prove (2.4). Suppose that ui = $,(Fi), i = 1, . .., k. Then, by 
a-additivity of measures F,, we get 

Therefore, from relation 

it follows the estimate 
b 

Hence by (2.5) we get (2.4). 
Proof  of propos i t ion  2.6. By virtue of Fernique's (p. 258 in [40]), 

Yurinskii [41] results and lemma 2.7 it is enough to prove that [le(F (,[I,,, 
i cc iff F I,, E !Utp,,(B). The necessity of F I,, E'JJI,,, (B) follows immediately 

- from the inequality e(F)(A) >, e-IFI F(A), which holds for all Borel sets A. 
For the sufficiency we use lemma 2.7 (and Minkowski inequality for q < co). 
We get 

for some constant c @ ,  F) and ;*'equal to 1 or p according to either p > q or . 
p < q. This proves proposition 2.6. 
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If q = a, from proposition 2.6 it follows 
COROLLARY 2.8 [I]. Let 0 < p < 2 and r be a p-stable p.m. on the 

Banach space B. Then there exists a constant c > 0 such that p(tB3 6 ~ t - ~ f o r  
all -t > 0. 

The foIlowing statement ,refines a result in [20]: 
COROLLARY 2.9. Let p be an operator stabb p.m. on a separable Banach 

space B, i.e. a full p.m. for which there exists an operator Q €LIB) with lim tQ 
f -0 

= 0 such that ptf = tQ op * iibt for all t > 0 and some b, EB. Then there exists 
a cqnstapat c > 0 such that p(tBc) < ~ t - ~ ~ ~ ' 1 - . ~  for all t > 0. 
' Proof. Follows from the representation of the L,m. FQ of the operator- 
stable p.m. p (see [19]), 

1 

for all Borel sets A, where 
1 

The next statement concerns the completely self - decomposable p.m.'s, 
i.e. the infinitely divisible p.m.'s with associated L.m.'s F of the form 

for all Borel sets A, some finite measure r on B vanishing at the origin and a 
weight function h such that 

J11x112flx11 h (x )  T ( d x )  < oo 
B 

(see 1391). 
COROLLARY 2.10. Let ,u be a completely self-decomposable p.m. on the 

separable Banach space 5 with associated L. rn. F (see (2.6)). I f  the measure r 
is concentrated on the set ( x :  0 < a  < J J x J J  < I), then there exists a constant 
c > 0 such that p ( t F )  < ct-'" for a11 t > 0. 

Let us state now the main result of this section. 
THEOREM 2.11. Let 1 < p < 2 and p < q d co. The following are equina- 

lent for the Banach space B: 
1. is of type ( p ,  q ) ;  
2. for all F E ~ . X ( % )  such that IIFlsllp,, < co, F E ~ ~ ( B ) ;  
3. &!" F E'JJ~,,(B), then F EY%I(B)  a d  lles(F)llp,q < cr,; 
4. there exists a constant c > 0 such that Ile(F)llp,, < C ( ~ F ( ( ~ , ,  for all 

. symmetric F E m(B). 

9 - Pams. 9.2 



Proof.  1 2. There is no loss of generality if we assume that F E ~ ( B )  
is concentrated on B and symmetric. Let us define symmetric independent B- 
r.v.'s with distributions Y (Xi) = e ( F  +i,. I < llxll s i -  I $, i 2 1, and 
finite R.m.'s F,,, = FIbrn-l  cll,li 4 n - 1 ,  for m > n 3 1 .  Further, suppose that 
q < GO. Then, by Minkowski's inequality and proposition 2.5, we get the , 
estimate 

for all rn > rz > 1 and, therefore, Xi (i = 1, 2, . . .) converges in probability. 
In particular, 

Thus, by proposition 2.2, if q < F, then F is an L.m. 
Assume now that q = m.  Then, by proposition 2.5, for R.m.'s F, 

- = Fn, l ,  n 2 1 ,  we have 

n 

Thus, partial sums (x Xi),,, are stochastically bounded and hence (by 
i =  1 

Levy's inequality) bounded a.s. In view of proposition 2.2 in [32] B is of 
stable type p. An appeal to results of Maurey and Pisier [29] assures us that 
5 does not contain c,. Another appeal to corollaty 1.7.2 in El71 implies that 

Xi ( i  = 1, 2, . . .) converges a.s, Hence relation (2.7) holds and F is an L.m. 
as well. 

2- 3. This follows from proposition 2.6. 
3 =s4. Suppose that statement 4 is not true. Then, for all  EN, there 

exists a symmetric L.m. F ,  such that Ile(Fn)(l., 2 n3 IIFnllp,q for all n EN. 
Put P, = (nZ IIFnllp,q)-l oFn; then, by (2.51, proposition 6.1.5 in [22] and 
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tlie symmetry of F,, we get that ([fi,~[~,, = n-2 and ~ l e ( P ~ ) l l ~ , ~  2 n for all 
n EN. NOW we set F = P, ( n  = * I ,  2, . . .). By a simple argument si ink ow- 
ski's inequality for q < a) we infer that F E ~ , , ( B ) .  Therefore F is an L.m. 
and I(e(F):)ll,, < m by a~umption. kt us define a sequence of symmetric 
independent B -r.v.'s (Xh,, , with distributions 6P(X,J = e(F,) for all ~1 EN. 
Then, by propositions 5.4.9 and 5.4.14 in [223, Xi (i = 1, 2, ...) is a B-r.v. 
with-distribution e(F):  An appeal to LGvy's inequality gives that 

But this is a contradiction to ((e(FJJ,, 3 n, which implies statement 4. 

4 * 1. Let F be the R.m, defined by 
n 

for -some xl ,..., x , c B .  Then e (F )=YE( tk -5 ; )xk ) ,k=  1 , 2  ,..., n, 
where <, and ti, k = 1, . . ., n, are i.i.d. with e (6 , )  R' -r.v.'s and JJFJJ , ,  
= ll(xk)'illp,q. Hence 

n 

l l ~ ~ ~ r - ~ ; )  ~ k l l ~ , ~  G III~lr);ll~,~ 
1 I 

by assumption. According to comparison principle due to Kwapien and 
Rychlik (see theorem 5.4.4 in [40]) we see that the inequality 

follows immediately from estimate P(lr,l > t) G c2 P(15, - > t) for all 
t > 0. This completes the proof of theorem 2.11. 

It is easy to see that theorem 2.11 holds also in the operator setting 
excepted the case q = a. For the last case we can prove the following 

THEOREM 2.12. Let 1 < p < 2 and B, E, and I; be Banach spaces. If an 
operator u EL(& F) can be factorized through 5 by means of the type (p, a) 
operator v E L(E, B) and the weakly compact operator w EL@, F), and F is 
separable, then, for all F E %(E) such that IIF IBIIp,, < oo , u (F)  E Ym(k;). 

i'J in addition, symmetric R.m. F E V$,, ( E ) ,  then I[e(u (F))Iip,, < c llFllp, , 
for a constant c =c (u). 

Proof.  As in the proof of implication 1 +- 2 in theorem 2.11, we 
conclude that the sequence v (Xi) (o)), i = 1, 2, . . . , n, n 2 1, is bounded 
for a.a. w (with the same notation). As the unit ball of P is closed in the weak 
topology, then (according to corollary 5.5 in [I63 and the assumption) we get 
that xu(Xi) ,  i = 1, 2, . . ., converges a.s. Then, by the same arguments as in 
preceding theorem, we derive that u(F) ~dPilT1(F) and the reminder of the 
statement, which completes the proof. 



Remark  2.13.1. If in the preceding theorem the operator w EL(& F) is 
compact, then the separability of the Banach space F can be removed. 

2. It is easy to see that the factorization in theorem 2.12 is superfluous 
if we restrict ourselves to the subclass of R.m.'s of 9b,,(E) for which 
lim tP  F (tBc) as t + 0 exists and is finite. In this case, only property of type 
(p, a) for the operator u EL(E, F) is needed. 

Theorems 2.11 and 2.12 generalize well-known results about spectral 
measures of p -  stable p.m.'s on Banach spaces, gs mentioned in the introduc- 
tion. Theorem 2.12 extends also a result on completely self-decomposable 
p.m.'s due to Thu [39]. We give it for the Banach space setting for simplicity. 

COROLLARY 2.14 [39] .  Let 1 < p < 2 .  Assume that the separable Banach 
space B is of type ( p ,  m). Then, for any finite measure r concentrated on the 
set {x: 0 < llxll < p / 2 ) ,  the a -finite measure F dejned by (2.6) is an L.m. of a 
ctlmpletely seEf- decomposable p.m. 

3. Regular variation. The classical criterion for domains of attraction in 
the real line is as follows: if q is a (p, c,, c,)-stable -r.v, with p ~ ( 0 ,  2), 
c , ,  c, 2 0  and c , + c ,  > 0, then the R1-r.v. { E D A ( ~ )  iff 

as x -+ co , and the function R (x) = P (It1 > x) varies regularly with index - p 
(write R ERV(-p) in the sequel), i.e. R(x) is measurable on (0, a) and 

lim R (tx)/R(t) = x - ~  for all x > 0. 
t + m  

The domain of attraction of Gaussian laws is characterized by slow 
variation of the truncated second moment. This suggests that a more concise ' 

criterion for attraction to a stable law via some kind of regular variation of 
the law Y({ )  is possible. Following Meerschaert [30],  we provide in this 
section the concept of regular variation of measures (see definition 3.1) and 
prove that this is equivalent to conditions which characterize the domain of 
attraction (see Theorem 3.2). 

We define 

' W ( B )  = ( F E ~ ( B ) :  tl/poF = tF ,  V t  > O ) ,  p >  0, 

the measures yp(dt) = t - l - p d t  on R+ and T,(W) = pF(x: llxll > 1, 
x/llxlJ EW) on Borel sets W of the unit sphere S,  for any F EW(B). Note that 
the map i: ( t ,  x) + tx  is a homeomorphism of R+ x S onto B/{O) .  Therefore 
any measure F E!CR~(B) is a continuous image of the product measure 
yp @ rF, i.e. F = i (y, @ T,). Conversely, if F = i(yp @ T )  for some finite R.m. 
r on S and PER', then F E!JJI~(B). 
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Let us remark that F, l i * ~  (see notation in the introduction) iff 
W 

F,ImC-+FI,,, for all ~ B E C ( F ) .  
Defin i t ion  3.1. Let a € R 1  and B be a Banach space. We say that a 

measure G E%V(B) varies re~ular ly  with index cr if there exists a measure 
F EW(B) with 

We denote it by G ERV(B, or, F). 
For any R.m. G E '3Jl(B) put 

sup {s:  t G ( s m  2 1 )  for r > l/G(F'), 
(3.2) & ( t )  = for O G t  < l /G(F).  

THEOREM 3.2. Let p ER+ and B be a Banach space. For an R.m. G E%R(B) 
the following are eqlaivalerat : 

1. G E R V ( B ,  p, F )  for F # 0 ;  
, 2. the ftsnction G ( . B c )  ERV(-p) and (3.1) holds for some R.m. F with 

BECCE); 
3. a, ~RV(1j'p) and 

for some R.m. P with B E C ( F ) ;  
4 .  there e'xists an R.m. F E%!'(B) such that (3.3) holds; 
5 .  G(.  Bc) ERV(-p) and 

for some R.m. r on S and a11 W EC (T). 

Remark. A characterization of DA's in Hilbert space via the validity of 
(3.1) and G ( -  Bc) ERV(- p) with additional restrictions on the support of the 
stable measure was given by Klosowska 1231. Condition 5 appears for the 
same purpose also in [23]. Relation (3.3), which presupposes the knowledge 
of the norrning sequence, is more or less standard. For a somewhat more 
complicated, but equivalent conditions see Kuelbs and Mandrekar ([24], 
(4.2)), Araujo and Gine (151, 4.10 (i) (a) and (b)), Gine ([12], proposition 
3.1.2). 

We precede the proof of theorem 3.2 by several lemmas. The proofs of 
them follow along the arguments as in the pioof of statement' 1.4.5" and 
lemma 1.8 in [37]. 



LEMMA 3.3. Let p ER' and R ,  E R V ( - p ) .  Then there exists a function 
R, ERV (l/p) such that 

(3-5) R,(R,(x)) - x as x +m. 
A 

Conversely, if any function R3( - )  7 m satisjies (3.4) instead of R,, then 
R, (x )  - R,(x) as x 4 ca a d ,  therdore Rg satisfies (3.5). If, in addition, R3 
uaries regularly, then the same conclusion holds if ( 3 3  is valid for R3 instead 
of R2. 

LEMMA 3.4. Let p E R + ,  and R €RV(-p) be a non-increasing on [A, m), 
A > 0. Let, for x >  R(A) ,  

Then R(R,(x)) - x - I  as x + co. 
COROLLARY 3.5. Let C, p ER+, and the functions R, R* be as in lemma 3.4. 

Then R (t) - ct-P if R, (t) - (ct)'/P and R (t) t-p if RR, (t) t'Ip (as t m). 
! COROLLARY 3.6. Let p ER+ and G(.W EWV(-p). If there exists a 
I function b( .) 7 cr, which varies regularly and nG (b (n) Be) - 1 as n + m, than 
j 
t b (t) - a, (t) as t 4 m . 

Proof.  An appeal to the theorem of uniform convergence of slowly 
I varying functions (theorem 1.1 in [37]) assures that b(1,n) - b(n) as soon as 

I, - I .  Therefore, by the assumptions, we get that 

lim b (I/G (b (n) ~ ) ) / b  (n) = 1 . 
n + m  

Put 

(3.6) n , = s u p ( n > l : b ( n ) < t )  for all t > 0 .  

Then 

b ( ~ - ' ( b ( q + i ) ~ ~ )  b ( ~ - l ( t ~ ~ ) )  b ( ~ - l ( b ( % ) ) ~ = ) )  < 6 for all t > 0. 
b(%+l)  t b (4) -- 

We get that b(G-l(tBC)) - t, as t + a ,  by taking limits in the above 
inequality. Therefore (3.5) holds, which implies that b (t) - a, (t) as t + a , 
whenever G (. Bc) E RV ( - p) . 

COROLLARY 3.7. 'Let P E R +  and G E ~ ( B ) .  If there exists an R.m. 
P E W (B) such that nG (b, -) S F ,  as n + co, for some sequence b, f co, then 
b, F'Ip (BC) - a, (n) as n -, ao . 
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Pro  of, Let us define n, by (3.6); then 

n,+l n,G(b,jLE) 
6: + G (b,, , Bc) for a11 t > 0. 

4 

Taking limits in the previous inequalities and observing that F EW(B), 
we get G ( . m  ERV(-p). An appeal to corollary 3.6 completes the proof. 

Proof of theorem 3.2. 1 *2. We remark that F(BC)  = 1 .  Thus, from 
definition 3.1, it follows that G(tsBc)/G (tB3 + F (sBc) = s-P, as t -+a, for all 
s > 0. Therefore 2 holds. 

2*3. By the assumptions, lemma 3.4 and lemma 3.3, the function 
aG ERV ( l / p )  and nG (a, (n) 3') -+ 1 as n m . This implies 

as n 4 a. Therefore 3 holds. 
3 - 4. We will prove that F E l r JZp(~) .  Fix s > 0. Then there exists a 

6 ~ ( 0 ,  S] such that dBc 6 C (F)  and 

(3.7) F (SF) = F Is& (6Bc) = lim nG (aG (n) sBc). 
n-m 

By assumptions, sa,(n) - a,(nsq as n + m .  Thus, for any fixed E > 0 
and all sufficiently Iarge n EN, we get 

(3.8) ( [ s p  n] / ( [sp n] + I ) )  ( [ s P  n] + 1)  G ((1 + E) aG ( [sP n] + 1) 8') 

G sP nG (aG($ sBC) 

< (([sp n] + l)/[sP nj) [sP n] G ((1 - E )  aG ( [sP nj) Be).  

By virtue of the assumption F(aB) = 0 and by (3.7), taking limits as n 
+ oo and E + 0 (along (1 f E )  B E C (I)) on both sides of (3.8), we have F (sw 
= s - P  F (B') for arbitrary s > 0. Therefore F E W(B). 

4 5. According to F E !lJlp(B) and (3.3) it follows that G ( . Bc) ) E R V ( - p ) ,  
as in corollary 3.7. Now, if n, is the largest n such that a,(n) ,< t ,  then 

as t -t. oo. Similar arguments as above assure that 5 holds. 
5 = 1. It is sufficient to show that 

(3 -9) i -  ' (F) (A) < & G ((ti (A))/G (tBc) 
r -m 



for some F f'133iP(B) and all A open and bounded away from the origin in 
R' xS,  because i is a homeomorphism. By the assumptions we have 

.Yp @ r ( a ,  b) x W )  i - ' ( t - '  o ~ ) ( ( a ,  b) x W) 
(3.10) = Iim 

yP Q r ( ~ ,  m) xSj t+m G (tB3 

for all 0 < a < b < co and W E C (q. By lemma 1.3.2 in [40] there exists a 
basis 8 of the topology on S which is closed under finite intersections and 
with 0 c C(T). Therefore (3.10) holds for finite unions U (a, ,  bi) x Ui with 

i 
Ui E em as well. Now, any open set A in Rf x S  can be represented by U U,, 

Q 

where (U,) is an increasing net of open sets and each of them is a finite 
union (J (4, b,) x U i .  Therefore, b y  t -smoothness of y, @I r and by (3.10) we 

r 

infer that (3.9) holds for the measure E = F/F (Bc),  where = i (7, @ 0. This 
completes the proof of theorem 3.2. 

Remark.  It is easy to see that theorem 3.2 (appropriately modificated) 
holds aIso for t -smooth measures on completely regular topological spaces. 

4. Domains of attraction. Now we will apply the results given in the 
previous section to the domain of attraction problem in the operator setting. 
The openness of the interval {r > 0: B is of stable type r), the key property 
of the stable type Banach spaces (see [2Y]), is usually used to get "classical" 
conditions. But this property does not longer hold for stable type operators 
(in the sense of B. Maurey). We wiIl show that type ( p ,  oo) operators are 
useful for this purpose. This is an answer to the question posed by Paulaus- 
kas and RaEkauskas in 1351, where they proved, among others, that above- 
mentioned classes of operators do not coincide in general. 

We have also proposed the notion of prestability in this section (see 
definition 4.5). This property plays the same role as the pregaussianness in 
Hoffmann-JBrgensen and Pisier theorem [I81 (see theorem 4.6). But it is still 
an open question whether this version will be useful in connection with the 
stable cotype spaces. 

We will start, with the general case of triangular arrays of B-r.v.'s. For 
this we put: 

* t 

(5 Pdp (qF (X,) > s )  dsq)p/q/rp P (qF (XRi) > t )  for g < X I ,  

Sup sP ( q ~  ( X ~ ) )  > s)/tp P ( q ~  (Xk) > f ) for q = co; 
sSt  

nzq = aEq({Xni)) = sup (A$q(t, F): t 2 1? I: ES(B),  i = 1, . . ., k, ,  n > 1); 

ap,,=aP,,((Xni)) = s u p { ~ $ ~ ( t ,  {O)): t2 1? i =  I ,  ..., k,, n2 1); 

,d,4,(B) = (B-r.v.'s (X,$Z~ : a&(IX,)) < mJ; 
k cdp,g (B) = { B  -r.v.'s (kniliz : a p , q ( [ X ~ ] )  < a f .  
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The following construction will serve as a tool in the proof of the main 
results. Suppose that E and F are Banach spaces and Ad is a closed sub- 
space of F; then there exists an operator tk' EL(E/u- ' (IM), F / M )  such that the 
diagram. u 

Q u -  1 ( M )  

,/ ; Q M  
u' 

E/u- (W + F/M 
commutes. We will need the surjectivity property (see 1331 for the proof) of 
the type ( p ,  m) operator ideal, which means that bP,,(uJ) i b , , ( u )  for all 
closed subspaces M, where b,,,(u) is the infimum of real numbers c for which 
statement 2 in proposition 2.5 holds. 

PROPOSITION 4.1. Let p ELI, 21, q ~ [ p ,  a], and E and F be Banach 
spaces. Assume that the operator u E L(E F) is of type (p, q ) .  I f  the trian- 
gular array of symmetric E -r.u.'s [ X * !  f!, E .d& ( E )  and i j  the sequence 
of R.m.'s 

rn 4, 
y ( X n r ) ) n a  I 

1 

is uniformly tight, then the sequence (9 (u (S,))),> is relatively compact in the 
topology of weak convergence of p.m.'s on F .  

Proof.  At first we show that the sequence of p.m.'s {2'(u(S,))), , ,  is 
flatly concentrated. It follows by the assumptions, for fixed E > 0, that there 
exists a subspace F EB(E) such that 

Let H = u (F) E F ( F ) .  Then, by virtue of the relation F c u-  ( H )  and 
corollary 2.3 in [33] ,  we get 

k , 
d 1 9 ( X d I g C ( i x :  ~ F ( x )  > l1)Cl + ~ - ~ a ~ , ~ b ~ , ~ ( u ) ]  < E .  

1 .  

It is sufficient to show the uniform tightness of the sequence 
ly* ( 9 ( u ( s n ) ) ) J n a  .for ally* EP*. For fixed E > 0 there exists an M 2 1 such that 

An 

sup C P(llXnill > MI 
n 2 l  1 



Put A = M lly* o u [ l , / m .  Then the estimate 

holds for all n 2 1 ,  which completes the proof. 
Now we prove the existence of p.m. which will be the limit of the 

sequence of ( $ ~ ( u ( S , J ) ) , ~  ,, as will be seen later. 
P ~ o w s m o ~  4.2. Let p €[I, 2), q E [ p ,  co], and E and P be Banach 

spaces. Assume   hat the operator u EL(E, F') is of type ( p ,  q) (u satisfies the 
conditions o theorem 2.12 i f  q = w). Suppose that the triangular array of E - f 
r.v.'s {Xni}; satis$cs the condition 

k, 1 

(lim ~ s u p s p P ( l ~ ~ , I I  > s) i a: for q = co). 
n+m 1 ts1  

If there exists an R.m. F E ~ ( E )  such that 

then u (F) E 9m(F). 
Proof. By the assumptions, if q = ao , we get 

' 

t p  F (tBc) b b E  t p  J ( X * )  (tB? b li_mz sup sp P(llXJ > s) 
n 1 n 1 s C 1  

for all t ~ ( 0 ,  I]. Since 

it follows, by theorem 2.12, that U ( F ) E ~ ~ ( F ) .  For q < a, we get the 
desired result by analogous arguments and Fatou's lemma. 

PROPOSITION 4.3. Let p E [I ,  2), q E Cp, a], E and F be Banach spaces and 
(x*}? E dp,q ( E )  be an infinitesimal triangular array of E - r.u.'s. If there exists 



&y measures 

an R. rn. F E !Ul(E) such that u(F) EY~X(I;) and 
k, 

C ~ ( X , ~ ) ~ P  us n+a, 
1 

then the shife compactness of the sequence ( 9 ( u  (Sn))jn3 ' implies 

Proof.  By theorem 3.5.6 in [6] and from the shift compactness it 
follows that the sequence 

is relatively compact. We remark that also 

For any Jk ~ ( 0 ,  1) we have the decomposition 

An appeal to Khinchine - Le Cam's inequality (theorem 3.4.2 in [6]) ,  the 
inifinitesimality of the array {x,}?, condition u ( F )  E ~ ! U I ( F )  and relation 
(4.2) permit (for details see 161) to find a subsequence (nk) such that 
9(u(Snk)")  )e(u(F))  as k -r m. Also, from (4.2)' it follows that. 

k n 

C 1 x U ( u  (X,Ia) (dx)  -, J xu (F)  I,, (dx)  as n -, a,  
I B  B 

whenever 6 3  EC (u (F)) .  Therefore the second term on the right-hand side of 
(4.3) weakly converges to e,(u(F)) along the subsequence (n,). Now we will 
show that our limit has no non-degenerate Gaussian components. For this 
aim we estimate 

IE exp {i a* u (Snk)ak - Eu (Snk)dk )I - 11 

< lexp fi Oi* 3  (Sq)ak - Eu (S,)dk )) - 0 ' 3  (SnIF)dk - Eu (Snk)dk ) - '1 



for all y* EF*. Because ~,(U(F))^(~*)  # 0 for any y* EF*, the preceding estimate 
and corollary 2.2.3 in [22] imply that the left-hand side of (4.3) converges 
weakly to e,(u(F)) along the subsequence (na. By uniqueness of the decom- 
position of infinitely divisible p.m.'s it follows that (4.1) holds, which comple- 
tes the proof. 

NOW we are ready to prove the general statement. 
THEOREM 4.4. Let p ~ [ l ,  2), q ~ [ p ,  co], and E and F be Banach spaces. 

Assume that the operator u EL(E,  b;) is of type ( p ,  q) (u satisfies the conditions 
of theorem 2.12 if q = co). If for the infinitesimal triangular array of E-r.v.'s 
(xni]$, E ~ & ( E )  there exists an R. m. F E%R(E) with 

then (4.1) holds. 
Proof .  Let (Xbi) be a triangular array which is an independent copy of 

( X n i ) .  Then, by proposition 4.1, the sequence of p.m.'s { 9 ( u  (S,,) - u(Sn))},> 
is relatively compact. Therefore the sequence of p.m.'s { 2 ( ~ ( 5 , ) ) ) ~ ~ ~  is shift 
relatively compact. By proposition 4.2, u ( F ) ~ S ? Y l ( f l ,  So we are in a 
position to apply proposition 4.3, which completes the proof. 

Let X be a 3-r.v. and an R.m. F E W ( B ) ,  p ~ ( 0 ,  2), such that 
9(X)(r.)/L?(X)(tBc) F as t -+ oo (according to definition 3.1 on p. 133, 
Y(X) ERV(B, p, E ) ) .  As in the case of the central limit theorem (see [18]), 
there are two main questions in connection with the domain of.attraction 
problem. The first one is whether the R.m. F is an L.m. of some p.m. e on B 
(if the answer is positive, then g is necessarily p-stable p.m.). 

D e f i n i t i o n  4.5. Let p ~ ( 0 ,  2) and F E W P ( B ) .  We say that the B - f v .  X 
is prestable (with L.m. F) if F ~ 9 m 2 ( B )  and 

x* (Y(X) (t .)/2 (X) (tBc)) x* (F) ,  as t + oo , 

for all x* EB. We denote it by Y(X) EPS, (B, F). 
Now suppose that X is prestabIe and Q = e,(F) is a p-stable p.m. on B. 

Put a, (n) = (n) (see (3.2)) and 

for i.i.d. B-r.v.'s X, XI,  . . ., X,. Does then Y(z,(X)) tend weakly to e,(F)? 
We say that the B-r.v. X is in the domain attraction of a p-stable r.v. 

with L.m. F (write XEDA,(B, F) )  if X is prestable with L.m. P and 
Y(Zn (X)) converges weakly to e, (F) . If, for X EDA, (B, F), a, (n) - cnlJP as 



n + m ,  then we write X EDNA,@, C - P  F), because 
n 

- l p x i - ~ x ~ l , x l l ~ , p ) e s ( ~ - p ~  as n+m. 
1 

If it is known that for the B -r.v. X there exist an R.m. E'IVI~(S~J and a 
sequence an m such that n T ( X / a , )  as n 4 oo , then, by corollary 3.7, 
a,(n) - F l / ~ ( ~ c ) a ,  as n + co. Moreover, it can be proved that statement 5 of 
theorem 3.2 holds with r = T,- as an implication 4 5. From the proof of 
implication 5 + 1 it follows that T(X)  ERV (B,  p ,  k'/k (Bc)).  This fact can be 
proved directly with the help of a generalized uniform convergence theorem 
for regular varying measures. The proof of it we do not enclose in this paper. 
Now, if XEDA(B, F / F ( B ~ ) ,  then some computation with the help of 
proposition 6.1.5 in [22] shows that 

n 

, Y ( ~ ~ ~ [ ~ x ~ - ~ E x I ~ ~ ~ ~ ~ ~ ~ ~ ~ ] ) ~ ~ , ( F )  as n + m .  
1 

Therefore our version of the definition of domains of attraction is 
completely general and, on the other hand, is completely described by 
random variables. 

The following theorem contains results due to Marcus and Woyczynski 
r281, Mandrekar and Zinn [25], Araujo and Gine [ 5 ] ,  Gine [12]. We note 
that the proof of implication 1 =. 2 in [12] {theorem 3.2) contains some lack, 
because slow variation of t p P ( q F m ( ~ )  > t), for all m 2 1, demands non- 
degeneracy of the L.m. of a p-stable p.m. The proof given below is free from 
this. We think that the proof of implication 4 1 is new and more direct. 

Let (qi)i,l be a sequence of i.i.d. standard p-stable R1-r.v.'s and 

THEOREM 4.6. Let p ~ ( 0 ,  2). For the Banach space B the following are 
equivalent: 

1 .  B is of stable t ype  p, i.e. there exists a constant c < c~ such that . 

for all x , ,  ..., x, c B and some (all) ~ E ( O ,  p) ;  
2. RV(B,  p, F) c DA,(B, F); 
3. RV(B,  p ,  F )  n L',,,(B) c DNA,@, cF); 
4. RVCB, P ,  F) nL',,,(B) PS,(B, F). 
P r o  of. 1 5.2. It will be shown that the sequence I V(Sn (X)/a,(n) I,, , is 

shift tight. At this point note that there is no loss of generality in assuming 
that X is symmetric. Further, note that by results of Maurey and Pisier [29] 
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We define a B-r.v. X and a positive R1 -r.v. 5 independent of X with 
distributions 9(X) = r and P (< > t) = t - p  for all t 3 1, respectively. Then 
CX eRV(5 ,  p, i(y, I')) n L:, , (B) .  By assumption, there exists a symmetric 
p.m. e ( i  (y, @I r))  with Fourier transform 

- lim z(C qi xi)-(x") = exp (- Xl<x*, xi)l , - n _ p  
1 1 

and because of the Ito-Nisio theorem-the sum C qi x, (i = 1, 2, .. .) exists a.e. 
This is true for every choice of c B with IJx,TJP < c~ (i = 1, 2, . . .). 
Hence the Banach space B is of stable type p, which completes the proof of 
theorem 4.6. 

Now we prove the main statement. Put 
- - 

Lj,,(B) = {X-B-r.v.: lim tP P(IIXII > t )  = 0 and 
t+m 

I WLLN, (B) = fX - B - r.v.: n-'Ip Sn (X) 4 0 in probability{. 
I 

! THEOREM 4.7. Let p s [ l ,  2), and E and F be Banach spaces. For an 
I operator u EL(& F) the following are equivalent: 
I 1. u is of type ( p ,  co); 
I 
I 2. for any E-r.v .  X, with 

: C, = sup [ sup sP P(lIXIl > s)/a%Cn) P(llXll > ax(n))l < 
n3l ssafin) ~ and 9 ( X )  ERV(B,  p ,  F ) ,  the relation 6P (u (x)) EDA,(F, u (F)/u (F) (B')) hoZds; 

I 3. u ( R V ( E ,  P ,  F) n Li,m(E)) c DNAp@, cu(F)); - 

I 4. u (L;, , (4) c WLLN,(F). 
Proof.  1 =. 2. It will be shown that 

j (4.8) sup 1 sup a$ (s) s- '/a% ( n )  n- '1 < co . 
n2l l<sSn 

. I 

We define the function b by formula (4.6), which, by the same reasons, 
belongs to RV(p) and b(ax(t)) - t as t -+ co. Put R(t) = P(llXll > t). Then, by 
lemma 3.3. 

I Therefore we have 

sup a$ (s)/s < CP sup up R (u) < C$ C1 a%(n) R (ax(.)) 
l$sSn l i u i e X ( n )  



for all n 2 1, which implies (4.8). Put 

C, = sup t /a,  (b (t)). 
t > a  

-Then, by (4.8) and because b(ax(n)) < n for all n 3 1, the estimate 

(4.9) sup rp P ( ~ , ( x )  > r) d sup b( t )  P(~,(x)  > t) sup tP/b(t) 
I] < t C ax(") r > D  t G a x ( n )  

G supb(t) I > D  P(qM(X) > t )C{  sup a$(u)/u 
I SuSn 

holds for all n 3 1 and any closed subspace M c E .  As in the proof of 
theorem 4.4 we conclude that for fixed E > 0 there exists an M E.P(E) 
such that 

,ti 2 1 

for some constant c. Put G = u(M); then, by (4.9), (4.8) and (4.10), 

+ ~ - ~ b ~ , , ( u ) n a ~ ~ ( n )  sup tPP(q,(X) > t) < E 
t < ax(n) 

for all n 2 1 and any symmetric E-r.v. Now we conclude, as in theorem 4.6, 
that, as n -+ oo , 

u ( a i  (n) f S n  (U (XI) - ~ E u  (XI ~ { I I  u(m I <ox(n)l]) 5 es (U (F)). 
It easy to see that n ~ ( u  (X)/ax (n)) " u (F) as n + m . Therefore, by 

corollary 3.7, a,(,, (n) - ax (n) [u(F) (E)I1jp as n + oo . Now, a straightforward 
computation with the help of proposition 6.1.5 in [22] assures us that 2 
holds. 

2 a 3. By corollaries 3.5 and 3.7, a,(,, (n) - [ncu (F) (B~)]~IP as n + co , 
where 

c = lim tP P(ItXI1 > t). 
t - + m  

An application of proposition 6.1.5 of [22] shows that 3 holds. 
3 a4. Following the proof of the analogous implication in [25] and 

[12], we define the E - r.v. Y = r X - t  qx ,  where x ES, r is a Rademacher R1 - 
r.v., y is an R1 -r.v. with ch.f. Ee"" expl -c(p)ltlP), 
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the E-r.v .  X belongs to Lt, , (E) and all r.v.'s are independent. Let r 
= 2- (6, +S- .) and F = i (y, @ T). Then in the papers mentioned above it is 
proved that YEWV(E, p, pF) and tPP(/(Yl(  > t )  + F ( B c )  = pLi  as t + a. 
Therefore, by the assumptions, 

~ ( n -  'IP S ,  (ru (x))  + u (x) q )  5 c (U (F))  as n -+ co 

Since , 

e ( u { ~ ) ) - ( y * )  = exp -c (p) l  ( u ( s ) ,  y*)lP; = Eexp li ?, Y*);, 

we have ~u(X)EWLLN,(F), which, by corollary 3.2 in [33], implies 
u(X) EWLLN~(F). 

4 3 1. This implication is proved in3[33], which completes the proof of 
theorem 4.7. 

5. Applications. We will apply our results in order to get sufficient 
conditions for stochastic processes to have a version with continuous sample 
paths satisfying some maximal inequality and to characterize domains of 
attraction of p-stable processes. For a stable process with index l < p < 2 
sufficient (and necessary, far the strongly stationary case) continuity condi- 
tions are due to Marcus and Pisier C26, 271, which extends the Dudley- 
Fernique theorem for Gaussian processes, i.e. the case p = 2. The paper [27] 
contains among others the correct generahation to domains of normal . 
attraction of the C (S) central limit theorem. 

Supplementary results are given below. Our approach goes back to Zinn 
[42] and was applied in this context by Araujo and Marcus [7], Gin6 and 
Marcus 113, 141. The continuity conditions given below can be applied to 
processes bzg-not necessary p-stable. They essenhTlly concTde with thosexr  
the stable case. The second statement is an extension of the Marcus and 
Pisier result in [27], related to the limit theorem for the case of not 
n&essarily normal attraction. 

Let (T, .F) be a compact metric space and C(7) denote the BaTaChspace 
of continuous functions on T with sup norm. For a zcon~nuous  pseudo- 
metric Q on T let N(T, g; E )  denote the minimal number of @-balls of radius 
E > 0 with centers in IT; which are necessary in order to cover IT: We define 

1 

~ , ( Q ) = J I o ~ ' ~ Q N ( T , ~ ; E ) &  for 2 < q < c o ,  
0 

1 

f m(e) = jloglogN(T, Q; ~ ) d g *  
0 

For fixed to = T put 

Lip,(T) = b,€C(T):  lIxIle = I X @ ~ ) I +  supIx(s)-x(t)l/e(s, t )  < a} 
. , 

10 - Pam. 9.2. 



and S = fx EC(T): llxllp = 1). Let m be a finite Borel measure on the unit 
sphere W of C(TJ. Actually in [27] (cf. corollary 3.2 in [13]) it is proved that 
if 3, (q)  < cn and 

(5.1) 1 llxll," m (dx) < 02 
U 

for p ~ [ l ,  2) and l/p+ l/q = 1, then there exists a p-stable p.m. on C ( T )  with 
spectral measure rn. Put 

(5.2) r(W) = I IIYII,P~w(Y/IIYI~~)~(~Y~ 
U 

for .all Borel sets W on S. Then, by (5.1), 

(5.3) T(S)  = j I I Y I I , P ~ ( ~ Y )  = J I I Y ~ I , P ~ ( ~ Y )  < a. 
b e U : / l ~ l l ~ ' m l  U 

--. - 
For the measure we . -  can - define a a - finite measure F = i (y, @ T) as in 

section 3. Let 3 denote an image measure of F under the inclusion of 
Lip,(T) in 'C(v By (5.2) we ,have 

for all Borel sets A on U. We conclude that the above continuity result is 
actually a generalization of it result due to Mouchtari and de Acosta 
mentioned in the intriduction, because the inclusion map of Lip,(T) in C(T) ,  
under the condition-~,(QJ < oo, isof type (p, CQ) (see theorem 1.2 in 1271). 
By virtue of an argument in theorem 2 [42], the next corollary is a simple 
translation of theorem 2.12 {see also remark 2.13.2)) into the language of 
stochastic processes. 

COROLLARY 5.1. With the above notations, for a o -finite Borel measure F 
on Lip,(T) such that 

sup tP F ( x :  lJxlle > t )  < oo ' and lim tP F fx: Ilxll, > t )  < coy 
t 3 l  -' t + m  

the finiteness of f q ( @  implies that - -. there .. exists a stochastic process 
: ~ ( t ) i  t E T J  on a probability space (Q, 9, P) with continuous sample paths 
and with the Lam. F of the induced p.m. on C(T), satisfying the inequality 

supsP P (SUP IX(t)l > s) < cp sup sPF {x:  llxllp > S) 
s > O  ~ E T  S S O  

for some constant c, depending only on p. 
. The next statement gives conditions for a process to belong to the 
domain of attraction of a p-stable process with general norming constants. 
This is a consequence of theorem 4.7. 
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COROLLARY 5.2. With the above notations, assume that f g ( @ )  < m and 
{ X ( t ) ;  t E T )  is a sample continuous process on TT: If  

(i) there exists a Bore1 c-Jinite measure F on Lip,(T) with 
F {x: llxlle > t )  = t - P F  [x: lIx[le > 1) far aI1 t > 0, and 

(ii) sup sop sP P(IIXlle s)/u$(n) P(IIXlfe > ux(n))  < oc, where 
rt3 t s<aXfflL 

ax(n)  = sup {s > 0: nP(IIXfle > s) 2 11, 

then there exists a p-stable stochastic process { Y It); t c T )  with continuous 
san~plr paths and with the L.m. F of an induced p.m. on C(T) satisfying 

Y(P, (XI - nEXl,l,xll sax(fi,,l/a;r(n))s Y(  1 as n + 3 

in C ( T ) ,  where &(n) = sup(s > 0: nP(llXll > s) >, 1). 
Remark  5.3. A complete description of the domain of attraction, i.e. 

without condition (ii) in coroIIary 5.2 but under the more restrictive entropy 
condition yn(e) < co, is given in [13]. It is easy to remove condition (ii), 
when Yqr (Q) c oo for some 2 G q' < q.  

Remark  5.4 (Added in proof). Results on the DNA in C (S), obtained by 
the method of majorizing measures, are presented in recent D. Juknevieiene 
paper (Liet. mat. rink., 1987, XXVI, p. 362-373). 
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