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ON POTENTIAL THEORY OF
HYPERBOLIC BROWNIAN MOTION WITH DRIFT

BY

GRZEGORZ S E R A F I N∗ (WROCŁAW)

Abstract. Consider the λ-Green function and the λ-Poisson kernel of a Lip-
schitz domain U ⊂ Hn = {x ∈ Rn : xn > 0} for hyperbolic Brownian
motion with drift. We provide several relationships that facilitate studying
those objects and explain somewhat their nature. As an application, we yield
uniform estimates for sets of the form Sa,b = {x ∈ Hn : xn > a,
x1 ∈ (0, b)}, a, b > 0, which covers and extends existing results of that
kind.
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1. INTRODUCTION

Hyperbolic Brownian motion (HBM) is a canonical diffusion in real hyperbolic
space with half the Laplace–Beltrami operator as generator. This process is a nat-
ural counterpart of the classical Brownian motion and plays a crucial role in the
probabilistic approach to potential theory on hyperbolic space. On the other hand,
HBM is closely related to geometric Brownian motion and the Bessel process
[2], [25]. It also has some applications to physics [13] and risk theory in financial
mathematics [10], [26]. Properties of HBM has been significantly developed in [1],
[2], [14], [18] and other papers. The main objects of study, in the context of poten-
tial theory on hyperbolic spaces, include the λ-Green function and the λ-Poisson
kernel of subdomains. They were recently intensively investigated for particular
sets (see e.g. [6], [7], [9], [17], [22]). The main result of the paper (Theorem 3.1)
implies that studying the aforementioned objects leads to HBM with drift. For this
reason, our approach is based on the process with drift from the outset.
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2 G. Serafin

We denote by X(µ) = {X(µ)(t)}t>0, µ ∈ R, a HBM with drift on the half-
space model Hn = {x ∈ Rn : xn > 0} of the n-dimensional real hyperbolic
space. The generator of the process is 1

2∆µ, where

(1.1) ∆µ = x2n
n∑
k=1

∂2

∂x2k
− (2µ− 1)xn

∂

∂xn
.

Note that ∆(n−1)/2 is the Laplace–Beltrami operator and therefore µ = (n− 1)/2
corresponds to the standard HBM. In this paper, we focus mostly on µ > 0, since
the main motivation of studying HBM with drift, mentioned in the first paragraph,
concerns positive values of µ. Furthermore, potential theories for opposite indices
are associated to each other (see Remark 3.1 after Theorem 3.1), which allows us
to study only the positive ones.

Let us denote by τµU = inf{t : X(µ)(t) /∈ U} the first exit time of the process
from the domain U . The objective of the paper is to examine the λ-Green function
G

(µ),λ
U (x, y) and the λ-Poisson kernel P (µ),λ

U (x, y) of U , defined by

G
(µ),λ
U (x, y) =

∞∫
0

e−λtEx[t < τµU ; X(µ)(t) ∈ dy] dt/dy, x, y ∈ U,(1.2)

P
(µ),λ
U (x, y) = Ex[e−λτ

µ
U ; X(µ)(τµU ) ∈ dy]/dy, x ∈ U, y ∈ ∂U.(1.3)

In the formula for P (µ),λ
U (x, y) we assume additionally that τµU <∞ a.s. if λ > 0.

Furthermore, for λ = 0 the above objects become the Green function and the Pois-
son kernel, which we denote by G

(µ),0
U (x, y) = G

(µ)
U (x, y) and P

(µ),0
U (x, y) =

P
(µ)
U (x, y), respectively. Those functions are fundamental objects in potential the-

ory on Hn. Precisely, they describe solutions for the Dirichlet problem involving
the operator ∆µ. In particular, the Green function appears to be the kernel of the
inverse operator to ∆µ. The λ-Green function and the λ-Poisson kernel take over
the leading role when the operator ∆µ − λI is considered. The λ-Green function
may then be understood as the resolvent kernel for ∆µ, and the λ-Poisson kernel
recovers λ-harmonic ((∆µ − λI)-harmonic) functions from boundary conditions.
The following relationships are provided in Theorem 3.1:

(1.4)
G

(µ),λ
U (x, y) =

(
xn
yn

)µ−η
G

(η)
U (x, y),

P
(µ),λ
U (x, y) =

(
xn
yn

)µ−η
P

(η)
U (x, y),

where µ ∈ R and η =
√
µ2 + 2λ. The main consequence of this result is that

the study of λ-Green functions and λ-Poisson kernels can be reduced to the case
λ = 0. Furthermore, examining these objects for the standard hyperbolic Brown-
ian motion leads naturally to HBM with drift, which is a substantial motivation to
study that process.
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If λ > 0 and τµU =∞ with positive probability, the λ-Poisson kernel defined in
a classical way becomes degenerate. Indeed, since {τµU = ∞} = {Xn(τµU ) = 0}
a.s., the right-hand side of (1.3) vanishes on ∂U ∩ P , where P = {x ∈ Rn :
xn = 0} and ∂U is the boundary of U in Euclidean metric (in Rn). This effect
is due to a specific behavior of λ-harmonic functions near P . The definition (1.3)
does not take this behavior into consideration. To discuss this issue more precisely
we recall an analytical interpretation of the λ-Poisson kernel as an integral kernel
solving the Dirichlet problem. Then we reformulate the problem and solve it by an
integral kernel of the form corresponding to (1.4).

Another important result of the paper is Theorem 3.3 where we show that the
Green function and the Poisson kernel for HBM with drift can be easily expressed
by analogous objects for Brown–Bessel diffusion. This general method was intro-
duced by Molchanov and Ostrovskii [20] (see also [19]). Finally, in Theorem 3.4
we relate potential theory on Hn to the classical one on the Euclidean space R2n.
However, that result concerns HBM without drift and the relevant set is modified.
As an application of general results we provide uniform estimates of the Green
function and the Poisson kernel of the set Sa,b = {x ∈ Hn : xn > a, x1 ∈ (0, b)},
a, b > 0. This set may seem very special, but studying it is motivated by geometry:
the hyperplanes xn = a are horocycles and the hyperplanes x1 = b are geodesics
in Hn. Moreover, constants in the estimates depend only on the dimension and the
parameter µ, and manipulation of parameters a and b lets us recover and improve
existing results for sets like Da = {x ∈ Hn : xn > a}, H = {x ∈ Hn : x1 > 0},
Sb = {x ∈ Hn : x1 ∈ (0, b)} (see [3], [8], [17], [22]).

The paper is organized as follows. The “Preliminaries” start with a short de-
scription of the Bessel process and related objects. The process killed when exiting
the half-line (a,∞), a > 0, is also considered. Next, the hyperbolic space Hn

and HBM with drift are introduced. In Section 3 we collect several relationships
which simplify the study of the λ-Green function and the λ-Poisson kernel of sub-
domains of Hn. Section 4 is devoted to estimates of the Green function and the
Poisson kernel of the set Sa,b. In the Appendix, one can find an integral lemma
which is intensively exploited in Section 4.

2. PRELIMINARIES

2.1. Notation. We denote by | · | the Euclidean norm |x| =
√
x21 + · · ·+ x2n of

a given vector x ∈ Rn. The estimates below use the following notation: for two
positive functions f, g : X → (0,∞) we write f ≈ g if there exists a constant
c > 1 such that 1/c 6 f/g 6 c for every x ∈ X. If the constant c depends on an
additional parameter, we write this parameter over ≈.

2.2. Bessel process. We denote by R(ν) = {R(ν)(t)}t>0 the Bessel process with
index ν < 0 starting from R(ν)(0) = x > 0. Nonnegative indices are also consid-
ered in the literature, but they are irrelevant from our point of view. For ν 6 −1
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the point 0 is killing and the process hits it a.s. In the case −1 < ν < 0 we impose
the killing condition at 0. The transition density function of the process is given by
(see [5, p. 134])

(2.1) g(ν)(t, x, y) =
y

t

(
y

x

)ν
exp

(
−x

2+y2

2t

)
I|ν|

(
xy

t

)
, ν < 0, x, y > 0,

where Iν(z) is the modified Bessel function of the first kind.
Let B = {B(t)}t>0 be the one-dimensional Brownian motion starting

from zero. The Bessel process is related to the geometric Brownian motion
{x exp(B(t) + νt)}t>0, x > 0, by the Lamperti relation

(2.2) {x exp(B(t) + νt)}t>0
d
= {R(ν)(A(ν)

x (t))}t>0,

where the integral functional A(ν)
x (t) is defined by

(2.3) A(ν)
x (t) = x2

t∫
0

exp(2B(s) + 2νs) ds.

The density function f (ν)x,t (u, v) of a vector (A
(ν)
x (t), x exp(B(t) + νt)) was com-

puted in [26] and is given by

(2.4) f
(ν)
x,t (u, v) =

(
v

x

)ν
e−ν

2t/2 1

uv
exp

(
−x

2+v2

2u

)
θxv/u(t), x, u, v, t > 0.

Here, the function θr(t) satisfies (see [24])

(2.5)
∞∫
0

e−λtθr(t) dt = I√2λ(r).

Note that the function f (ν)x,t (u, v) is also closely related to the Hartman–Watson law
(see [15]). Furthermore, (2.4), (2.5) and (2.1) imply

∞∫
0

f
(ν)
x,t (u, v) dt =

(
v

x

)ν 1

uv
exp

(
−x

2 + v2

2u

)
I|ν|

(
xv

u

)
(2.6)

=
1

v2
g(ν)(u, x, v).

The Bessel process with a negative index ν and starting from x > a, a > 0,
leaves the half-line (a,∞) with probability 1. The transition density function of
the process killed on exiting (a,∞) has been estimated in [4]:

(2.7) g(ν)a (t;x, y)

≈ (x− a)(y − a)

t+ (x− a)(y − a)

(
x2

t+ xy

)|ν|−1/2 1√
t

exp

(
−(x− y)2

2t

)
,

where x, y > a, t > 0. Furthermore, let us denote by q(ν)a (t;x), a > 0, the density
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function of the first hitting time of the point a by the Bessel process. It has been
estimated in [8]:

(2.8) q(ν)a (t;x) ≈ x− a
t3/2

x2|ν|−1

(t+ ax)|ν|−1/2
exp

(
−(x− y)2

2t

)
,

t > 0, x > a, ν < 0.

In fact, the above formula corrects a minor mistake of [8]. Precisely, Theorems 4
and 8 in [8] providing estimates when x > t and when x < t, respectively, are
correct, but the formula (15) combining them is wrong: t|µ|−1/2 + x|µ|−1/2 in the
denominator should read (t+ x)|µ|−1/2.

2.3. Hyperbolic space and hyperbolic Brownian motion with drift. We consider
the half-space model of the real hyperbolic space

Hn = {x ∈ Rn : xn > 0} , n = 1, 2, 3, . . . .

The formula for hyperbolic distance is given by

cosh dHn(x, y) =

(
1 +
|x− y|2

2xnyn

)
, x, y ∈ Hn.(2.9)

The unique, up to a constant factor, second order elliptic differential operator
on Hn, annihilating constant functions, which is invariant under isometries of the
space, is the Laplace–Beltrami operator ∆(n−1)/2 (cf. (1.1)).

Hyperbolic Brownian motion with drift is a processX(µ) = {X(µ)(t)}t>0 start-
ing from X(µ)(0) = x ∈ Hn whose generator is 1

2∆µ. The parameter µ is called
an index and the drift is equal to µ − (n − 1)/2. Note that for µ = (n − 1)/2 we
obtain the standard HBM (without drift).

Let us denote by B(t) = (B1(t), . . . , Bn(t)) the classical Brownian motion in
Rn starting from (x1, . . . , xn−1, 0). Then HBM with drift may be represented in
terms of B(t) as follows (see [3]):

(2.10) X(µ)(t)
d
=
(
B1(A

(−µ)
xn (t)), . . . , Bn−1(A

(−µ)
xn (t)), xn exp(Bn(t)− µt)

)
.

Here, the integral functional A(−µ)
xn (t), defined by (2.3), is associated with Bn(t).

In addition, using the Lamperti relation, we get

{X(µ)(t); t > 0} (d)
= {Y (A(−µ)

xn (t)); t > 0},(2.11)

where

(2.12) Y (t) = (B1(t), . . . , Bn−1(t), R
(−µ)(t)),

andR(−µ)(t) is the Bessel process with index−µ starting from xn and independent
of (B1(t), . . . , Bn−1(t)).



6 G. Serafin

3. GENERAL RESULTS

3.1. Reduction to λ = 0. In this subsection we provide precise relationships which
connect the λ-Green function and the λ-Poisson kernel with analogous objects for
λ = 0 and for the process with a different drift. This lets us reduce λ-potential
theory to the case λ = 0. The only cost we pay is the above-mentioned change of
the drift of the process.

THEOREM 3.1. Let µ ∈ R, U a domain in Hn and λ > 0. Then

(3.1) G
(µ),λ
U (x, y) =

(
xn
yn

)µ−η
G

(η)
U (x, y), x, y ∈ U,

where η =
√
µ2 + 2λ. If additionally τµU , τ

η
U <∞ a.s., then

(3.2) P
(µ),λ
U (x, y) =

(
xn
yn

)µ−η
P

(η)
U (x, y), x ∈ U, y ∈ ∂U.

Proof. The last coordinate of the process X(µ)(t) can be expressed in the form
X

(µ)
n (t) = xn exp(W (η−µ)(t) − ηt), where W (η−µ)(t) = Bn(t) + (η − µ)t and

Bn is a one-dimensional Brownian motion. By the Girsanov theorem, the process
{W (η−µ)(t)}06t6T is, for every T > 0, a standard Brownian motion with respect
to the measure QT given by

(3.3)
dQT
dP

= exp

(
(µ− η)Bn(T )− 1

2
(η − µ)2T

)
= M(T ).

This implies that the process {X(µ)(t)}06t6T considered with respect to the mea-
sure QT is a hyperbolic Brownian motion with drift with index η. Hence, for every
t 6 T and every Borel set A ⊂ U we get

Ex[t < τηU ; X(η)(t) ∈ A] = Ex[t < τµU ; M(T ); X(µ)(t) ∈ A].

Observe that M(t) is an Ft-martingale and it may be rewritten as

M(t) = [exp(Bn(t)− µt)]µ−ηe−(η2−µ2)t/2 = xη−µn e−λt[X(µ)
n (t)]µ−η.

Furthermore, denote byFt the σ-field generated by {X(µ)
s }06s6t. The set {t < τµU}

is then Ft-measurable and for t 6 T we get

Ex[t < τηU ; X(η)(t) ∈ A] = Ex
[
Ex[t < τµU ; M(T ); X(µ)(t) ∈ A | Ft]

]
= Ex

[
t < τµU ; Ex[M(T ) | Ft]; X(µ)(t) ∈ A

]
= Ex[t < τµU ; M(t); X(µ)(t) ∈ A]

= xη−µn e−λt Ex[t < τµU ; (X(µ)
n (t))µ−η; X(µ)(t) ∈ A].
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Since there is no upper bound of T , the above equalities hold for every t > 0 and
consequently∫

A

G
(η)
U (x, y) dy =

∞∫
0

Ex[t < τηU ; X(η)(t) ∈ A] dt

= xη−µn

∞∫
0

e−λt Ex[t < τµU ; (X(µ)
n (t))µ−η; X(µ)(t) ∈ A] dt

= xη−µn

∫
A

yµ−ηn G
(µ),λ
U (x, y) dy,

which proves the formula (3.1). Let us now prove the latter assertion of the theo-
rem. As before, for every Borel C ⊂ ∂U we get

Ex[τηU < T ; X(η)(τηU ) ∈ C] = Ex[τµU < T ; M(T ); X(µ)(τµU ) ∈ C]

= Ex
[
τµU < T ; Ex[M(T ) | FτµU ]; X(µ)(τµU ) ∈ C

]
,

where
FτµU = {A ∈ F∞ : (∀t > 0) A ∩ {τµU < t} ∈ Ft}.

Using Doob’s optional stopping theorem we obtain

Ex[τηU < T ; X(η)(τηU ) ∈ C] = Ex[τµU < T ; M(τµU ); X(µ)(τµU ) ∈ C]

= xη−µn Ex[τµU < T ; (X(µ)
n (τµU ))µ−ηe−λτ

µ
U ; X(µ)(τµU ) ∈ C].

The next step is to take the limit as T → ∞. By the assumption τµU , τ
η
U < ∞ a.s.,

the monotone convergence theorem gives

Ex[X(η)(τηU ) ∈ C] = xη−µn Ex[(X(µ)
n (τµU ))µ−ηe−λτ

µ
U ; X(µ)(τµU ) ∈ C],

which is equivalent to (3.2). �

REMARK 3.1. Another significance of the above theorem is that it reveals some
kind of duality between potential theories for opposite values of µ. Taking λ = 0
and −µ instead of µ we get, for µ > 0,

(3.4)
G

(−µ)
U (x, y) =

(
xn
yn

)−2µ
G

(µ)
U (x, y),

P
(−µ)
U (x, y) =

(
xn
yn

)−2µ
P

(η)
U (x, y).

We turn now to the case when Px(τµU = ∞) > 0. Since X(µ)
n (∞) = 0 (cf.

(2.10)), the right-hand side of (1.3) vanishes at yn = 0 for λ > 0. This situation is
singular, especially from the analytical point of view. Namely, the λ-Poisson kernel
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is supposed to solve the Dirichlet problem with a given boundary condition. In our
situation, the condition on the set P (µ),λ

U (x, y) = 0 (= ∂U∩{yn = 0}) does not af-
fect the behaviour of the solution in the neighbourhood of that set. However, some
examples show that this behaviour is relevant and setting boundary conditions only
on the set ∂U ∩ {yn > 0} results in an infinite number of solutions. Furthermore,
we can observe that multiplying the right-hand side of (3.2) by yµ−ηn and enlarging
the set U we obtain a nontrivial object. Finally, if a function f(x) is λ-harmonic
for the operator 1

2∆µ (i.e. 1
2∆µf(x) = λf(x)), then the function xη−µn f(µ), where

η =
√

2λ+ µ2, is harmonic for the operator 1
2∆η, which comes from

(3.5)
1

2
∆η(x

η−µ
n f(x))

= xη−µn

1

2
∆ηf(x) + (η − µ)xµ−η+1

n

∂f

∂xn
(x)− η2 − µ2

2
xµ−ηn f(x)

= xµ−ηn

1

2
∆µf(x)− λxµ−ηn f(x) = 0.

One can show (using e.g. [23, Theorem 4]) that every continuous bounded func-
tion on a Lipschitz domain U , which is harmonic for ∆η, η > 0, has a limit at the
boundary of U . All this leads us to the following modified Dirichlet problem:

Let U ⊂ Hn be a Lipschitz domain, f ∈ Cb(∂U) and λ > 0. Find a function
u ∈ C2(U) satisfying the differential equation

(3.6)
(

1

2
∆µu

)
(x) = λu(x), x ∈ U,

such that the function x
√

2λ+µ2−µ
n u(x) is bounded and

(3.7) lim
x→z
x∈U

x

√
2λ+µ2−µ

n u(x) = f(z), z ∈ ∂U.

THEOREM 3.2. The function u satisfying (3.6) and (3.7) is unique and given
by

u(x) = xµ−ηn

∫
∂U

f(y)P
(η)
U (x, y) dy,

where η =
√
µ2 + 2λ.

REMARK 3.2. According to this theorem, we can treat the function xµ−ηn P
(η)
U

as a kind of λ-Poisson kernel. We do not recover the formula for the λ-Poisson
kernel from Theorem 3.1, but the only difference is the factor yµ−ηn .

Proof of Theorem 3.2. Define h(x) = xη−µn u(x) = Ex[f(X(η)(τηU ))]. It is
bounded by ‖f‖∞ and, by the stochastic continuity of the process X(µ), satisfies
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condition (3.7). Since P (η)
U (x, y) is the standard Poisson kernel for the process

X(η)(t), we have ∆ηh(x) = 0. Thus, similarly to (3.5), we get 1
2∆µu(x) = λu(x).

To prove the uniqueness of the solution let us consider a sequence of bounded
(in hyperbolic metric) sets such that Um ↗ U . For every m the function u�Um
satisfies (3.6) and (3.7) for Um in place of U and for f = u�∂Um ∈ Cb(∂Um) and it
is the unique function with this property (see [12]). Moreover (see [16, Prop. 7.2,
p. 364])

u�Um(x) = Ex[e−λτ
µ
Umu(X(µ)(τµUm))].

Hence, by Theorem 3.1, we get

u(x) = Ex[e−λτ
µ
Umu(X(µ)(τµUm))] = xµ−ηn Ex[(X(η)(τηUm))η−µu(X(η)(τηUm))].

Letting m→∞, by the Lebesgue dominated convergence theorem we obtain

u(x) = xµ−ηn Ex[f(X(η)(τηU ))]. �

3.2. Representations involving other processes. Let us define the Green function
GYU (x, y) and the Poisson kernel P YU (x, y) of the set U ⊂ Hn for the Brown–
Bessel diffusion Y (t) (see (2.12)) analogously to the case of HBM with drift, i.e.

P YU (x, y) := Px(Y (τYU ) ∈ dy), x ∈ U, y ∈ ∂U,

GYU (x, y) :=
∞∫
0

Ex[t < τYU ; Y (t) ∈ dy] dt, x, y ∈ U.

The next lemma lets us study these objects instead of their counterparts for HBM
with drift. The main advantage of this result comes from coordinate independence
of the process Y (t) and from the fact that this process is relatively well known.

THEOREM 3.3. For any domain U ⊂ Hn we have

(i) P
(µ)
U (x, y) = P YU (x, y), (ii) G

(µ)
U (x, y) =

1

y2n
GYU (x, y).

REMARK 3.3. The first assertion may be found in [17]; however, the proof is
short so we repeat it for convenience of the reader. The other assertion is proved
for the set Da = {x ∈ Hn : xn > a} in [3], but the proof given below is much
simpler and covers general sets.

Proof of Theorem 3.3. According to (2.11), the process Z(t) = Y (A
(−µ)
xn (t))

is a HBM with drift. Since the functional A(−µ)
xn (t) is continuous and increasing

a.s., we have τYU = A
(−µ)
xn (τµU ) a.s. Thus

X(µ)(τµU )
d
= Z(τµU ) = Y (A(−µ)

xn (τµU ))
a.s.
= Y (τYU ).
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Denote by p(µ)(t;x, y) the transition density function (with respect to the Lebesgue
measure) of the process Z(t). By the Hunt formula and the Fubini–Tonelli theorem
we have

(3.8)
∞∫
0

Ex[t < τµU ;Z(t) ∈ dy] dt

=
∞∫
0

p(µ)(t;x, y)− Ex[t > τµU ; p(µ)(t− τµU , Z(τZU ), y)] dt

=
∞∫
0

p(µ)(t;x, y) dt− Ex
[∞∫
τZU

p(µ)(t− τZU , Z(τµU ), y) dt
]

=
∞∫
0

p(µ)(t;x, y) dt− Ex
[∞∫
0

p(µ)(t, Z(τµU ), y) dt
]
.

Using representation (2.10) and formulae (2.4), (2.6) we get

∞∫
0

p(µ)(t;x, y) dt =
∞∫
0

∞∫
0

1

(2πu)(n−1)/2
e−(x̃−ỹ)

2/(2u)f
(µ)
xn,t(u, yn) du dt

=
1

y2n

∞∫
0

1

(2πu)(n−1)/2
e−(x̃−ỹ)

2/(2u)g(−µ)(u;xn, yn) du,

where x̃ = (x1, . . . , xn−1) ∈ Rn−1 and g(ν)(u;x, y) is the transition density func-
tion of the Bessel process with index ν starting from x. We identify the last inte-
grand as the transition density function of the process Y (t). Since Z(τµU )

d
= Y (τYU )

and the property (3.8) can be derived also for the process Y (t), we obtain (ii). �

The above theorem, together with the scaling properties of the standard Brown-
ian motion and the Bessel process, gives us the following scaling properties of the
Green function and the Poisson kernel for HBM with drift.

COROLLARY 3.1. For any domain U ⊂ Hn and a > 0 we have

G
(µ)
aU (x, y) =

1

an
G

(µ)
U

(
x

a
,
y

a

)
,(3.9)

P
(µ)
aU (x, y) =

1

an−1
P

(µ)
U

(
x

a
,
y

a

)
.(3.10)

The last theorem in this section shows that the Green function and the Poisson
kernel of a set U for HBM (without drift) in Hn may be derived from their coun-
terparts for a somewhat modified set and for the classical Brownian motion in R2n.
This shows that studying potential theory for HBM may be reduced to the classical
potential theory. Note that such results for a class of tube domains were obtained
in [22].
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For A ⊂ Hn we define

A+ :=
{
x ∈ R2n :

(
x1, x2, . . . , xn−1, |(xn, xn+1, . . . , x2n)|

)
∈ A

}
⊂ R2n,

and for x ∈ Rn we put

x+ = (x, 0, . . . , 0︸ ︷︷ ︸
n zeros

) ∈ R2n.

The general form of the set A+ may be slightly discouraging, but in many cases it
is not very complicated, e.g. for the set {x ∈ Hn : xn < a}, a > 0, or for tube
domains. Furthermore, we denote by GBU (x, y) and PBU (x, y) the Green function
and the Poisson kernel, respectively, of the set U ⊂ R2n for the classical Brownian
motion in R2n.

THEOREM 3.4. For any open set A ⊂ Hn we have

GA(x, y) =
xn−1n

yn+1
n

∫
ynSn

GBA+(x+, (ỹ, w)) dσ(w), x, y ∈ A,

where ỹ = (y1, . . . , yn−1) and σ denotes the n-dimensional spherical measure on
the sphere ynSn = {z ∈ Rn+1 : |z| = yn}. Furthermore, if ∂A ∩ (Rn−1 × {0})
= ∅, then

PA(x, y) =

(
xn
yn

)n−1 ∫
ynSn

PBA+(x+, (ỹ, w)) dσ(w), x ∈ A, y ∈ ∂A.

Proof. By (3.4) and Theorem 3.3 we get

G
(−n−1

2
)

U (x, y) =

(
xn
yn

)n−1
G

(n−1
2

)

U (x, y) =
xn−1n

yn+1
n

GYU (x, y),

P
(−n−1

2
)

U (x, y) =

(
xn
yn

)n−1
P

(n−1
2

)

U (x, y) =

(
xn
yn

)n−1
P YU (x, y),

where Y (t) =
(
B1(t), . . . , Bn−1(t), R

(n−1
2

)(t)
)
. Since the Bessel process R(n−1

2
)

may be interpreted as a norm of an n+ 1-dimensional standard Brownian motion,
we obtain

Y
d
= (B1, B2, . . . , Bn−1, |(Bn, . . . , B2n)|),

whereB = (B1, . . . , B2n) is a 2n-dimensional Brownian motion starting from x+.
Let f be a positive function on Hn. Following the convention that GA(x, ·)
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vanishes on Ac we get∫
A

GYA(x, y)f(y) dy =
∞∫
0

Ex[f(Y ); t < τYA ] dt

=
∞∫
0

Ex
+[
f
(
B1(t), . . . , Bn−1(t), |(Bn(t), . . . , B2n(t))|

)
; t < τBA+

]
dt

=
∫
R2n

f
(
y1, . . . , yn−1,

√
z21 + · · ·+ z2n+1

)
×GBA+(x+, (y1, . . . , yn−1, w)) dy1 . . . dyn−1 dz

=
∫
Hn
f(y1, . . . , yn−1, yn)

∫
ynSn

GBA+(x+, (ỹ, w)) dσ(w) dy1 . . . dyn.

Furthermore, let τBA+ be the first exit time of the Brownian motion B(t) from the
set A+. Then for every positive function g on ∂A we have

Ex[g(Y (τYA ))]

= Ex
+[
g
(
B1(τ

B
A+), . . . , Bn−1(τ

B
A+), |(Bn(τBA+), . . . , B2n(τBA+))|

)]
=
∫
∂A+

g(y1, . . . , yn−1, z1, . . . , zn+1)P
B
A+(x+, (ỹ, z)) dy1 . . . dyn−1 dz

=
∫
∂A

g(y1, . . . , yn−1, yn)
∫

ynSn
PBA+(x+, (ỹ, w)) dσ(w) dy.

Here, dy stands for the induced Lebesgue measure on ∂A. �

4. ESTIMATES

For a, b > 0 we define

Sa,b = {x ∈ Hn : xn > a, x1 ∈ (0, b)}.

Studying this kind of sets is motivated by hyperbolic geometry. The set Sa,b is
bounded by three hyperplanes: P1 = {x ∈ Hn : x1 = 0}, P2 = {x ∈ Hn :
x1 = b} and P3 = {x ∈ Hn : xn = a}. Symmetries with respect to the hyper-
planes P1 and P2 are isometries in Hn; the set P3 is a horocycle. In this section we
estimate the Green function and the Poisson kernel of Sa,b uniformly with respect
to space variables as well as to the parameters a and b. This leads to estimates for
some other sets that may be obtained from Sa,b by manipulating the values of the
parameters.

By δu(w) = w∧ (u−w), u > 0, w ∈ (0, u), we denote the Euclidean distance
between w and a complement of the interval (0, u). We clearly have δu(w) ≈
w(u− w)/u. Moreover, for x ∈ Rn and a > 0 we define

(4.1) x↓a = (x1, . . . , xn−1, xn − a).
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THEOREM 4.1. For x, y ∈ Sa,b and µ > 1
2 we have

G
(µ)
Sa,b

(x, y)

µ,n
≈ x

µ−1/2
n

y
µ+3/2
n

e−
π
b
|x−y|

|x− y|n
[δb(x1)δb(y1)] ∧ |x− y|2(

1
b |x− y|+ cosh ρa

) (
1 + 1

b |x− y|
)n/2+µ+3/2(

1
b |x− y|+ cosh ρ

)µ−1/2 ,
where ρa is the hyperbolic distance between x↓a and y↓a.

Proof. By the scaling property, G(µ)
Sa,b

(x, y) = b−nG
(µ)
Sa/b,1

(x/b, y/b), hence it
is enough to consider b = 1. Furthermore, Theorem 3.3(ii) gives

G
(µ)
Sa,1

(x, y) =
1

y2n

∞∫
0

j(t;x1, y1)
exp
(
− 1

2t

∑n−1
k=2(xk − yk)2

)
(2πt)(n−2)/2

g(−µ)a (t;xn, yn) dt,

where g(−µ)a (t;xn, yn) is the transition density of the Bessel process with index
−µ killed on exiting (a,∞) and j(t;x1, y1) is the transition density function of a
one-dimensional Brownian motion killed on exiting the interval (0, 1). Estimates
of the function j(t;x1, y1) are given in [21, Theorem 5.4] (cf. [11, (5.7), p. 341]
and [21, Theorem 2.2]):

(4.2) j(t;x1, y1)

≈
(

1 ∧ x1yy
t

)(
1 ∧ (1− x1)(1− y1)

t

)
1 + t5/2√

t
e−π

2t/2−(x1−y1)2/(2t)

≈ x1y1
t+ x1y1

(1− x1)(1− y1)
t+ (1− x1)(1− y1)

1 + t5/2√
t

e−π
2t/2−(x1−y1)2/(2t).

Combining (4.2) with (2.7), we obtain

G
(µ)
Sa,1

(x, y) ≈ x1y1(1− x1)(1− y1)(xn − a)(yn − a)x2µ−1n y−2n

×
∞∫
0

1

t+ x1y1

1

t+ (1− x1)(1− y1)
1 + t5/2

tn/2
e−π

2t/2−|x−y|2/(2t)

t+ (xn − a)(yn − a)

×
(

1

t+ xnyn

)µ−1/2
dt.

Next, we apply Lemma 5.1 with α = 5/2, β = (n− 2)/2, b = |x− y|2, k = 4,
a1 = x1y1, γ1 = 1, a2 = (1 − x1)(1 − y1), γ2 = 1, a3 = (xn − a)(yn − a),
γ3 = 1, a4 = xnyn, γ4 = µ− 1/2 to get

G
(µ)
Sa,1

(x, y)

µ,n
≈ x

µ−1/2
n

y
µ+3/2
n

δ1(x1)δ1(y1)(1 + |x− y|)µ+n/2+7/2e−π|x−y|
2

|x− y|n−2(|x− y|+ cosh ρa)(|x− y|+ cosh ρ)µ−1/2
w(x, y),
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where

w(x, y) =
1

x1y1 + x1y1|x− y|+ |x− y|2
(4.3)

× 1

(1− x1)(1− y1) + (1− x1)(1− y1)|x− y|+ |x− y|2
.

To complete the proof we need to show that

(4.4) w(x, y) ≈ (δ1(x1)δ1(y1)) ∧ |x− y|2

δ1(x1)δ1(y1)|x− y|2(1 + |x− y|2)
.

For |x1−y1| > 1/2 we getw(x, y) ≈ 1/|x−y|4, which is equivalent to (4.4) in this
case. On the other hand, for |x−y| < 1/2 we have x1y1 ≈ 1 or (1−x1)(1−y1) ≈ 1
and consequently

w(x, y) ≈ 1

x1y1 + |x− y|2
1

(1− x1)(1− y1) + |x− y|2

≈ 1

[(1− x1)(1− y1)] ∧ [x1y1] + |x− y|2
≈ 1

δ1(x1)δ1(y1) + |x− y|2
,

as required. �

The Poisson kernel of smooth and bounded domains may be obtained as the
normal derivative of the Green function. Since the set Sa,b is neither bounded nor
smooth, we estimate its Poisson kernel separately.

THEOREM 4.2. For x ∈ Sa,b, y ∈ ∂Sa,b and µ > 1/2 we have

P
(µ)
Sa,b

(x, y)
µ,n
≈
(
xn
yn

)µ−1/2 e−πb |x−y|(1 + 1
b |x− y|

)µ+(n+3)/2

|x− y|n
(
1
b |x− y|+ cosh ρ

)µ−1/2
×


δb(x1)

1
b |x− y|+ cosh ρa

, y1 ∈ {0, b},

(xn − yn)
[δb(x1)δb(y1)] ∧ |x− y|2

|x− y|2
, yn = a.

Proof. In view of the scaling property and Theorem 3.3 we only need to inves-
tigate the density function of Y (τYSa,1). Recall that Y = (B1, . . . , Bn−1, R

(−µ))

is introduced in (2.12). Let τB(0,1) be the first exit time from (0, 1) by the one-
dimensional Brownian motion B1(t) and τR(a,∞) be the first exit time from (a,∞)

by the Bessel process R(−µ)(t). Observe that

τYSa,1 = τB(0,1) ∧ τ
R
(a,∞).
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Furthermore, let us divide the boundary ∂Sa,1 of Sa,1 into two parts: ∂1Sa,1 =
{0, 1} ×Rn−2 × (a,∞) and ∂2Sa,1 = (0, 1)×Rn−2 × {a}. For any Borel subset
A ⊂ ∂1Sa,1 we have

Px(Y (τYSa,1) ∈ A)

= Px
(
(B1(τ

B
(0,1)), . . . , Bn−1(τ

B
(0,1)), R

(−µ)(τB(0,1))) ∈ A, τ
B
(0,1) 6 τ

R
(a,∞)

)
.

Since τB(0,1) is independent of the rest of the above-appearing processes and vari-
ables, we may write

Px(Y (τYSa,1) ∈ A)

=
∫
A

∞∫
0

γ(t;x1, y1)
exp
(
− 1

2t

∑n−1
k=2(xk − yk)2

)
(2πt)(n−2)/2

g(µ)a (t;xn, yn) dt dy,

where γ(t;x1, y1) = Px(B1(τ
B
(0,1)) = y1, τB(0,1) ∈ dt)/ dt. Consequently, the

inner integral represents the Poisson kernel P (µ)
Sa,1

(x, y). Using the estimates (see
[21, Thm. 5.3])

γ(t;x1, y1) ≈ x1(1− x1)
1 + t5/2

(t+ 1− |x1 − y1|)t3/2
exp

(
−|x1 − y1|

2

2t
− 1

2
π2t

)
,

where x1, y1 ∈ (0, 1), t > 0, and the formula (2.7), we obtain

P
(µ)
Sa,1

(x, y)
µ,n
≈ x1(1− x1)(xn − a)(yn − a)x2µ−1n

×
∞∫
0

1 + t5/2

(t+ 1− |x1 − y1|)t(n+2)/2

exp
(
− |x−y|

2

2t − 1
2π

2t
)

t+ (xn − a)(yn − a)

(
1

t+ xnyn

)µ−1/2
dt.

To deal with this integral, we apply Lemma 5.1 with α = 5/2, β = n/2, b =
|x − y|2, k = 3, a1 = 1 − |x1 − y1|, γ1 = 1, a2 = (xn − a)(yn − a), γ2 = 1,
a3 = xnyn, γ3 = µ− 1/2 to get

P
(µ)
Sa,1

(x, y)
µ,n
≈ x1(1− x1)e−π|x−y|(1 + |x− y|)µ+(n+7)/2

|x− y|n
(
1 + |x− y|+ |x−y|2

(xn−a)(yn−a)
)(

1 + |x− y|+ |x−y|2
xnyn

)µ−1/2
×
(
xn
yn

)µ−1/2 1

1− |x1 − y1|+ (1− |x1 − y1|)|x− y|+ |x− y|2
.

Using 1 + |x− y| − |x1 − y1| ≈ 1 + |x− y|, we estimate the last denominator as
follows:

1− |x1 − y1|+ (1−|x1 − y1|)|x− y|+ |x− y|2

= (1− |x1 − y1|+ |x− y|)− |x1 − y1| |x− y|+ |x− y|2

≈ 1 + |x− y|(1− |x1 − y1|+ |x− y|) ≈ 1 + |x− y|2.
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Eventually we arrive at

P
(µ)
Sa,1

(x, y)
µ,n
≈
(
xn
yn

)µ−1/2 δ1(x1)e
−π|x−y|(1 + |x− y|)µ+(n+3)/2

|x− y|n(|x− y|+ cosh ρa)(|x− y|+ cosh ρ)µ−1/2
,

which completes the estimates of the Poisson kernel on the first part of the bound-
ary. Assume now B ⊂ ∂2Sa,1. Note that yn = a for y ∈ ∂2Sa,1. As in the previous
case, we get

Px(Y (τYSa,1) ∈ A) = Px
(
(B1(τ

R
(a,∞)), . . . , Bn−1(τ

R
(a,∞)), a) ∈ A, τR(a,∞) < τβ(0,1)

)
=
∫
B

∞∫
0

j(t;x1, y1)
exp
(
− 1

2t

∑n−1
k=2(xk − yk)2

)
(2πt)(n−2)/2

q(−µ)a (t;xn) dt dy,

where q(−µ)a (t;xn) = Pxn(τR(a,∞) ∈ dt)/ dt. Hence, by (4.2) and (2.8), we obtain

P
(µ)
Sa,1

(x, y)
µ,n
≈ x1y1(1− x1)(1− y1)(xn − yn)x2µ−1n

×
∞∫
0

1 + t5/2

t+ x1y1

e−π
2t/2−|x−y|2/2t

t+ (1− x1)(1− y1)
1

t(n+2)/2

1

(t+ ynxn)µ−1/2
dt.

Next, we apply Lemma 5.1 with α = 5/2, β = n/2, b = |x − y|2, k = 3,
a1 = x1y1, γ1 = 1, a2 = (1− x1)(1− y1), γ2 = 1, a3 = ynxn, γ3 = µ− 1/2 to
get

P
(µ)
Sa,1

(x, y)

µ,n
≈ x1y1(1−x1)(1−y1)(xn−yn)x2µ−1

(ynxn+ynxn|x−y|+ |x−y|2)µ−1/2e−π|x−y|
(1+ |x−y|)µ+(n+7)/2

|x−y|n
w(x, y)

≈
(
xn
yn

)µ−1/2 δ1(x1)δ1(y1)(xn−yn)e−π|x−y|

|x−y|n
(1+ |x−y|)µ+(n+7)/2

(|x−y|+cosh ρ)µ−1/2
w(x, y),

where w(x, y) is given by (4.3). Applying (4.4) ends the proof. �

Manipulating the parameters a and b in Theorems 4.1 and 4.2, we obtain some
further results. Letting a → 0 and using monotone convergence we get the corol-
lary below. It generalizes estimates from [22], where HBM without drift was con-
sidered.

COROLLARY 4.1. For x, y ∈ S0,b we have

G
(µ)
S0,b

(x, y)

µ,n
≈ x

µ−1/2
n

y
µ+3/2
n

e−
π
b
|x−y|

|x− y|n
(δb(x1)δb(y1) ∧ |x− y|2)

(
1 + 1

b |x− y|
)n/2+µ+3/2(

1
b |x− y|+ cosh ρ

)µ+1/2
,



On potential theory of HBM with drift 17

and for x ∈ S0,b and y ∈ ∂S0,b we have

P
(µ)
S0,b

(x, y)

µ,n
≈


(
xn
yn

)µ−1/2 δb(x1)e−πb |x−y|(1 + 1
b |x− y|

)µ+(n+3)/2

|x− y|n
(
1
b |x− y|+ cosh ρ

)µ+1/2
, y1 ∈ {0, b},

x2µn e
−π
b
|x−y|(δb(x1)δb(y1)∧ |x− y|2)

(
1 + 1

b |x− y|
)µ+(n+3)/2

|x− y|2µ+n+1
, yn = a.

Letting then b → ∞ we obtain estimates provided in [17]. The next corol-
lary concerns the most studied subset of Hn in the context of HBM, i.e. Da =
{x ∈ Hn : xn > a}, a > 0. It follows from Theorems 4.1 and 4.2 by replacing
x1 and y1 by x1 + b/2 and y1 + b/2, respectively, and letting b → ∞. In fact,
the Poisson kernel P (µ)

Da
(x, y) was estimated in [8], and estimates of the λ-Green

function for the process without drift (which, by Theorem 3.1, are equivalent to
estimates of the Green function for the process with a suitable drift) are the main
results of [3].

COROLLARY 4.2. For µ > 0 we have

G
(µ)
Da

(x, y)
µ,n
≈ x

µ−1/2
n

y
µ+3/2
n

1

|x− y|n−2 cosh ρa (cosh ρ)µ−1/2
, x, y ∈ Da,

P
(µ)
Da

(x, y)
µ,n
≈
(
xn
yn

)µ−1/2 xn − yn
|x− y|n(cosh ρ)µ−1/2

, x ∈ Da, y ∈ ∂Da.

5. APPENDIX

In this section we present a technical lemma which is used to estimate integrals
appearing in Section 4.

LEMMA 5.1. For fixed α > 0, β > 1/2, k ∈ N, γi > 0 for i ∈ {1, . . . , k − 1}
and γk > −1/2 define

J(a1, . . . , ak, b) =
∞∫
0

(1 + t)α

tβ+1

exp
(
− b2

2t −
1
2π

2t
)∏k

i=1(ai + t)γi
dt, a1, . . . , ak, b > 0.

There exists a constant c = c(α, β, γ1, . . . , γk) such that

J(a1, . . . , ak, b)
c
≈ e−bπ

b2β
(1 + b)α+β−1/2+

∑k
i=1 γi∏k

i=1(ai + aib+ b2)γi
.
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Proof. Throughout this proof, c represents a constant depending on α, β,
γ1, . . . , γk. Substituting t = bu/π in the integral from the statement we get

e−bπ

bβ
πβ−α+

∑k
i=1 γi

∞∫
0

(π + ub)α

uβ+1

exp
(
−1

2bπ
(√
u− 1√

u

)2)∏k
i=1(aiπ + bu)γi

du =:
e−bπ

bβ
I.

It is enough to show that

(5.1) I
c
≈ (1 + b)α+β−1/2+

∑k
i=1 γi

bβ
∏k
i=1(ai + aib+ b2)γi

.

We start with the substitution
√
u− 1√

u
= s
√

2
b . Note that

u =

(√
1 +

s2

2b
+

s√
2b

)2

≈

1 + s2/b, s > 0 (⇔ u > 1),
1

1 + s2/b
, s 6 0 (⇔ u 6 1),

and
du

u
=

2ds√
s2 + 2b

≈ ds√
s2 + b

.

Consequently,

I
c
≈ bβ

∞∫
0

(1 + b+ s2)α

(b+ s2)β+1/2

e−s
2∏k

i=1(ai + b+ s2)γi
ds

+
1

bβ

0∫
−∞

(s2 + b)β−1/2
(
1 + b2

s2+b

)α
e−s

2∏k
i=1

(
ai + b2

s2+b

)γi ds

=: bβI1 +
1

bβ
I2.

For b > 1 we have

I1 =
(1 + b)α

bβ+1/2
∏k
i=1(ai + b)γi

∞∫
0

(
1 + s2

1+b

)α(
1 + s2

b

)β+1/2

e−s
2∏k

i=1

(
1 + s2

ai+b

)γi ds.
Since α > 0 and β > 1/2, the integral above may be bounded from above by

∞∫
0

(1 + s2)αe−s
2∏k

i=1(1 + s21(−∞,0)(γi))γi
ds,

and from below by

∞∫
0

1

(1 + s2)β+1/2

e−s
2∏k

i=1(1 + s21(0,∞)(γi))γi
ds.
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Hence, estimating b+ 1 ≈ b, we get

I1
c
≈ bα−β−1/2∏k

i=1(ai + b)γi
.

Furthermore, using 0 6 s2/b 6 s2 and 0 6 ais2/[b(ai + b)] < s2, we have

I2 =
∞∫
0

(
b
(
s2

b + 1
))β−1/2(

1 + b b
s2+b

)α
e−s

2∏k
i=1(ai + b)γi

k∏
i=1

(
1 + s2/b

1 + ais2

b(ai+b)

)γi
ds

6
bβ−1/2(1 + b)α∏k
i=1(ai + b)γi

∞∫
0

(s2 + 1)β−1/2+
∑k
i=1 |γi|e−s

2
ds

c
≈ bα+β−1/2∏k

i=1(ai + b)γi
.

Hence

(5.2) I
c
≈ bβI1

c
≈ bα−1/2∏k

i=1(ai + b)γi
, b > 1,

which is equivalent to (5.1). Assume now b 6 1. We have

I2
c
≈

0∫
−∞

(s2 + b)β−1/2e−s
2∏k

i=1

(
ai + b2

s2+b

)γi ds.
We are going to use the inequalities s2 < s2 + b < s2 + 1 and

(ai + b2)
1

1 + s2
< ai +

b2

s2 + b
< (ai + b2)

(
1 +

1

s2

)
, 1 6 i 6 k.

Note that, as long as all γi are nonnegative, replacing ai+ b2

s2+b
by (ai+b

2)
(
1+ 1

s2

)
does not affect integrability of the above integral. However, it works also if γk ∈
(−1/2, 0). Thus

I2
c
≈ 1∏k

i=1(ai + b2)γi
, b 6 1.

It is now enough to show that bβI1 6 cb−βI2 for b 6 1. We rewrite I1 as follows:

I1 =
( 1∫

0

+
∞∫
1

) (1 + b+ s2)α

(b+ s2)β+1/2

e−s
2∏k

i=1(ai + b+ s2)γi
ds

c
≈

1∫
0

1

(b+ s2)β+1/2

ds∏k
i=1(ai + b+ s2)γi

+
∞∫
1

s2α−2β−1e−s
2∏k

i=1(ai + s2)γi
ds

=: I1,1 + I1,2.
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In order to estimate I1,1 we substitute s =
√
b u to get

I1,1 =
b−β/2−1/4∏k
i=1(ai + b)γi

1/
√
b∫

0

1

(1 + u2)β+1/2

du∏k
i=1

(
1 + b

ai+b
u2
)γi(5.3)

6
b−β/2−1/4∏k
i=1(ai + b)γi

∞∫
0

1

(1 + u2)β+1/2

du(
1 + b

ai0+b
u2
)γk

6
b−β/2−1/4∏k
i=1(ai + b)γi

∞∫
0

du

(1 + u2)β+1/2+1(−∞,0)(γk)
,

where the last integral is convergent by the assumptions β > 1/2 and γk > −1/2.
The same bound may be obtained for I1,2. Indeed, due to the inequalities ai + 1 6
ai + s2 6 (ai + 1)(1 + s2) for s > 1 we have

I1,2
c
≈ 1∏k

i=1(ai + 1)γi
=

∏k
i=1

(
ai+b
ai+1

)γi∏k
i=1(ai + b)γi

(5.4)

6

(
ak+1
ak+b

)1/2∏k
i=1(ai + b)γi

6
b−1/2∏k

i=1(ai + b)γi
6

b−β/2−1/4∏k
i=1(ai + b)γi

,

where we have used β > 1/2 and b 6 1. Combining (5.3) and (5.4) gives us

I1 6 c
b−β/2−1/4∏k
i=1(ai + b)γi

, 0 < b 6 1, a1, . . . , ak > 0.

Thus, since 3β/2− 1/4 > 1/2,

bβI1 6 c
1

bβ
I2

b3β/2−1/4∏k
i=1

(
ai+b
ai+b2

)γi 6 c 1

bβ
I2b1/2

(
ak + b

ak + b2

)−min{0,γk}
.

For γk > 0 we bound b1/2 6 1 and for γk ∈ (−1/2, 0),

b1/2
(
ak + b

ak + b2

)−γk
6

(
b(ak + b)

ak + b2

)−γk
6 1,

which gives bβI1 6 cb−βI2, as required. Hence

I
c
≈ 1

bβ
I2

c
≈ 1

bβ
∏k
i=1(ai + b2)γi

, 0 < b 6 1, a1, . . . , ak > 0.

This coincides with (5.1) and the proof is complete. �
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