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. EXTREME VALUE THEORY
- FOR ASYMPTOTIC STATIONARY SEQUENCES

BY
WLADYSEAW SZCZOTKA (WrocLAw)

Abstract. The problem of behaviour of a,( max X, —b,) is consi-

<kg
dered when a, >0, |b,] <o and the sequenclze kX"= (X, k= 1} is
asymptotically stationary in variation.

X is said to be asymptotically stationary in variation if ||.2(X,)
—2(X°)] -0, where X, = {X, .z k> 1)}, while #(X,) and £(X°
denote the distributions of the sequences X, and X° = {X7, k > 1},

" respectively. The sequence X° of random variables X{ is stationary
and it is said to be a stationary representation of X.

The main result states: under || .P(X,)— L (X" -0 and some

natural conditions concerned X and X°, the sequence of distributions

#(a,( max X,—b,)) weakly converges provided the sequence of
1<€k<n

#(a,( max Xk—bn)) weakly converges and the limits are. the same.
1<€k<n .

An analogous result is also formulated for the processes of exceedances.

1. INTRODUCTION

Let - Y=1{%, k> 1‘ be an S-valued discrete-time process and Y,

1Y, = Y4y, k= 1}, n > 1. Sis assumed to be a Polish metric space. For the
Borel o-field of subsets of a space we write # before the symbol denoting the
space, for the distribution of a random element (r.e) we put % before the
symbol denoting the r.e., for the total variation of the subtraction of proba-

bility measures 4 and v on a measurable space (Q, #) we .write ||u—v|, ie.
=il = ZSuplPl(B) v(B)|

and for the weak convergence of probability measures or distribution func-

tions (d.f's) we write =>. Further Yis said to be asymptotically stationary in
variation if there ex1sts an §- valued d1screte-t1me process ¥ = {Y°, k > 1} such
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that ||.£(Y)— £(Y%|| = 0. The process Y° is stationary and 1t is called a
stationary representation in variation of Y.

Let X = {X,, k > 1} be a real-valued discrete-time process, X° = {X?, k
> 1} its stationary representatlon in variation, M, =maxX, and M?
=max Xy (1 €<k < n). The main purpose of this paper is:

(1) to give conditions under which {%(a,(M,—b,)! weakly conver-
ges provided {¥(a,(M?—n,))} weakly converges for some constants a, > 0
and b,; : _ :

(2) to give sufficient conditions under which the behaviour of exceedan-
ces processes defined for X and X° is similar.

The main results, solving the stated problems, are given in Theorems 1-
4. A simplified version of the answer to problem (1) states:

If |.#(X,)— =.“,P(XO)H —0 and there exist constants a, > 0 and b, €R such
that ¥(a,(M2—b,))=v, where v is max-stable and, further, there exists a
nondecreasing sequence of positive 1ntegers k, such that k, — o0, k,/n —0
and P{a,(M, —b,) > x} >0 for x >inf{y: v(— o0, y] >0}, then ﬁ,”(a (M,
—b,))=v

In the Extreme Value Theory sufficient conditions for the weak conver-
gence of #(a,(M,—b,)) are known also in the case where X is not necessary
stationary ([2], [8], [6], [1]). In papers [1], [6], and [8] this problem was
considered in the situation when X is a homogeneous Markov chain or it is
chain dependent. But then, under some additional natural conditions, X is
asymptotically stationary in variation (see Section 4). Thus {%(a,(M,—b,)}
weakly converges provided {%(a,(Mj—b,))} does (see Example 6). :

The similar fact, i.e. the asymptotic stationarity in variation, is true for
the following processes:

(a) a regenerative process with the aperiodic distribution of the regenera-
tive period and with the finite expectation of this period;

(b) the waiting time process if the generic sequence is asymptotlcally
stationary in variation [10];

(©) X =1{f(Y), k> 1), where Yis asymptotically stationary in variation
and f is a measurable mappmg of S® into R.

- The main results (Theorems 1-4) are proved by the method based on
the following .

ProrosiTioN. 1. Let pu and p, (n>1) be probability measures on
(S, #(8)), h, (n > 1) measurable mappings of S into a Polish metric space §',
and v a probability measure on (S', #(S"). Then the following implications
hold:

@) If |ipn—pll =0, then llunh_ — phy 1ll-+0

() If llua—pll =0, lluhy ' =Vl >0 (or phy* =), then ll#,.h 1—VII -0
or p,hyt=v).
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Implication (i) follows from the inequality ||u,h, !~ uh; Y| < lup— ull,
and (ii) is implied by the relatlons |t By 1 (B)—v(B)| < |u, hy * (B)— uh, *(B)|
+|uhy  (B)=v(B)| < Ilty— |+ 12k (B)— v (B).

It may be worth noticing here that Proposition 1 has also other
consequences. The following one concerns a continuity problem in the
Extreme Value Theory:

ProposiTioN 2. If, for eachnz=1, X(n) = ‘X,,k, > 1! is an re. of R®

such that ||.£ (X (m)—2(X)| =0 and & (a,(M, b,,)):v then
#(a,( max X,,—b,)=v.
1<k<n

Notice that if ||.# (X (n))— £(X)|| =0, then Proposition 2 may be also
viewed as an other approach to the investigation of max X,, (1 <k <n).
Similarly, Proposition 1 and the convergence ||.Z(X ()~ 2 (X)|| —0 allow us
to find convergences of other than max X,; (1 <k < n) functions of X(n):
E.g., in view of Serfozo [9], we may formulate an analogue of Proposition 2
for the extremal process or the process of exceedances.

2. MAIN RESULTS

To complete the set of notations from the previous section, let us
introduce the following ones. Let |k,} denote a nondecreasing sequence of
integers tending to infinity in such a way that k,/n =0 as n » o0, F, the df.
of X, (k> 1), F the df. of X, x(v) =inf {xeR: v(—co, x] > 0}, where v is
a probablhty measure on (R #(R)), I 4 the indicator of a set 4 and x
= {%, k > 1} a point of R”, where x, eR. Further, for a sequence {u,} of
real numbers let N, and N? (n> 1) be point processes defined by

= Y L,(X, N@B= Y I, (X

1<k<n 15k<n
kinecB k/neB

where B belongs to #((0, 1]) and B,, = {x€R™: x; >u,}. Obviously, N,
and N{ are processes of exceedances of the level u, by the processes X and
X°, respectively. Let, finally, .#" denote the space of all measures on (0, 1]
with values in the set of nonnegative integers. This space is considered with
the vague topology (see e.g. [3], p. 11).

Now let us formulate the following conditions:

A 1€ (X)— 2 (X0 —o0. |

A,. There exist sequences {a,} and {b,} (a,>0,b,eR) such that
PL(a, (M2 —b,)=v. -

A;. There exist {k,} for which {a,} and {b,} from A, satisfy a,,/a,,_kn -1
‘and a,—, (b,—b,—; ) —0.

A,. There exists a {k,} such that, for each x > x(v), P{a,(M, —b,) > x}
—0, where {a,}, {b,} and v satisfy A,.




54 W. Szczotka

As. There exists-a {k,} such that, for each x > x(v), P {a,(M}, —b,) > x}
—0, where {a,}, {b,} and v satisfy A,. » _
Behaviour of {M,}. For a real-valued process Z = {Z,, k > 1} we have
(1) . P{max Z, < x}
L 15k€n

o =P {max Z, € x}—P{max Z, > x, max Z, < x},
i<k<n 1<k i<k<n

h wherel gi<nnzl,xeR.

THEOREM 1. Let A, be sﬁtisﬁed and let {k,} and {u,} be such that
)] P{M? >u,}—>0 and P{M, >u, —0.
Then ‘ '
3) P {M? > u,} —P (M, > u,} —0.
Proof. Define mappings h,: R® R (n> 1) by

h,(x) = max x,—u,.
15k€n—k,

These mappings are measurable.
Rewriting relation (1) for X and X° we obtain
P{M,< u} P {h,(X,) <0} —P (M, >u,, h,(X,) <0}
and
P MO < u,} = P {h,(X°) < 0} —P {MC > u,, h,(X)<O0)
But in view of the first implication of Proposition 1, we have
P {h,(Xs,) < 0} =P {h,(X°) < 0} —*0,

which together with (2) gives (3).
In the case of linear normalization of M, and M? we obtam the
following analogue of Theorem 1:

TueOREM 2. Let conditions A,—A, be satisfied, where A, and A, hold with

* ‘the same Jk} Then
@ % (ay(M,—by)=v.
"/\) " Proof. Define mappings h,: R* >R (n> 1) by

h(x}—a(max X, —b,).
1<k<n

These mappings are measurable.
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Rewriting relation (1) for X we obtain
p '{a"(M,]—b") < x)
=P :a"'/ﬂ"_kn(hn_k {an)—' n—ky (b _bn—k;)) < x1_

~P an(Mk n) > X, an( max Xk,,+k'—bn) < x}'
1sk<n—k, ’
Now, by conditions A,—A, and the second implication in Proposmon 1,
we find

P {an(Mn_bn) < x} —’V(—OO, x]

if x > x(v) and x is a continuity point of v. Otherwise, i.e. if x < x(v), it is
obvious that P {a,(M,—b,) < x} —=0. Thus the proof is complete

In view of this proof we can state something about the necessarlty of A,
and A, in Theorem 2.
- Remark 2.1. (i) Condition A; holds prov1ded Al, A, A, and (4) hold,
where {k,} in A is the same as in A,.

(i1) If X, X,, ... are mutually independent, then condition A, holds,
provided A,-A; and (4) hold, where {k,} in A, is the same as in A,.

Notice that condition A; ought to depend only on X° In the followmg
it 1s proved that A, and As are sufficient for A;.

Lemma 2.1. Let A, and A, be satisfied. Then A holds with the same {k,) }
as in As.

Proof. Rewriting relation (1) for X° we obtain
(5) P{a,,(M,?-—b,,)s_x}

=P {an'/an“k"(an—kn(Mr?—kn_bn—kn)—an—kn{bn—bn—kn)) < x}—
~P{a,(M{ ~b,) > x, a,( max X{ ,—b,)<x}.
1<k<n—k,

In view of A, the left-hand side of (5) converges to v(— oo, x] if
vix} =0, while #(a,_ (M}-, —b,-))=v. Hence and from As we have
an/ay-, =1 and a,_; (b,~b,—;) =0, which completes the proof.

As an immediate consequence of Theorem 2 and Lemma 2.1 we obtain

THEOREM 3. Let conditions A, and A, be satisfied. Furthermore, let A,
and As hold with the same sequence |k,}. Then (4) holds.

Behaviour of {N,}. We now prove )

THEOREM 4. Let A, hold and ¥ (N?) = Z(N), where N is a point process

n (0, 1]. Furthermore, let a ik,} exist such that :

(6) P M, >u,} >0 and P{M >u,} 0,
where u, is the same as in the definitions of N, and N°. Then ZL(N,) = Z(N).
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Proof. Let us define mappings g, R®* >R®, h,: R® -4 and H,:
N >N (nz1) as
gn(x) = (un—kn/un)xs hn(x)(B) = Z . IB",k(x)a

1<ksn
kineB

(H,y)(B) = y(n/(n—k,) B—k,/(n—k,)),
. where ax = {ax;, k > 1} for aeR, yem and aB—b = {min(ax—b, 1); xeB}
for Be4(0, 1] and a,b>0,
Notice that g,, h, and H, are measurable and
HnOhn—k"Ogn(xk,)(B) Z IB,,’k(x)

kp<k<n

"(/neB
for any Be4((0,1]) and xeR™, where x, = {X ., k > 1}. Hence

Y, Iy, (X% =H,0h,_, 0g,(X2)(B),
<k<n .

'k/m;B
which, in view of the stationarity of X°, gives

L (H,0hy_y,09,(XR)) = L (H,0hy_s, 0g,(X)).
Now define pomt processes N, and N° (n< 1) as
NuB = Y I, (X

1<k<k,
k/neB "

and
NB = Y I, (XO).

1<k<k,
kineB "

In view of (6) the distributions #(N,) and #(N? weakly converge to,
the distribution concentrated on the measure from .4 which is zero for each
Borel subset of (0, 1]. But N? = N,‘,’+H,,oh,,_kn0g,,(x,?n). Hence and since
ZL(NJ) = £(N), we have ' '

g(HnOhn—knogn(Xo))a a?UV)’
which by A; and Proposition 1 gives
g(H Ohn ky Ogn(xk )):z( )

Hence, in view of the relation N, = N,+ H,oh,_ %, OFn (Xk ,) we find the
assertion.

Theorem 4 allows us to formulate analogues of Theorems 5.3.1 and 534
of [3] or a behaviour of M® as n— oo, where M® is the k-th largest of
X, X5, .00, X,
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3. EXAMINATION OF A, AND A;

The following obvious fact is basic for the examination of A, and As:

Remark 3.1. Let {c,;, k, n> 1} be an array of real numbers such that,
for each k> 1, ¢, = ¢, as n > o0 and ¢, =1 as k = co. Then there exists a
{k,} such that c,, —1 as n—oco. Moreover, if k} <k,, then ¢, —1.

LemMA 3.1, Let X be such that X, X,, ... are mutually independent and
such that for some constant x, and for each k and each x, x > x,, we have

1)) , F,(x/a,+b,)—1 as n-—oo.

Then there exists a {k,} such that P{a,(M, —b,) > x} >0 for each
X > Xg. :
Proof. Let {x} be any decreasing sequence tending to x,. For each
n, k=1 and xeR define

& .
An,k (X) = l_[ Fi (x/an+bn) - and An,k = An.k (xk)

Then, by (1), 4, =1 as n = oo for all k. By Remark 3.1, 4,, —1asn
— oo for some {k,}. But, for any x such that x > x,, there exists an n, such
that x> x, for n>n, Hence, for x>x, we have A4,, =4, (x,)
< Ay, (x) < 1. This and the convergence A4, — 1 yield 4,, (x) "1 for each
X > Xy, which completes the proof.

LeEmMA 3.2. Let A, be satisfied and the df. G, corresponding to v, be max-
stable. Then As is satisfied. Moreover, if the convergence in As holds with {k,},
then it holds with any k) such that k, <k, nz=1.

- Proof. Let {x,} be any decreasing sequence of real numbers tending to
x(v) and such that G'*(x,) -1 as k —oo. Write

App(x) = lM[n/k] x/a,+b,; and A, =A,,(x).

Since G is max-stable, 4,, — G'*(x,) for each k. Hence and by Remark
3. 1 there exists a {k,} such that 4, k, 1. Now, for any x > x(v), there exists
an' n, such that x > X, for n>ny. Hence, for any x, x > x(v), Ay, ()
2 Agg, () which, in turn for x > x(v), ylelds Apy,(x) 1 as n— 0. This
completes "the proof.

The following lemma admits more sequences {k,} in As:

Lemma 3.3. Let X° be such that X9, X3, ... are mutually independent and
let A, be satisfied. Then As holds with each {k,}.
Proof. Notice that P {a,(MQ —b,) > x} = 1—(F(x/a +b,,)) But the -
hmlt of n(1—F(x/a,+b,), as n =00, is finite for each x > x(v). Hence
k,(1—F (x/a,+b,)) =0, which completes the proof.
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It follows from Loynes work [4] that the assumption of Lemma 3.2
holds if X° is umformly strongly mixing (see also [3], p. 55). The following
lemma states that X° inherits this property from X.

LEMMA 34. Let A, be satisfied. Then the property of the uniform strong
mixing of X implies the same for X°.

Proof. Denote the vectors (Xy, Xes1s.--» Xn) and (X7, X241, o0y X9)
by Xk w and X2 . respectlvely The fact that X is uniformly strongly mixing
means that

a(m) Lsup|P (X, €A, Xy sneB —P X, €A P X,,, €B!| >0
' as m —> oo,

where the supremum is taken over all k, all A2 (R*) and all Be#(R®).
But by A; we have '

5% 0 ; [y
P le,k EA, Xm EB} = llmP lell+1'kn+k EA, Xk"+m EB}
n

for all k and m, A€ (R*) and all Be#(R®). Hence
sup|P{X9, €4, X, ,,eB—P{X}, €A} P{X2, . €B}

< limsup|P (X, 414, +1 €4, Xpy+i+mEB}—

o ‘Xk + 1kt €A} P {Xk +k+m €BY| = “(m),

where the supremum is taken over all k, all Ae@(R") and all BeZ#(R%).
Thus the proof is completed.

Now we show that if X is a Markov chain or X is chain dependent
then, under some natural additional conditions, As implies A,.

X is said to be chain dependent with respect to a homogeneous Markov
chain J = {J,, k > 1} with a state space I being a Polish metric space if
X, =a€R and

PiJ,r1€4, X,v1€B|Jy, Xy, .., Iy X} =P U4, €A, X,,HeBlJ,,,ae

for Ae#(l), Be#(R),n>1.

Obviously, (J, X) is a Markov chain.

LEmMA 3.5. Let A, and As be satisfied if X is either (i) a homogeneous
Markov chain such that || £(X,)—=°| =0 or (ii) chain dependent with respect
to a homogeneous Markov chain J such that || £ (J,)—="|| =0, where n° is a
" probability measure on (R, % (R)) in case (i) , and on (I, %(I)) in case (ii). Then
Ay is satisfied with the same k,} as in As.

Proof The proof is carrled out paralielly in both cases.
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Write, in case (i),

gr(x, y) = P{ max Xj>x|X1 =y}

1<j<k+1
and, in case (ii),

gr(x, ) =P{ max X;>x|J; =y].

1<jsk+1

P! max X{>x|X{=ypl=g.(x, ) ae.

1<jSk+1
and, in (i),

P{ max X?>x|J?=y}=g(x,y ae

1<jgk+1
Now, rewriting relation (2.1) for X, we obtain

¥ P M, > x} =P max X;>x}—P M, > x, max X; < x}.

i<jgk i<jsk
Moreover, in (i),

P{max X; > x| = {P{max X; > x| X, =y} P | X, edy|

i<j<k R i<jsk

=(P{ max X;>x|X,=y]PiX;edy] = [ge-:i(x, )P X, edy]
R .

R 1<jgk—i+1

. -and, in (ii),

P{max X; > x} = [P {max X; > x|J; =y} P J; edy]

i<isk Toi<isk
= .‘.gllt—i(xa J’) P {J, edy}
1
In a similar way we find, in (i),

®) PMk>x}=P max X{ > x}+P M > x, max X} <x],

i<j<k i<j<k

P {max X{ > x} = .g"g,‘_,.(x, y)P{X?edy)
i<j<k R

and, in (ii),

P {max X7 >x} = igk i(x, P UL edy}.

1<J$k

59

Define a measure u as 1 2(X9+1 Z 2“$(X) in case (i) and as

i=1

1 2UN+3 Z 271 2(J;) in case (ii).

i=1
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Obviously, the measures .Z(X?), Z(X;) and Z(J?), £(J;) are absolute-
ly continuous with respect to u in both cases.

Let p° and p; denote the probability density functions (p.df) of £ (X?)
and Z(X,;) with respect to pu defined in case (i), while ¢° and g; denote the
pd.f’s of #(J?) and ¥ (J;) with respect to u defined in case (ii). Then, in (i),

|P { max X? > x}—P{max X; > x}| < [Ip°(»)— p: ()] u(dy)
R

i<j<k i<j<k
= lZ(X}) - £ (X))
and, in (ii),

[P {max X? > x}—P {max X; > x}| < [1g°(»)—q: ()| n(dy)
R

i<j<k i<j<k
=||.LUD— L.

The latter, next the convergences ||.%(X;)— & (XD = 0in (i) and || £ (J})
-2 =0 in (i), as i = oo, and finally (1), (2) and A5 imply A, with the
same (k,} as in A;. This completes the proof.

4. ASYMPTOTIC STATIONARITY IN VARIATION

Conditions under which X is asymptotically stationary in variation are
here investigated in three cases: .

(a) X is a nonhomogeneous Markov chain,

(b) X is a function of a homogeneous Markov chain,

(c) X is disturbed by fading process.

41. Case (a). Let X be a nonhomogeneous Markov chain and
Pou+1(x,A)=P{X,,,€4|X,=x) for xeR, Ac#(R), n 2 1. Further, let i
be a convex combination of the Lebesgue measure on R and a discrete
measure on R. By j* the k-multiple product of the measure ji is denoted.

Let us introduce the following conditions:

(i) For each n > 1, #(X,) has the p.df. f, with respect to the measure . -

(ii) For ji-almost all x and n>1, P, ,+;(x, -) has the p.df. f, ... (x, )
with respect to the measure ji and f, ,+,(x, y) as a function of (x, y) is jointly
measurable.

(iii) f, = f° f-ae., where f° is a p.df with respect to fi

(iv) fous1 — f i*-ae., where, for fi-almost all x, f(x, y) as a function of y
is a p.df. with respect to [ '

Set

ke
flo,k(xl, Xy ooy Xg) =f0(x1) n SO, %)
i=2

and
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Zn,k(xn Xy ooy X)) = Sru1 (1) H fn—1+i.n+i(xi—1, xi)/flo,k(xh X2y ooy Xg)

if 2% > 0, and zero otherwise.
LemMma 4.1. Let conditions (i)~(iv) be satisfied and
@) : sup [ [1=Z, fLedii* —0.
1<k <w pk
Then || % (X,)— £ (X°)| =0, where X° is a stationary homogeneous Mar-
kov chain with the transition pdf. f(x, y), x, yeR, such that

o0 = [’ f(x, nidx) jae
R

Proof. The proof follows by part (a) of Theorem 1 from Vostrikova
[11]. Indeed, for each n > 1 define a measurable space (2", #"), a filter F" as
well as probability measures P" and P" on the measurable space (Q", Z").
Thus let Q" = R®, " = #(R™) and F" = {#}, k > 0}, where 73 = |, Q"),
while #7 = 2#(R",n, k> 1. Furthermore let P"=P = #(X° and P
= y(xn)’ n > 1

In these notations, Zk occurring in [11] is equal to Z,, and |Z}}
satisfies the conditions from part (a) of Theorem 1 from [11]. Thus we ﬁnd
that ||[P"— P|| -0, which completes the proof.

Now let us consider the case of X where X,, X,,... are mutually
independent. Then, by Lemma 4.1, we have

CoroLLARY 4.1. Let X be such that X, X,, ... are mutually independent
with pdf’s fi, f, ... with respect to fi. Furthermore, let f, —f° ji-a.e. and f° be
a pdf. with respecr to fi such that

(2  sup !Il—ﬂf,.ﬂ(x /f°(xl)|Hf°<x.) “(dxy, dx,, ..., dx) =0,

1€k<w Rk i=

Then || £ (X,)— Z(X°)|| =0, where X° is such that X?, X9, ... are iid.
rv.’s with pdf. f °‘with respect to [l

It is easy to note the following

Remark 4.1. If Z fI1=fi( (2)/f°(x)|f°(x) fi{dx) < oo, then (2) holds.

k=1R

4.2. Case (b). Now we prove the following

LEmMMma 4.2. Let X be chain dependent with respect to a homogeneous
Markov chain J which has values in a Polish metric space 1. Furthermore, let
£ (J,)—n°% =0, where =n° is a probability measure on (I, B(I)). Then
L, X)—LJ° X% =0, where (J°, X°) is a stationary homogeneous
Markov chain with the same transition probabilities as (J, X).
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Proof. Let (J°, X° be a homogeneous Markov chain with the same
transition probabilities as (J, X) and such that ¥ (J?) = n°. Then (J°, X% is a
stationary homogeneous Markov chain. Write g(B, x) = P {{(J,, X,)€B|J,
= x| for B belonging to the product o-field in (I xR)® and xe€l. Then

P ‘I(Jm Xn) EB,Jn = x} = P {(Jr(n)a XI?) EBlJ,? = X}- = g(Bs x) a.c.

Hence
P {(Jn: Xn) EB} = fg(B, X)P {Jn EdJC},
I .

P {(J?, X3) B} = [g(B, x)n°(dx).
] 4

Set

1 o
U= 11t°+— > 27k P ().
2 25

Hence u is a finite measure on (I, #(I)). Moreover, n° and FJ), n
> 1, are absolutely continuous with respect to u. Thus, denoting by f° and
f, the pdf’s of n° and £(J,), respectively, with respect to u, we find

1L X)~2J° X = 2Sl;p| §9(B, x)(£,(x) = (x)) u(dx)|
I

< 21,0 =f° (kpldx) = 21| L (J,) —=°ll,

~ where sup is taken over all B from the product o-field in (I xR)°°. This

completes the proof.

CoRrOLLARY 4.2. Under assumptions of Lemma 4.2, || £ (X,)— £ (X)) -0,
where X° is the second component in the Markov chain (J°, X°) defined in
Lemma 4.2, '

CoroLLARY 4.3. Let X be a homogeneous Markov chain such that
|.#(X,)—=°% =0, where n° is a probability measure on (R, #(R)). Then
| 2(X,)— LX) =0, where X° is a stationary homogeneous Markov chain
with the same transition probabilities as X.

Sufficient conditions for the convergence in variation of {#(J,)} with J
being any homogeneous Markov chain gives Theorem 7.1 from Orey [7].

4.3. Case (c). Let u and pu,, n> 1, be probability measures on (S, 2(5))
while v and v,, n > 1, probability measures on (S', #(5"). Further let yxv
denote the product measure of p and v.

Lemma 4.3. If |lp,—pll =0 and |[v,—vl| =0, then ||p, xv,—p xv|| —0.
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Proof. For Ae#4(SxS) let A, = yeS':(x,y)ed] and A” = x€eS:
(x, yyeA), where x€8, yeS'. Note that
,#n XVII(A)_ﬂ XV(A)l < Lurr X V"(_A)—,H X vn(A)l + I,U XV, (A)—H XV(AH
< [t (A7) = p (AN v @)+ [vu (A= v (A (dx) < lptg— pill + 11V, =V,
s S .

which completes the proof.

As an immediate consequence of Lemma 4.3 and Proposition 1 we have

CoroOLLARY 44. Let X and Y be independent sequences of r.v.s such that
| 2(X,)— L(X% =0 and | L(Y)— L(Y%|| -0, where X° and Y° are mutual-
ly independent.

Then || (X, Y)—.S/’(X0 Y9 =0 and | ¥ (X,+ Y)— ZL(X°+ Y9 —0.

" To see the usefulness of Corollary 44 let us consider the following

model of disturbance described by Y. Let |v,] be any sequence of probability
measures on (R, %(R)) which are absolutely continuous with respect to the
Lebesgue measure [, and §, the probability measure concentrated at zero.
Denote by g,, k > 1, the p.df. of v, with respect to I. Further, let Y be a
sequence of independent r.v.’s Y, Y,, ... such that ¥, has the distribution
PO+ (1—p)v, k=1, where 0 <p, < 1.

LemMma 44. If Z 1- pk) is finite, then ll_f(Y,,) LY =0, where

k=1

Y°=(0,0,..). o
Proof. Writing i=16,+3l, we see that 6, and v, are absolutely
continuous with respect to fi. Moreover, their p.d.f’s with respect to ji are
equal to 2y, and 2(1 — xo) g, Tespectively, where xo(x) = 1 if x = 0, and zero
otherwise. Hence the p.df’s of #(¥) and .Z(Y?) with respect to 7 are
equal to f, = 2p, xo+2(1 —p) (1 —x0) gx and f° = 2y,, respectively. Therefore

(IL=f/f0f°dii=1—p,.

Hence and in view of Remark 4.1 and the assumed condition we obtain
_ the assertion.

5. EXAMPLES OF X FOR WHICH THEOREMS 1-4 HOLD

5.1. Dependence case. Let us present some examples.

Example 1. Let Y= {Y, k > 1} be an asymptotic stationary in varia-
tion sequence of r.v’s (it is not assumed the mutual independence of
Y;, Y3, ..) such that Y;+ Y, +...+ ¥, > — oo in probability. Furthermore, let .
its stationary representation Y° be such that Y* +Y*,+ .. +Y* - — o
a.s., where (YL , —o0 <k < oo} is a stationary sequence of r.v.’s such that
LY k 1‘)—_?(1’0) Define r.v’s X, k> 1, by

Xio1 = max(0, X, + Y, k> 1,

where X, is any nonnegative r.v.
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In Queueing Theory the sequence X is well known as the process of
waiting time and it is denoted by w = |w,, k > 1}. We have shown ([10],
Theorem 3a) that under above assumptions this process is asymptotically
stationary in variation. Thus, if |k,} and {u,} are such that P {M,?" > u,} =0
and P{M, >u,) —0, then by Theorem 1 we have P{M;>u,)
—P{M, >u,} —0. _

Example 2. Let X = Z+Y, where Z and Y are mutually independent
sequences of r.v.’s such that Z is stationary and Yis a sequence of mutually
independent r.v’s Y;, Y,,... Assume that Z(Y) =pdo+(1—p)v, k=1,
where probability measures v;, k > 1, are absolutely continuous with respect
to the Lebesgue measure and ) (1—p) < oo (k=1,2,...). Then

(@) If Z is such that, for some {u,} and {k,},

P{2 max Z,>u, -0 and P2 max ¥, >u,} —0,
1<k <ky, 1<k<k,
then

P{ max Z, >u,} ~P{ max X, >u,} —0.
1<kSn - 1<k<n

(b) If Z satisfies condition A, and, for some k,} and each x > x(v),

P{2a,( max Z,—b,)>x} -0 and P {2q,( max Y —b,) > x} =0,
1<k<k, 1<k<k,
then #(a,(M,—b,)=v.
Indeed, in view of Lemma 4.4 and Corollary 44, Z is a stationary
representation in variation of X, i.e. ||$(X,,)——_$(Z)|| — 0. Furthermore,

P (M, > x] SP{ max Z,‘>§}+P{ max Yk>§}.

15k<k, 1 Sk<ky,

This and Theorems 1 and 2 give implications (a) and (b).

Example 3. Let X be either (i) a homogeneous Markov chain such that
1#(X,)—=°| =0 or (i) a chain dependent with respect to a homogeneous
‘Markov chain J such that ||.#(J,)—n°| =0, where #n° is a probability
measure on (R, #(R)) in case (i) and on (I, #(I)) in case (ii). Then, in view of

Lemma 4.2 and Corollary 4.3, X is asymptotically stationary in variation in
both cases. Moreover,

(a) If, for some {u,} and {k,}, P{M{ >u,} =0, then

P {M} > u,} —P{M, >u,} =0.

() If A, and A; hold, then % (a,(M,—b,))=v.
Indeed, implication (a) follows from Lemma 3.5 and Theorem 1, while
— (b) follows from Lemma 3.5 and Theorem 3.
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5.2. Independence case. Let X be such that X, X,, ... are mutually
iindependent with p.df’s f;, k > 1, with respect to the Lebesgue measure.

Example 4 (exponential distribution disturbed by a normal distribu-
tion). Let f° be the exponential p.df. with the parameter 1 and f; = f®*g,, k
= 1, where g, is the normal p. d.f. with the mean zero and the variance
a2 > 0, while = denotes the c_onvolution7 Furthermore, suppose that for some
o, a <1,

) Yot <o,
) k
Then || £ (X,)— L(X% —0. Moreover, with a, =4 and b, =4~ ‘lc_;g_ynﬂ_
the limiting df’s of a,(M,—b,) and a,(MJ—b,) are equal to the d.f. G which
is G(x) =exp(—e™ ¥ for xeR.
Indeed, note that

fOxge(x) = Aexp(—Ax+ A2 62/2) B(x/a, —Aa,),

where @ denotes the standard normal df Hence

2 __f 11=£ (/£ (O f° (x)dx = __f 11—exp(42 07/2) @ (x/a, — 43| £ (x) dx

< exp(A26Z/2)—1+ ]? 11— ®(x/o,— Ao ) f°(x)dx.

Denote the integral part of the right-hand side of (2} by B and consider
it for such k that ¢, < 1. Then decomposing [0, o) in [0, ¢,] and (¢, ),
where ¢, = AgZ+0%, k> 1, we have

C

B<2 _’fff’(x)dx+1—q>(az-l) < 2(1—exp(- it +0p))+1-D(of ")
]

< 20(A+1) o +my; 0770 7% < cai,

where m; is the i-th moment of &, 2i > a/(1—o), and ¢ is some constant
depending on k and A. Hence the right-hand side of (2) does not exceed (c
+exp(a))of, where a = A>supo?/2. This, in view of (1), Remark 4.1 and
Corollary 4.1, implies ||.Z(X,)— Z(X%| —0.
Now notice that F, (x/a,+b,) = F,((x+logn)/A) for each x and n, k > 1.
Hence, for each k and xeR, F,(x/a,+b,) »1 as n = co. This and Lemmas
~ 3.1 and 3.3 as well as Theorem 3 and Example 1.7.2 from [3] prove the
correctness of the example.

I wish to express my thanks to Professor B. Kopociﬁski for his valuable
_ comments. I am also gratetul to Dr W. Dziubdziela for his helpful remarks.

5 —'Pams. 9.2,




[1]
2]
3
4
[53
[6]
[7]

iy

[9]

W. Szczotka

REFERENCES

E. G. Denzel and G. L. O’Brien, Limit theorems for extreme values of chain dependent
process, Ann. Prob. 3 (1975), p. 773-780.

R. Durret and S. 1. Resnick, Functional limit theorems for dependent variables, ibidem 6
(1978), p. 829-846.

M. R. Leadbetter, G. Lindgren and H. Rootzen, Extremes and related properties of
random sequences and processes, Springer-Verlag, New York 1982.

M. R. Loynes, Extreme values in uniformly mixing stationary stochastic processes, Ann.
Math. Statist. 36 (1965), p. 993-999.

G. L. O’Brien, Limit theorems for sums of chain dependent processes, J. Appl. Prob. 11
(1974), p. 582-587. .

— The limiting distribution of maxima of random variables defined on a denumerable Markov

- chain, Ann, Prob. 2 (1974), p. 103-111.

S. Orey, Lecture notes on limit theorems for Markov chain transition probabilities, Van
Nostrand and Reinhold, London 1971.

S. I. Resnick and M. F. Neuts, Limit laws for maxima of sequence of random variables
defined on a Markov chain, Advances Appl. Prob. 2 (1970), p. 323-343.

R. Serfozo, Functional limit theorems for extreme values of arrays of independent random
variables, Ann. Prob. 10 (1982), p. 172-177.

[i()] W. Szczotka, Stationary representation of queues, 1, Advances Appl. 18 (1986), p. 815-848.

(11}

J. Yu. Vostrikova, On necessary and sufficient conditions for convergence of probability
measures in variation, Stoch. Processes and their Appl. 18 (1984), p. 99-1i2.

Wroclaw University
Institute of Mathematics
Pl Grunwaldzki 2/4
50-384 Wroctaw, Poland

Received on 8. 12. 1986




