A KRONECKER-PRODUCT DESIGN AND ITS REDUCIBLE ASSOCIATE CLASSES

BY
S. KAGEYAMA (Hiroshima) and R. N. MOHAN (Nuzvid)

Abstract

Using incidence matrices N_{i} of balanced incomplete block (BIB) designs and their complementary incidence matrices N_{i}^{*} for $i=1,2$, a partially balanced incomplete block (PBIB) design in the form $N_{1} \otimes N_{2}+N_{1}^{*} \otimes N_{2}+N_{1} \otimes N_{2}^{*}$ is dealt with. Necessary and sufficient conditions for this rectangular PBIB design to be reducible to 2 -associate PBIB designs are discussed. It is also shown that this type of designs is not reducible to any group divisible PBIB design.

1. Introduction. The Kronecker product of designs and reduced designs were defined by Vartak [7], who did not consider the association scheme concerning these designs explicitly. Reduced designs, together with association schemes matching these designs, were discussed by Kageyama [3, 4, 5]. It should also be remarked that an association scheme can be defined and characterized independently of treatment-block incidence of the design (cf. [1]). When the coincidence numbers (i.e., λ_{i}-parameters) of a PBIB design are not all different, some associate classes of the PBIB design, based on a certain association scheme, may not be all distinct. In this case, there is only a possibility of reducing the number of associate classes of the PBIB design.

The idea in this paper is similar to that in [3] and [4]. But we can derive new results by presenting necessary and sufficient conditions for a PBIB design with at most three associate classes constructed by the Kronecker product of two BIB designs, to be reducible to PBIB designs with only two distinct associate classes. It is also shown that the design considered here is not reducible to a group divisible PBIB design. This may be an interesting case regarding the reduction of associate classes in a rectangular PBIB design.

The notation used here are coincident with those generally used. The
definitions of BIB designs, PBIB designs and association schemes can be found in [1], [2] and [6].
2. Kronecker product of two BIB designs. Let N_{i} be a BIB design with parameters $v_{i}, b_{i}, r_{i}, k_{i}, \lambda_{i}$, and N_{i}^{*} be its complementary BIB design with parameters $v_{i}^{*}=v_{i}, b_{i}^{*}=b_{i}, r_{i}^{*}=b_{i}-r_{i}, k_{i}^{*}=v_{i}-k_{i}, \lambda_{i}^{*}=b_{i}-2 r_{i}+\lambda_{i}$ for i $=1,2$. Consider the Kronecker product of these designs of the form N $=N_{1} \otimes N_{2}+N_{1}^{*} \otimes N_{2}+N_{1} \otimes N_{2}^{*}$, which is also equivalent, as a matrix, to $J_{v_{1} \times b_{1}} \otimes N_{2}+N_{1} \otimes N_{2}^{*}$ or $N_{1} \otimes J_{v_{2} \times b_{2}}+N_{1}^{*} \otimes N_{2}$, having different coincidence numbers, where $J_{s \times t}$ is the $s \times t$ matrix of 1 's, and especially G_{s} $=J_{s \times s}$. But, here, we consider designs with incidence block structure in the form of N as above only.

From the properties of the BIB designs it follows that, for $i=1,2$,

$$
\begin{align*}
& N_{i} N_{i}^{\prime}=\left(r_{i}-\lambda_{i}\right) I_{v_{i}}+\lambda_{i} G_{v_{i}} \\
& N_{i}^{*} N_{i}^{* \prime}=\left(r_{i}-\lambda_{i}\right) I_{v_{i}}+\lambda_{i}^{*} G_{v_{i}} \tag{2.1}\\
& N_{i} N_{i}^{* \prime}=\left(\lambda_{i}-r_{i}\right) I_{v_{i}}+\left(r_{i}-\lambda_{i}\right) G_{v_{i}}
\end{align*}
$$

where $I_{v_{i}}$ is the identity matrix of order v_{i}. Since these matrices (2.1) are symmetrical and mutually commutative, there exist orthogonal matrices P_{i} which make all of them diagonal simultaneously, such that

$$
\begin{gather*}
P_{i} N_{i} N_{i}^{\prime} P_{i}^{\prime}=D_{i}=\operatorname{diag}\left\{r_{i} k_{i}, r_{i}-\lambda_{i}, \ldots, r_{i}-\lambda_{i}\right\}, \\
P_{i} N_{i}^{*} N_{i}^{* \prime} P_{i}^{\prime}=D_{i}^{*}=\operatorname{diag}\left\{\left(b_{i}-r_{i}\right)\left(v_{i}-k_{i}\right), r_{i}-\lambda_{i}, \ldots, r_{i}-\lambda_{i}\right\}, \tag{2.2}\\
P_{i} N_{i} N_{i}^{* \prime} P_{i}^{\prime}=\tilde{D}_{i}=\operatorname{diag}\left\{\left(v_{i}-1\right)\left(r_{i}-\lambda_{i}\right), \lambda_{i}-r_{i}, \ldots, \lambda_{i}-r_{i}\right\},
\end{gather*}
$$

where $\operatorname{diag}\left\{a_{1}, \ldots, a_{n}\right\}$ denotes a diagonal matrix with diagonal elements a_{1}, \ldots, a_{n}, here n being v_{i}, respectively, for $i=1,2$. Hence it follows, from (2.2), that

$$
\begin{align*}
\left(P_{1} \otimes P_{2}\right) N N^{\prime}\left(P_{1} \otimes P_{2}\right)^{\prime}=D_{1} \otimes & D_{2}+D_{1} \otimes D_{2}^{*}+D_{1}^{*} \otimes D_{2}+ \tag{2.3}\\
& +2\left(D_{1} \otimes \tilde{D}_{2}+\tilde{D}_{1} \otimes D_{2}+\tilde{D}_{1} \otimes \tilde{D}_{2}\right)
\end{align*}
$$

From the structure of N, the parameters of the design can be expressed as follows:

$$
\begin{aligned}
& v^{\prime}=v_{1} v_{2}, b^{\prime}=b_{1} b_{2}, r^{\prime}=r_{1} r_{2}+r_{1}\left(b_{2}-r_{2}\right)+r_{2}\left(b_{1}-r_{1}\right), \\
& k^{\prime}=k_{1} k_{2}+k_{1}\left(v_{2}-k_{2}\right)+k_{2}\left(v_{1}-k_{1}\right) \\
& \lambda_{1}^{\prime}=r_{1} \lambda_{2}+\left(b_{1}-r_{1}\right) \lambda_{2}+r_{1}\left(b_{2}-2 r_{2}+\lambda_{2}\right), \\
& \lambda_{2}^{\prime}=\lambda_{1} r_{2}+\left(b_{1}-2 r_{1}+\lambda_{1}\right) r_{2}+\lambda_{1}\left(b_{2}-r_{2}\right) \\
& \lambda_{3}^{\prime}=\lambda_{1} \lambda_{2}+\left(b_{1}-2 r_{1}+\lambda_{1}\right) \lambda_{2}+\lambda_{1}\left(b_{2}-2 r_{2}+\lambda_{2}\right)
\end{aligned}
$$

Furthermore, it follows from (2.2) and (2.3) that the eigenvalues of $N N^{\prime}$ and their multiplicities are as follows:
$\varrho_{0}^{\prime}=r^{\prime} k^{\prime}$ with multiplicity 1 ,
$\varrho_{1}^{\prime}=\left(r_{2}-\lambda_{2}\right)\left(b_{1}-r_{1}\right)\left(v_{1}-k_{1}\right)$ with multiplicity $v_{2}-1$,
$\varrho_{2}^{\prime}=\left(r_{1}-\lambda_{1}\right)\left(b_{2}-r_{2}\right)\left(v_{2}-k_{2}\right)$ with multiplicity $v_{1}-1$,
$\varrho_{3}^{\prime}=\left(r_{1}-\lambda_{1}\right)\left(r_{2}-\lambda_{2}\right)$ with multiplicity $\left(v_{1}-1\right)\left(v_{2}-1\right)$.
The same procedure as in [3], [4] and [5] shows that the design N $=N_{1} \otimes N_{2}+N_{1}^{*} \otimes N_{2}+N_{1} \otimes N_{2}^{*}$ is a PBIB design with at most three associate classes. Then among the $v_{1} v_{2}$ treatments in the design N a rectangular association scheme can naturally be defined as follows. Let there be $v=v_{1} v_{2}$ treatments arranged in a rectangle of v_{1} rows and v_{2} columns. With respect to each treatment, the first associates are the other $n_{1}=v_{2}-1$ treatments of the same row, the second associates are the other $n_{2}=v_{1}-1$ treatments of the same column, and the remaining $n_{3}=\left(v_{1}-1\right)\left(v_{2}-1\right)$ treatments are the third associates ([6], Section 8.12.1).

In order to have a two-class association scheme, the following relations can first be found:

$$
\begin{align*}
& \lambda_{1}^{\prime}=\lambda_{2}^{\prime} \text { iff }\left(r_{1}-\lambda_{1}\right) b_{2}-\left(r_{2}-\lambda_{2}\right) b_{1}=r_{2} \lambda_{1}-r_{1} \lambda_{2} \\
& \lambda_{1}^{\prime}=\lambda_{3}^{\prime} \text { iff } b_{2}=2 r_{2}-3 \lambda_{2} \\
& \lambda_{2}^{\prime}=\lambda_{3}^{\prime} \text { iff } b_{1}=2 r_{1}-3 \lambda_{1} \tag{2.4}\\
& \varrho_{1}^{\prime}=\varrho_{2}^{\prime} \text { iff }\left(r_{2}-\lambda_{2}\right)\left(b_{1}-r_{1}\right)\left(v_{1}-k_{1}\right)=\left(r_{1}-\lambda_{1}\right)\left(b_{2}-r_{2}\right)\left(v_{2}-k_{2}\right) \\
& \varrho_{1}^{\prime}=\varrho_{3}^{\prime} \text { iff } b_{1}=2 r_{1}-\lambda_{1} \\
& \varrho_{2}^{\prime}=\varrho_{3}^{\prime} \text { iff } b_{2}=2 r_{2}-\lambda_{2}
\end{align*}
$$

However, since the coincidence number of a complementary design of a BIB design satisfying $b_{i}=2 r_{i}-3 \lambda_{i}$ is $b_{i}-2 r_{i}+\lambda_{i}=-2 \lambda_{i}$, which is negative, there does not exist a BIB design with $b_{i}=2 r_{i}-3 \lambda_{i}$ for $i=1,2$. This, with (2.4), implies that relations $\lambda_{1}^{\prime} \neq \lambda_{3}^{\prime}$ and $\lambda_{2}^{\prime} \neq \lambda_{3}^{\prime}$ hold in this design N. Hence, from the definition of the group divisible association scheme ([6], Section 8.4), the following result concerning the reduction of associate classes is established:

Proposition A. The above 3-associate rectangular PBIB design $N_{1} \otimes N_{2}$ $+N_{1}^{*} \otimes N_{2}+N_{1} \otimes N_{2}^{*}$ is not reducible to any 2-associate group divisible PBIB design.

Note that a BIB design satisfying $b_{i}=2 r_{i}-\lambda_{i}$ is just the design $G_{v_{i}}-I_{v_{i}}$ or a juxtaposition of several copies of it.

Now, (2.4) and Proposition A imply that if the PBIB design N with three associate classes is a P $\bar{B} I B$ design with at most two distinct associate classes, then only the combination of the first and the second associate
classes as a new associate class can be considered (with the third associate class being invariant as a new second associate class) to obtain a possible reduction to an L_{2} association scheme. In the present case, from the definition of the L_{2} association scheme ([6], Section 8.4), we must have a condition $v_{1}=v_{2}$. Thus, from the structure of the association schemes and (2.4), we can obtain necessary conditions for the reduction as follows:

$$
\begin{gather*}
v_{1}=v_{2} \quad \text { and } \quad\left(r_{1}-\lambda_{1}\right) b_{2}-\left(r_{2}-\lambda_{2}\right) b_{1}=r_{2} \lambda_{1}-r_{1} \lambda_{2} \tag{2.5}\\
\left(r_{2}-\lambda_{2}\right)\left(b_{1}-r_{1}\right)\left(v_{1}-k_{1}\right)=\left(r_{1}-\lambda_{1}\right)\left(b_{2}-r_{2}\right)\left(v_{2}-k_{2}\right) \tag{2.6}
\end{gather*}
$$

Conversely, if the parameters of a PBIB design $N_{1} \otimes N_{2}+N_{1}^{*} \otimes N_{2}$ $+N_{1} \otimes N_{2}^{*}$ satisfy (2.5), then the design can obviously lead to a PBIB design with at most two distinct associate classes. Among the v^{2} treatments in the reduced design, where $v=v_{1}=v_{2}$, an L_{2} association scheme can be formed under (2.5), by combining the first associate class and the second associate class. In this case, from a property of an association algebra of the L_{2} association scheme, $\varrho_{1}^{\prime}=\varrho_{2}^{\prime}$ (i.e., (2.6)) must hold necessarily.

Thus, the following has been obtained:
Theorem A. Given two BIB designs, N_{i}, with parameters $v_{i}, b_{i}, r_{i}, k_{i}, \lambda_{i}$ for $i=1,2$, a PBIB design $N_{1} \otimes N_{2}+N_{1}^{*} \otimes N_{2}+N_{1} \otimes N_{2}^{*}$, of the rectangular association scheme with at most three associate classes, is reducible to a PBIB design of the L_{2} association scheme, with only two distinct associate classes, iff

$$
v_{1}=v_{2} \quad \text { and } \quad\left(r_{1}-\lambda_{1}\right) \dot{b_{2}}-\left(r_{2}-\lambda_{2}\right) b_{1}=r_{2} \lambda_{1}-r_{1} \lambda_{2} .
$$

Remark. This theorem is different from Theorem 4 of Kageyama [3]. An example of Theorem A can always be produced by taking $N_{1}=N_{2}$ as starting BIB designs.

Since in BIB designs the equalities $v_{1}=v_{2}$ and $k_{1}=k_{2}$ yield a relation $r_{1} \lambda_{2}=r_{2} \lambda_{1}$, it follows that $\left(r_{1}-\lambda_{1}\right) b_{2}=\left(r_{2}-\lambda_{2}\right) b_{1}$ is equivalent to (2.5) [the second condition] and to (2.6), if the above equalities hold. This observation together with Theorem A gives also the following

Corollary A. Given two BIB designs, N_{i}, with parameters v, b_{i}, r_{i}, k and λ_{i} for $i=1,2$, a necessary and sufficient condition for a PBIB design $N_{1} . \otimes N_{2}$ $+N_{1}^{*} \otimes N_{2}+N_{1} \otimes N_{2}^{*}$, of a rectangular association scheme with at most three associate classes, to be reducible to a PBIB design of the L_{2} association scheme with two distinct associate classes, is that $\left(r_{1}-\lambda_{1}\right) b_{2}=\left(r_{2}-\lambda_{2}\right) b_{1}$.

Remark. For some kind of similarity of an expression of necessary and sufficient conditions for the reduction, refer to Theorem 4 in [3] and to [4].
3. Additional remark. We can consider various other forms as Kronecker
products of some incidence matrices of BIB designs, such as $N_{1} \otimes N_{2} \otimes N_{3}$ $+N_{1}^{*} \otimes N_{2} \otimes N_{3}+N_{1} \otimes N_{2}^{*} \otimes N_{3}+N_{1} \otimes N_{2} \otimes N_{3}^{*}, N_{1} \otimes N_{2} \otimes N_{3}+N_{1}^{*} \otimes$ $N_{2} \otimes N_{3}+N_{1} \otimes N_{2}^{*} \otimes N_{3}^{*}$, and their generalizations. But, these cases may also be treated as a routine application of the present approach with some modification. Hence they are omitted here.

Acknowledgements. The authors thank the referee for his thorough and constructive comments which improved the presentation. The first author was supported in part by Grant 321-6066-58530013 (Japan) and Polish Academy of Sciences, while the second author was supported in part by research grant code no. 12355, Dt.27/2/82 and no. 1607, Dt.29/10/85 of University Grants Commission, New Delhi, India.

REFERENCES

[1] R. C. Bose and D. M. Mesner, On linear associative algebra corresponding to association schemes of partially balanced designs, Ann. Math. Statist. 30 (1959), p. 21-38.
[2] W. H. Clatworthy, Tables of Two-Associate-Class Partially Balanced Designs, NBS Applied Mathematics Series 63, U.S. Department of Commerce, Washington 1973.
[3] S. Kageyama, On the reduction of associate classes for certain PBIB designs, Ann. Math. Statist. 43 (1972), p. 1528-1540.
[4] - On the reduction of associate classes for the PBIB design of a certain generalized type, Ann. Statist. 2 (1974), p. 1346-1350.
[5] - Reduction of associate classes for block designs and related combinatorial arrangements, Hiroshima Math. J. 4 (1974), p. 527-613.
[6] D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments, John Wiley, New York 1971.
[7] M. N. Vartak, On an application of Kronecker product of matrices to statistical designs, Ann. Math. Statist. 26 (1955), p. 420-438.

Department of Mathematics
Faculty of School Education
Hiroshima University
Shinonome, Hiroshima 734, Japan

Department of Mathematics D. A. R. College

Nuzvid A. P.
India

Received on 11. 11. 1986;
revised version on 30. 3. 1987

