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Abstract. The L6vy and the Dudley metrics are used to give 
estimates of the rate convergence in the centrat- limit theorem for 
some functions of the average of independent random variables. 

1. Introduction and notation. Let (X,, k 2 1) be a sequence of indepen- 
dent random variables and put S, = X,, k = I ,  2, . . ., n. 

I The asymptotical normality of (g(S Jnj,  n 2 1 ) ,  where g is a real func- 
tion, was considered for instance in [I], [3], [4], [7], and [8]. We are 
interested in the rate of convergence in terms of the Livy and Dudley - metrics 
of the normalized sequence (g  (S,Jn), n 2 I). 

Throughout this pa& we shall use the following notation: 
92 - the class of the real differentiable functions g such that g' satisfies 

the Lipschitz condition, i.e. 

(1) Ig'(x)-~'(y)I  < L ~ x - ~ { ' ,  0 < 6 < 1 ;  

9 - the class of all sequences (d, ,  n 2 1) of positive numbers such that 
d,+ao,  n + m ;  

( D ,  L) - the metric space of all probability distributions on the real 
line, with the Livy distance L(. ,  -), i.e. 

- 

(2) L(F, G )  =inf { E :  F ( x - 6 ) - E  < G ( x )  < F ( x + E ) + E ,  X E R ]  

( D  is a complete space and convergence in the sense of the Livy metric is 
equivalent to convergence in law [2 ] ) ;  

(D, dj - the metric space of all probability distributions on the real line, 
with the Dudley distance d  ( ., -), i.e. 
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where the supremum is taken over a11 such functions f for which 

sup I f  (41 < 1  and If (XI -.f(~Il < 
X 2; Ix-yl 

(the convergence in the sense of the Dudley metric is equivalent to conver- 
gence in law [23); 

2. Convergence in tb f i v y  metric. First we shall give the estimates in the 
case where ( ~ , , - k  3 11 is a sequence of independent identically distributed 
random variables (i.i.d.r.v.) with EX, = p, 0 < aZ X, = o2 < a. 

Let 

In [7] there was given the estimate (with 6 = 1) 

where d ,  €9 and Fzn is the distribution function of Z,. This note gives the 
rate of convergence of (F,,) to 8 in terms of the Lkvy and Dudley metrics. 

THEOREM 1. Let (X,, k 2 1) be a sequence of i.i.d.r.v. with EX, = p, 
a2 XI = a', E 1X1I3 < a. Then for every g € 3  with g f ( p )  # 0, and any sequen- 
ces d , ~ g  and ( ~ , , n >  1) ,  ~ , + O , n + m ,  

d: +a  ~ 2 "  
(6) L(F,,, @)< Cmax e - 7  (E,J~,J~"}, 

A &:'a 

where A = a- (LO)- Ig' (p)U)ll/*. 
Particularly, if E, = A-'di +' n-'I2, 

L(Fzn, @) < Cmax 

Proof .  Note that, for any random variable X and we have 

F,+,(X) = P[X+Y<x] < P[lYi < E ,  X <x+E]+P[JYI > E ]  
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and by substituting X I-* X + Y; YP - Y, x I+ x - E  we get F,(x - E )  

6 F,+,(x)+P[IYl > E ] .  Hence 

(7) F,(x-E)-P[IYJ > E ]  6 F,+,(x) < F,(~+E)+P[IYI > e l .  

Furthermore, 

where . 

and 

(91 L(Fz,, @) 6 L(Fz , F ( S , - ~ P ~ , ~ J ; ; )  + L(F(s,,-,p,I ,~, @)- 

It is known 161 that 

Uol L(F[s, - n,,)/b G, = 0 (n- lf2), 

and, by (6) and (8), 

where 

Now we shall use the following estimate: 

To prove, we note that, for any id,, n 2 1) €24, 
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But 

as 0 < 8 < 1 .  
Putting A = (Ig'(,u)l/aaL0)lld and combining (13), (141, we obtain (12). 
Now (11) can be written as follows: 

F ( s R - f i j , , ~ ( x - & n ) - a .  G Fzn(x) C Fon-w,lo J;(~+.J +an- 

Hence, since the distribution function is nondecreasing, we have 

where qn = max (E,, a,). 
We observe that the infimum of numbers q, for which ( 1 5 )  holds is the 

' 

Lkvy distance of Fzn and F I S n - n f l H o ~ i .  Thus L(Fza,, F(sn- nfl),,d C qn, which, 
together with (9) and (lo), completes the proof of Theorem 1. 

Let now @ be the class of all functions cp defined on R and satisfying the 
condition: 

(16) q is nonnegative, even, and nondecreasing on [0, m], x / q  (x) is 
defined for all x and nondecreasing pn rO,.g]. 

THEORM 2. Let {k, k 2 1) be a  sequence of i3.d.r.u. with EX, 
= p, O'X1 =a2, E(X,-p)2cp(X1-p) < a, for some VE@. Then, for every 
g € 3  with g'(p) # 0 and any sequence {d , ,  n 2 1) €9, 

Proof.-It is enough to replace i n  the proof of Theorem 1 the estimate I 

(10) by (cf. C51) 

We now give the uniform estimates in the case where {X,, k 3 1) is a 
sequence of nonidentically distributed random variables. ! 
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Put 

and 

THEOREM 3. Let [Xk, k 2 1) be a sequence of hdependent random uariab- 
Ees such that E (x!)' q (Xt) < co , k 3 1, for some p E @. Then, for every g E 9 
with g'(p,J # 0,  n 2 1, and any sequence (dm, n 2 1 )  €9, 

n 

I If q ( x )  = 1x1, i.e. E(X;l3 < m,  then 

L(Fvn, @) < Cmax 

Proof. Note that 

and 

It is known (see 151) that 

and 

(25) L(E,s,- npn) /sn,  @I = 0 if E(X:)' ( P ( x ~ )  < 00. 
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Applying the method used in the proof of Theorem 1 we get 

and 

we have 

FIS, - w n , / s n  (X - - ~h Fv, (XI G F(s,  - nlc,)/s, (X + ~2 + - 

Thus L(FV,, F(sn- ,,pld,sr) < qh which, together with (23)-(25), completes 
the proof of Theorem 3. 

Note that, putting in (67, d. = J'G, in (17), d,, = ,/-, 

and, in- (21), 

k =  1 

we can give the following estimates 
COROLLARY 1 .  Under the ass&nptions of Theorem 1 

COROLLARY 2. Under the assumptions of Theorem 2 

(27) L(F,,, a) < Cmax 
1  { l ~ ~ [ ~ ( a & ) + l ] } ( ~ + ~ ) / ~  

nd12. 
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C~ROLLARY 3. Under the assumptions of Theorem 3 

.L(Fvn, @) < C max 
' nd 19' w1 

$ E ( x ! ) ~  q (Xi) < M) , and 

$ E \ x , ~ ( ~  < co. 
If g'(x) = x 2 ,  8 = 1 ,  then we have 

- COROLLARY 4.  Under the assumptiuns if Theorem 1 ,  we haue 

and, for d ,  = J2 Inn, 
I 

3. Convergence in the Dudley metric. We now estimate the rate of 
convergence in law of the sequences {Z , ,  n 2 1 )  (see (4)) and (K ,  n 2 1 )  (see 
(20)) in the Dudley metric. 

THEOREM 4. Let {X , ,  k 2 1 )  be a sequence of i.i.d.r.v. with E X ,  = pC1, 
0' X I  = c2,  E Ixl J3  < 00 . Then, for every g E 9 with g'(p) # 0, 

where d ( - ,  .) is given by (3). 
Proof. It is known that 

and 
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By (3) and (I) we get 

which completes the proof of Theorem 4. 
THEOREM 5.  Let \Xk, k 2 1) be a sequence of i.r.0. such that (19) holds 

and let g G B, g'(p,J # 0. 
(i) If E (X;l2 cp (x:) < m , k 2 1 for (p E @ (see (16)), then 

.(ii) Ij' EIx,0I3 < CQ, k 2 l 7  then 

Proof. It is known (cf. [ 5 ] )  that 

if E (X,0)2 (p (Xt) < my k 2 1, and 

if E[x,0I3 <a, k 2 1, and 
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But 

which, together with (33j(353, completes the proof of Theorem 5.  
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