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~ ON LEVY'S AND DUDLEY'S TYPE ESTIMATES OF
THE RATE CONVERGENCE IN THE CENTRAL LIMIT THEOREM
FOR FUNCTIONS OF THE AVERAGE OF
'INDEPENDENT RANDOM VARIABLES
o ' BY . )
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Abstract. The Lévy and the Dudley metrics are used to give
estimates of the rate convergence in the central limit theorem for
some functions of the average of independent random variables.

1. Introduction and notation. Let {X,, k > 1} be a sequence of indepen-
dent random variables and put S,=3 X;, k=1,2,.

The asymptotical normality of {g(S,/n), n > 1}, where gis a real func-
tion, was considered for instance in [1], [3], [4], [7], and [8]. We are
interested in the rate of convergence in terms of the Lévy and Dudley metrics
of the normalized sequence {g(S/m), n > 1}.

Throughout this paper we shall use the following notation:

- @ — the class of the real differentiable functions g such that g’ satisfies
the LlpSCthZ condltlon ie.

M lg(X) g(y)I<L|x W, 0<é<i;

_ 9 — the class of all sequences {d,, n > 1} of positive numbers such that
d, >0, n—w0;
(D, L) — the metric space of all probability dlstnbutlons on the real
~ line, with the Lévy distance L(-, ), ie.

® LG =infle F(x—8)—8 < G(x) < F(x+8)+e, xeR)

(D is a complete space and convergence in the sense of the Lévy metric is

‘equivalent to convergence in law [2]);
(D, d) — the metric space of all probablhty distributions on the real line,
" with the Dudley distance d(-, ), ie.

3 - d(F, G)=sup |jf(x)d(F—G)(x)| ,
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where the supremum is taken over all such functions f for which

sup/ VSO _

su .x <1 and <1
xplf( )] o

(the convergence in the sense of the Dudley metric is equivalent to conver-
gence in law [2]);

1 X
D(x)=—— | ¢2dr,  —o0 <x < .

2. Convergence in the Lévy metric. First we shall give the estimates in the
case where {X;, k > 1} is a sequence of independent identically distributed
random variables (i.id.r.v) with EX; =, 0 <6?X, =062 < 0.

Let

@ z,= . [g(sn—")—g(u)], gey.

og' (1)

In [7] there was given the estimate (with 6 = 1)

d. "% 1 2,
® suplF, (9= 09 = 0 (i + 7742 ),
where d, €2 and F_ is the distribution function of Z,. This note gives the
rate of convergence of {an} to @ in terms of the Lévy and Dudley metrics.

THEOREM 1. Let {X,, k =1} be a sequence of iidrv. with EX, = p,
62X, =% E|X,|]® < o0. Then for every g e % with g'(4) # 0, and any sequen-
- ces d,€P and {g,,n21), & —0,n—>0,

o 11 2 dits  _aa
(6) L(Fz, ¢)<Cmax{s,,,—+—e—"n’2 e 2 (s,,/d,.)zf"},

N A AW T

where A =06~ (LO)™ 10 |g (u)¥°.
Particularly, if e, = A™%di*opn92,

, l ; d;*? 1 I _22p
6) L(FZ", ¢)<Cmax _n”T’ﬁ_i-c—i;e nll

Proof. Note that, for any random variable X and Y, we have

Fyiy(x) = P[X+Y<x] < P[|Y| <é&, X <x+e]+P[)Y] >¢].
< Fx(x+e)+P[|Y] >&]
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and by substituting X X+Y,Yi>—Y, xiox—c we get Fy(x—¢)

< Fyiy(X)+P[|Y] > &]. Hence

U Fx(x—&)—P[|Y] > €] < Fy4y(x) < Fx(x+&)+P[|Y] > ¢].
Furthermoré, _ _ ‘
. oS S8 )
o \/ﬁ a\/ﬁ h
where : _ i
g(x)—g(n)
——— X # U,
h(x) = < (=g’ (), g
o, X =p,
and
© L(FZ,,= ?) < L(ana F(Sn~nu)/a~/;)+L(F(S,,—nn)/a~/;= ?).

It is known [6] that -
(10) L(F(Sn—rm)/a"/;’ ¢) = O(n—1/2)’
and, by (6) and (8),

(1) Fs, - myeva(x—)—P[Y,| > ¢,]

< Fz (X) < Fs,-myjovn(X+E) + P > ¢,],

where

Y,= S;:/’%“ (h (57) - 1).

Now we shall use the following estimate:

1/8
(1) POY) > ] < C— +2(1—<15(d,,))+2(1—45(A\/Z(E'1> ));-= -
RV d

To prove, we note that, for any {d,, n>1}e9,

aorlb(E)-1-5]

S,—n

o/n
P[S;"T';" <x]—¢(x)

(13 POYI>el< P[

< 2sup
x

+2(1 —qs(dn))+15['h (‘%) -.1‘ >:—]
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But
(14) PHh(S—)q‘ ] [L"' “+9(S"/"_”))—1‘>-8—"]
Ay oW 4,

< P[‘Sa:/’iﬂ (lél‘(#)lthél)‘/'s (% )ua ﬁ]

<s]-oufafi-o (R ;)" )

Putting A = (lg'(w)/6® L6)'* and combining (13), (14), we obtain (12).
Now (11) can be written as follows: '

< 2sup

x

S;,—n;,t
P
57

F(Sn—nu)/aJ;(x—"En)—all < FZn (X) < F(S"—nu)/aJ;(x+en)+an'

Hence, since the distribution function is nondecreasing, we have

(15) Fis — o 6= 1)~ 11, < Fy (%) < F$ﬂmmu+m+%

where 7, = max {g,, a,}.

We observe that the infimum of numbers #, for which (15) holds is the
Lévy distance of Fz, and F(5 0.5 Thus L(Fz,, F(sn_nﬂ),ﬁJ") < #,,, Which,
together with (9) and (10), completes the proof of Theorem 1. ‘

Let now @ be the class of all functions ¢ defined on R and satisfying the
condition:

(16) @ is nonnegative, even, and nondecreasing on [0, oo], x/@(x) is
defined for all x and nondecreasing on [0, ©]. '

THEOREM 2 Let {Xk, > 1} be a sequence of iidry. with EX,
=u,062X; =a* E(X,—p? (p(X1 Y} < oo, for some @ €®. Then, for every
geg with g (y) #0 and any sequence {d,, n > 1} €9,

) d1+6 1 ) Y
(17) L(FZ , D)< Cmax{ 53 1 —e nlz}. '
e(o \/_) d, i

" Proof. It is enough to replace in the proof of Theorem 1 the estimate |

0 by e [5) - | o

18 o LFs —myeii» ®).= 0| .

We now give the uniform estimates in the case where {Xi, k= 1} is a-
sequence of nonidentically distributed random variables. : ‘



Lévy's and Dudley's type estimates 71

N and

Put
1 n n . )
(19 . o= Y BX,, s2=Y o*X,, XJ=X,-EX,k>1,
k=1 - k=1
. _ . =
(20) V.= [ ( ) g(un)]
. Sng' (1)

THEOREM 3. Let {X,, k > 1} be a sequence of independent random variab-
les such that E(XQ)* (X)) < o0, k = 1, for some @ e®. Then, for every g%
with g'(,) # 0, n> 1, and any sequence {d,n=1}e9,

sEite 2 E(Xl? 2¢(X1?)

21 L(F ,¢P)sCmax{ D +—e_d"/2}..
@ Lk, P ey T 4°

If p(x) =|x|, i.e. E|X]]® < o0, then

Sply k=1 —d, /2
(22) L(Fy , ®) < Cmax{ - ) + e o,
& 7lg () s

3 1+é )y ElX'?IS. 1 2 }

Proof. Note that

g = So i Sa it ( n_gSm—g(m) _1)
Sn Sp g (:un) Sn_n:un
and ,
. (23) | L(FV ’ (p) L(FV H F(S —mznls")'l'L(F(S —nu")]s,, ¢)

It is known (see [5]) that -

_ : _ > EIxPP
(24) L(-_F(S,,—nn")/s"s ¢) =0 (’FIS—3> lf EIX P

and

Y B p(XD),
(25) L(F(S,,—-nun)/s"7 ¢) = 0 <k_1 ] S,% (P(Sn) ) lf E(Xl?)z (p(Xl?) <
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Applying the method used in the proof of Theorem 1 we get

ISn_n,'ln n g (Sn/n)_g(#n) _ ’
d [I S, . ,(”n) Sn_n)u'n Y~ o

‘ E X0|3
< c“——"g1 = +2(1- (D(d,,))+2(1 qp( (———'g (e )™)Y
S: n M” "
and — ‘
Fis,—mupyis, (X —&)— 0 < Fy (X) < F(s —nun)fs"(x+£n)+a
Hence, for
Ld1+d s ']
N, =max {e,, «,} and &, =— (—")
_ e ) | lg' ()l
we have

F (Sp—nttp)isp (x—n)—m < F v, (x) < F Sy np)isy (x+ 1)+ 1,

Thus L(Fy,, Fis,—mys,) < I, Which, together with (23}H25), completes
the proof of Theorem 3. )

Note that, putting in (6), d, = \/2Inn, in (17, d, = \/ZIn[¢ (o NCYSR!

in (22),
§3 ) /2
d,,={2ln(n < +1)} .
Z X2

2 - 1/2
d,,={21n( __ Sn (S +1)} ,

Y B(X))? o(X2)
k=1

we can give the following estimates:
CoroLLARY 1. Under the assumptions of Theorem 1

and, in (21),

(ln n)+9)2

(26) LiF, 9) < C——gp—
CoROLLARY 2. Under the assumptions of Theorem 2

1 {n[e(e/n )+1]}‘“"”2}
(@ /n) o

27) L(Fz, P < Cmax{ :
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CoroLLARY 3. Under the assumptions of Theorem 3

n X |
L(Fy,, ) < Cmax{z“l ot 3(lnfp(sn))“””2}

s2e(s) 7 rlg’ ()l
if E(XD? (XD < o0, and

0)3
L(Fy,, ®) < C max { Z, ! ns,.)‘“"”z}
o spo g ()

if E|1X9? < 0.
If g(x) = x%, 6 =1, then we have
CoroLLARY 4. Under the assumptions of Theorem 1, we have

Sz —(nw)? ] { +1,-d /z}
P[-w—. < 20pux [ < Cmax
< A
and, for d, = /2Inn,

Q2 2

n3/2 ﬁ

3. Convergence in the Dudley metric. We now estimate the rate of
convergence in law of the sequences {Z,,, n =1} (see (4)) and {¥,, n > 1} (see
(20)) in the Dudley metric.

THEOREM 4. Let {Xy, k> 1} be a sequence of iidrv. with EX, =p,
o X1 =02, E|X;]® < . Then, for every g€% with g'(u) # 0,

IZ X—p|'*?
o9 Ay 9= 0 (AL o)
where d(-, *) is given by (3).
Proof. It is known that
(29) d(F(s,,—nu)/aﬁa ?) = O(n—%/z)

and

. (30) d (FZ”7 Q) < d(FZn’ F(S"—nu)/o\/;)+d(F(S"—nu)/a\/;= ¢)
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By (3) and (1) we get

Ef(Z,)—Ef (S"_"“). < ‘EZ,,—E (S"_'Z‘

a\/n

)

d(ana F(S"*ml)/a\/;) = S‘j_p

a
<Elz,_ S _ g[S (g (M+9,(S,./n—u)) “1)‘
a’ﬁ la\/l_i : g W
v ESIEY:
- Lo _E|k§1(Xk #)|
Solgwl o a0

which completes the proof of Theorem 4.
THEOREM 5. Let {X,, k =1} be a sequence of irwv. such that (19) holds

and let ge%, g'(w) # 0.

() If E(X)? @(X0) <0, k=1 for pe® (see (16)), then
| | Y EX)? (X)) E|Y X'
31 d(F ,¢=o(k=‘ 4kl )
Y (Frp o) 510" ()

(i) If E|XJ? < o0, k> 1, then

Y EIXY® E|Y X9+
32 d(F, , ® =02 k=1 )
G2 Ev, @) ( 2 sl ()

Proof. It is known (cf. [5]) that

-n

Y. E(X3)? o(X3)

33 d(Fs. _ @) =02
if E(X)? (X)) <0,k >1, and

Y. EiXgP
(34) A(F (s, nupisp 9 = O (E—lT—>

if E|XJ®> <o0,k>1, and

(35) d(FVna ¢) < d(FVna F(Sn—r;un)/s,)+d(F(Sn-nu")/sn, (p)
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But
Sn—n#n
d(FV,,’ F(S,,‘nn,,)/sn) <E Vn_ S—
<E |Sn—nu,.( n_gS/m=gm) _1>‘
_ l Sp g (ﬂn) Sn—n#n
—E Sn‘—nﬂn (g (#n+9,(Sn/n"ﬂn)) _ )l < - L0’ Elsn_nunll+6,
| s, g' (1) 1’ 5,19’ (1)l :

which, together with (33)H35), completes the proof of Theorem 5.
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