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1. INTRODUCTION

The problem of simultaneous linear estimation of fixed and random effects was
initiated by Henderson [7], who was interested in estimating genetic parameters
in animal breeding. Further results on unbiased estimation of both kinds of effects
were obtained, among others, by Goldberger [4], Henderson ([8], [9]), Harville [6],
Rao [19], Jiang [10], Liu et al. [16] and Tian [27]. Synówka-Bejenka and Zontek
([25], [26]) have dealt with admissibility of linear estimators of fixed and random
effects in some linear models. To get a characterization, they have shown that the
problem of admissibility for a linear function of fixed and random effects is equiva-
lent to the problem of admissibility for a linear function of the expected value only,
in another properly defined linear model (called the dual model; see Section 3 for
more details). This reduction allows the use of the results concerning admissibility
of linear estimators of linear functions of expected value in a general linear model.
Using a duality, Synówka-Bejenka and Zontek [25] obtained a characterization of
linear admissible estimators of a linear function of fixed and random effects in
the multi-way balanced nested classification random model and in the multi-way
balanced crossed classification random model (see also Shiqing et al. [21]). They
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have proved, using a stepwise procedure elaborated by LaMotte [13], that limits of
ULBEs are admissible.

The problem of admissibility of linear estimators has received considerable at-
tention in the literature. Despite this, explicit characterizations have been obtained
only for special cases. Basing on algebraic properties of matrices Cohen [3] has
described all admissible linear estimators of the mean vector in a Gauss–Markov
model with identity covariance matrix. Further generalizations have been given,
among others, by Rao [18], Mathew et al. [17], Stępniak [22], Zontek [28], Klo-
necki and Zontek [12], Baksalary and Markiewicz [1], Baksalary et al. [2], Groß
and Markiewicz [5] and Stępniak [24]. The problem of characterizing admissi-
ble linear estimators of a linear function of expected value was also considered
in terms of connection between the closure of the set of unique locally best es-
timators (ULBE) and the set of admissible linear estimators. This approach was
applied, among others, by Stępniak [23], Zontek [29] and LaMotte [15]. LaMotte
has shown that every admisible linear estimator is the limit of linear estimators
that are uniquely best at points in the minimal closed convex cone containing the
original parameter set. On the other hand, he gave an example of a model in which
a limit of ULBEs may not be admissible (see LaMotte [14]).

Basing on LaMotte’s results [13] Synówka-Bejenka and Zontek [26] have
proved that for linear models with finitely generated parameter space every limit
of a sequence of ULBEs is admissible. To prove that, they applied a stepwise pro-
cedure of LaMotte [13]. Thus they showed that for such models the class of all
admissible linear estimators consists of all ULBEs and their limits. For example,
they described this class in a model dual to a random linear model for spatially lo-
cated sensors measuring intensity of a source of signals at discrete instants of time.
A special case of this model is the so called one-way balanced random model.

In this paper we note that for any model dual to a balanced random model
the parameter space is finitely generated. In such models it is enough to present
formulas for ULBEs in the form for which their limits can be characterized. We
will use this approach to give explicit formulas for linear admissible estimators of
a linear function of fixed and random effects in a balanced random model.

Throughout this paper,Mm×q denotes the space of m × q real matrices. The
symbols A′ and R(A) stand for the transpose and column space of A ∈ Mm×q,
respectively. For A1 ∈ Mm1×q1 and A2 ∈ Mm2×q2 the symbols A1 ⊗ A2 and
diag(A1, A2) denote the Kronecker product and the matrix whose diagonal con-
sists of A1 and A2, respectively. The minimal closed convex cone containing a set
A ⊂Mm×m×Mm×m will be denoted by [A].We write Im and 1m for them×m
identity matrix and the m-vector of ones, respectively.

2. BALANCED RANDOM MODELS

Let Yi1,...,ir , where ij = 1, . . . , nj for j = 1, . . . , r, be a random variable having
the following structure (compare Khuri et al. [11]):
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(2.1) Yi1,i2,...,ir = β + u1ψ1 + u2ψ2 + · · ·+ ukψk
+ ei1,i2,...,ir ,

where β is an unknown parameter (fixed effect), the term uiψi
denotes the ith

random effect and the symbol ψi will be identified with the set of subscripts for the
ith effect. The last term in (2.1) denotes a random experimental error. We assume
that u1ψ1 , . . . , ukψk

and ei1,...,ir are uncorrelated random variables with zero mean
and variances σ21, . . . , σ

2
k and σ2k+1, respectively. To simplify the notation let ψ0 =

∅ and ψk+1 = {i1, . . . , ir}. Arranging the Yi1,...,ir in lexicographic order into an
n-vector Y , where n =

∏r
j=1 nj , we get

(2.2) Y = Z0β + Z1u1 + · · ·+ Zkuk + Zk+1e,

where the matrix Zi is the Kronecker product

(2.3) Zi =
r

⊗
j=1

Nij , i = 0, 1, . . . , k + 1,

where

Nij =

{
Inj when ij ∈ ψi,
1nj otherwise.

Of course Z0 = 1n and Zk+1 = In. Clearly,

E(Y ) = Z0β and cov(Y ) =
k∑
i=1

σ2i ZiZ
′
i + σ2k+1In.

This will be schematically written as

(2.4) Y ∼
(
Z0β,

k+1∑
i=1

σ2i ZiZ
′
i

)
.

This structure covers the well-known examples of balanced random models, e.g.
the multi-way nested classification model or the multi-way crossed classification
model (with or without interactions). Such models are widely used in various areas
of scientific research. Many examples of their applications are described by Sahai
and Ojeda [20].

To obtain a characterization of admissible linear estimators of fixed and random
effects in the model (2.4), we use some properties of balanced models. Directly
from (2.3) we have

(2.5) (ZiZ
′
i)
2 = piZiZ

′
i, i = 0, 1, . . . , k + 1,

where

pi =

{∏
il /∈ψi

nl when ψi 6= {i1, . . . , ir},
1 when ψi = {i1, . . . , ir}.
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Note that (2.5) implies that 1
pi
ZiZ

′
i is an orthogonal projector on R(Zi). More-

over, an orthogonal and idempotent basis of the space generated by the matrices
Z0Z

′
0, Z1Z

′
1, . . . , Zk+1Z

′
k+1 has the form

(2.6) (E0, E1, . . . , Ek+1)
′ = ((P∆)−1 ⊗ In)(Z0Z

′
0, Z1Z

′
1, . . . , Zk+1Z

′
k+1)

′,

where

P = diag{p0, p1, . . . , pk+1},

∆ = (δij) =

{
1 when ψj ⊂ ψi,
0 when ψj 6⊂ ψi.

If Z1Z
′
1, . . . , ZkZ

′
k are ordered in such a way that

R
( i∑
j=1

ZjZ
′
j

)
( R

(i+1∑
j=1

ZjZ
′
j

)
, i = 1, . . . , k − 1,

then ∆ is a lower triangular matrix. Putting Λ = (λij) = ∆−1 we get Ei =∑i
j=0

λij
pj
ZjZ

′
j for i = 0, 1, . . . , k + 1.

From (2.6) one can check the following relationships between the matrices
ZiZ

′
i and Ei, i = 0, 1, . . . , k + 1 (compare Khuri et al. [11]):

(i) ZiZ ′i = pi
∑i

j=0 δijEj , i = 0, 1, . . . , k + 1,

(ii) EjZiZ ′i = piδijEj , i, j = 0, 1, . . . , k + 1.

To obtain a characterization of linear admissible estimators of a linear function
of fixed and random effects in a balanced random model we use our earlier results
on some duality rule. Section 3 describes background for balanced random models.

3. BACKGROUND

Let Y be a random n-vector for which the expected value EY and the covariance
cov(Y ) are given by (2.4). We are interested in admissible estimation of

(3.1) θ = [(K ′Z0β)′, (Q′1Z1u1)
′, . . . , (Q′kZkuk)

′]′

in the class of linear estimators

(3.2) L′Y = (L0, L1, . . . , Lk)
′Y,

where K,L0 ∈ Mn×t0 ; Q1, L1 ∈ Mn×t1 ; . . . ; Qk, Lk ∈ Mn×tk . To compare
estimators we use the ordinary quadratic risk function

E[(L′Y − θ)′(L′Y − θ)].
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Synówka-Bejenka and Zontek [25] have shown that the quadratic risk function of
the estimator L′Y of θ in the model (2.4) is equal to the quadratic risk function of
the linear estimator L′Y of K′Xβ in the dual model, which is defined by

(3.3) Y = [Y ′, (Z1u1)
′, . . . , (Zkuk)

′]′ ∼
(
Xβ,

k+1∑
i=1

σ2i V i

)
,

where

X = (Z ′0,0, . . . ,0)′,

V i = (v1 + vi+1)(v1 + vi+1)
′ ⊗ ZiZ ′i, i = 1, . . . , k,

V k+1 = v1v
′
1 ⊗ In,

while vi is the ith versor in Rk+1. This means that a linear estimator L′Y of θ is
admissible in the model (2.4) if and only if the corresponding estimator

(3.4) L′Y =


L0 L1 · · · Lk
0 −Q1 · · · 0
...

...
. . .

...
0 0 · · · −Qk


′ 

Y
Z1u1

...
Zkuk


of

K ′ EY =


K 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


′ 

Z0β
0
...
0


is admissible in the model (3.3).

Note that the class of linear estimators of K ′ EY considered in the model (3.3)
is restricted to the set

E0 = {L′Y : L ∈ L0},

where L0 is the affine set given by

L0 = {L0 + Π0M : M ∈M(k+1)n×(t0+···+tk)},

while L0 = diag(0,−Q1, . . . ,−Qk) and Π0 = v1v
′
1 ⊗ In. Following LaMotte

[13], consider the set

(3.5) T = {(cov(Y ),EY (EY )′) : β ∈ R, σ21 ­ 0, . . . , σ2k+1 ­ 0 }

as a new space of parameters and a point (W1,W2) ∈ [T ] as an argument of an
extended quadratic risk function of L′Y , i.e.,

R(L′Y ; (W1,W2)) = tr[L′W1L + (L−K)′W2(L−K)].
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Recall that an estimator L′Y with L ∈ L, where L is an affine subset of L0, is
called locally best among L at a point (W1,W2) ∈ [T ] if

R(L′Y ; (W1,W2)) ¬ R(N ′Y ; (W1,W2))

for every N ∈ L. LaMotte [13] has shown that an estimator L′Y is locally best
among L at (W1,W2) ∈ [T ] iff

Π′(W1 +W2)L = Π′W2K,

where Π is a ((k + 1)n× (k + 1)n)-matrix such that

L = {L + ΠM : M ∈M(k+1)n×(t0+···+tk)}.
Note that the parameter space given by (3.5) corresponding to the dual model

(3.3) is a finitely generated closed convex cone, i.e.,

(3.6) T = [T ] =
{k+1∑
i=0

ti(W1i,W2i) : t0 ­ 0, . . . , tk+1 ­ 0
}
,

where
(W10,W20) = (0,XX ′),

(W1i,W2i) = (V i,0), i = 1, . . . , k + 1.

To avoid trivialities we also assume that

(3.7) R
(k+1∑
i=0

Π′(W1i +W2i)Π
)

= R(Π′)

and
Π′(W1i +W2i)Π 6= 0 for i = 0, . . . , k + 1.

In the next section we apply this approach to obtain an explicit characterization of
admissible linear estimators of fixed and random effects in the model (2.4).

4. MAIN RESULT

To characterize admissible estimators L′Y for K ′ EY among L0 in the model
(3.3) corresponding to (2.4) we prove the following lemma, which gives necessary
and sufficient conditions for an estimator L′Y to be ULBE at (W1,W2) ∈ T .

LEMMA 4.1. An estimator L′Y is ULBE at (
∑k+1

i=1 siV i, s0XX ′) in T
among L0 in the model (3.3) corresponding to (2.4) if and only if s0 ­ 0, . . . ,
sk ­ 0, sk+1 > 0 and

L =


L0 L1 · · · Lk
0 −Q1 · · · 0
...

...
. . .

...
0 0 · · · −Qk

 ,
where
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L0 =
s0p0
w0

E0K,

Li =
sipi
wi

(
i∑

j=0

δij
wi
wj
Ej

)
Qi for i = 1, . . . , k,

while

wi =
k+1∑
l=i

slplδli for i = 0, . . . , k + 1.

Proof. An estimator L′Y is locally best at (
∑k+1

i=1 siV i, s0XX ′) in T among
L0 iff sj ­ 0 for j = 0, . . . , k + 1 and

Π0

(k+1∑
i=1

siV i + s0XX ′
)
L = s0Π0XX ′K.

In more detail, this equation can be written as

WL0 = s0XX
′K,

WLi − siZiZ ′iQi = 0 for i = 1, . . . , k,

where W =
∑k+1

i=0 siZiZ
′
i. Of course, the above equations have only one solution

L0, . . . , Lk iff the matrix W is nonsingular, that is, sk+1 > 0. Moreover, since
by (i),

W =
k+1∑
i=0

siZiZ
′
i =

k+1∑
i=0

si

(
pi

i∑
j=0

δijEj

)
=

k+1∑
i=0

wiEi,

and since EiEj = 0 for i 6= j, we see that W−1 =
∑k+1

i=0
1
wi
Ei. Hence and by (ii)

we get

Li = siW
−1ZiZ

′
iQi = si

(
k+1∑
j=0

1

wj
Ej

)
ZiZ

′
iQi = si

(
k+1∑
j=0

piδij
wj

Ej

)
Qi

=
sipi
wi

(
i∑

j=0

δij
wi
wj
Ej

)
Qi. �

Explicit formulas for linear admissible estimators L′Y will be given in terms
of certain coefficients ai. Let

a = (a0, a1, . . . , ak+1)
′ =

(
s0p0
w0

,
s1p1
w1

, . . . ,
sk+1pk+1

wk+1

)′
.

Note that for any fixed si+1 ­ 0, . . . , sk ­ 0 and sk+1 > 0 the parameter ai runs
over [0, 1) when si ∈ [0,+∞) for i = 0, . . . , k and ak+1 = 1. Further, taking

w = ∆′Ps,

where w = (w0, w1, . . . , wk+1)
′ and s = (s0, s1, . . . , sk+1)

′, we have

a = (diag{w0, w1, . . . , wk+1})−1Ps = (diag{w0, w1, . . . , wk+1})−1Λ′w.
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In more detail the last equation can be written as

a0 = λ00 + λ10
w1
w0

+ λ20
w2
w0

+ . . .+ λk0
wk
w0

+ λk+1,0
wk+1

w0
,

a1 = λ11 + λ21
w2
w1

+ . . .+ λk1
wk
w1

+ λk+1,1
wk+1

w1
,

a2 = λ22 + . . .+ λk2
wk
w2

+ λk+1,2
wk+1

w2
,

...
. . .

...
...

ak = λkk + λk+1,k
wk+1

wk
,

ak+1 = λk+1,k+1.

Note that we can express the above system in the form

0 = (Λ′ − diag{a0, a1, . . . , ak+1})w = (I −∆′diag{a0, a1, . . . , ak+1})w.

Since δii = 1 for i = 0, 1, . . . , k + 1, we get

(4.1) 0 = Aw,

where

A =



1− a0 −a1δ10 −a2δ20 · · · −akδk,0 −ak+1δk+1,0

0 1− a1 −a2δ21 · · · −akδk,1 −ak+1δk+1,1

0 0 1− a2 · · · −akδk,2 −ak+1δk+1,2
...

...
...

. . .
...

...
0 0 0 · · · 1− ak −ak+1δk+1,k

0 0 0 · · · 0 1− ak+1


.

LEMMA 4.2. The system (4.1) has a non-trivial solution

(4.2) wi =
wk+1

1− ai

(
1 +

k∑
l1=i+1

al1δl1i
1− al1

+
k∑

l1=i+1

k∑
l2=l1+1

al1δl1i
1− al1

al2δl2l1
1− al2

+
k∑

l1=i+1

k∑
l2=l1+1

k∑
l3=l2+1

al1δl1i
1− al1

al2δl2l1
1− al2

al3δl3l2
1− al3

+ · · ·

+
k∑

l1=i+1

k∑
l2=l1+1

. . .
k∑

lk−i=lk−i−1+1

al1δl1i
1− al1

al2δl2l1
1− al2

. . .
alk−i

δlk−ilk−i−1

1− alk−i

)
for i = 0, 1, . . . , k.

Proof. Since 0 ¬ ai < 1 for i = 0, 1, . . . , k and ak+1 = 1 we find that
rank(A) = k + 1. Moreover, the vector w = (w0, w1, . . . , wk+1)

′, where w0, w1,
. . . , wk are given by (4.2), can be easily checked to satisfy 0 = Aw. �
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THEOREM 4.1. For an estimator L′Y of K′Xβ to be admissible among L0 in
the model (3.3) corresponding to (2.4) it is necessary and sufficient that L belongs
to the closure of the set

(4.3)

L0(a) L1(a) · · · Lk(a)

0 −Q1 · · · 0
...

...
. . .

...
0 0 · · · −Qk

 : a = (a0, a1, . . . , ak)
′ ∈ [0, 1)k+1

 ,

where
L0 = a0E0K,

Li = ai

(
i∑

j=0

δij
wi
wj
Ej

)
Qi for i = 1, . . . , k,

while wi and wj are given by (4.2).

Proof. Necessity. Let L belong to the set (4.3) with ai ∈ [0, 1) for i =
0, 1, . . . , k. Using Lemma 4.1 it can be checked that L′Y is an ULBE at W =
(
∑k+1

i=1 siV i, s0XX ′) in T given by

si =
ai
pi

wi
wk+1

sk+1 for i = 0, 1, . . . , k,

sk+1 > 0.

Since for any fixed ai+1 ∈ [0, 1), . . . , ak ∈ [0, 1) the value si runs over [0,+∞)
when ai ∈ [0, 1) for i = 0, . . . , k, the set given by (4.3) is the closure of

{M : M ′Y is an ULBE at a point of T among L0}.

So the first part of the proof is completed by using a result of LaMotte [15] that
each linear estimator of K ′ EY admissible among L0 is a limit of members of L0
that are uniquely best among L0 in T .

Sufficiency follows straightforwardly from a result of Synówka-Bejenka and
Zontek [26] that for a model with finitely generated parameter space each limit of
members of L0 is admissible. �

5. EXAMPLE

Consider a two-factor study where factors F1 and F2 have n1 and n2 levels, respec-
tively, and there are n3 replications in each cell. We say that the factors interact if
the differences between the mean response at different levels of factor F1 tend
to vary over the different levels of factor F2. The two-way crossed classification
random model with interaction, a special case of the model (2.1), is given by

(5.1) Yi1i2i3 = β + u1i1 + u2i2 + u3i1i2 + ei1i2i3 ,

i1 = 1, . . . , n1; i2 = 1, . . . , n2; i3 = 1, . . . , n3,
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where Yi1i2i3 is the i3th observation corresponding to the (i1, i2)th cell, β is a
constant, the u1i1 are effects due to factor F1, the u2i2 are effects due to factor F2,
and u3i1i2 is the interaction between u1i1 and u2i2 . For this model we have

ψ0 = ∅, ψ1 = {i1}, ψ2 = {i2}, ψ3 = {i1, i2}, ψ4 = {i1, i2, i3},
Z0 = 1n1 ⊗ 1n2 ⊗ 1n3 , Z1 = In1 ⊗ 1n2 ⊗ 1n3 , Z2 = 1n1 ⊗ In2 ⊗ 1n3 ,

Z3 = In1 ⊗ In2 ⊗ 1n3 , Z4 = In1 ⊗ In2 ⊗ In3 ,

p0 = n1n2n3, p1 = n2n3, p2 = n1n3, p3 = n3, p4 = 1.

Hence

∆ =


1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 1 1 1 0
1 1 1 1 1

 ,
while

w3 =
w4

1− a3
,

w2 =
w4

1− a2

(
1 +

a3δ32
1− a3

)
=

w4

1− a2

(
1 +

a3
1− a3

)
=

w4

(1− a2)(1− a3)
,

w1 =
w4

1− a1

(
1 +

a2δ21
1− a2

+
a3δ31
1− a3

+
a2δ21a3δ32

(1− a2)(1− a3)

)
=

w4

(1− a1)(1− a3)
,

w0 =
w4

1− a0

(
1 +

a1δ10
1− a1

+
a2δ20
1− a2

+
a3δ30
1− a3

+
a1δ10a2δ21

(1− a1)(1− a2)
+

a1δ10a3δ31
(1− a1)(1− a3)

+
a2δ20a3δ32

(1− a2)(1− a3)

+
a1δ10a2δ21a3δ32

(1− a1)(1− a2)(1− a3)

)
=

w4

1− a0

(
1 +

a1
1− a1

+
a2

1− a2
+

a3
1− a3

+
a1a3

(1− a1)(1− a3)
+

a2a3
(1− a2)(1− a3)

)
=

w4

1− a0
1− a1a2

(1− a1)(1− a2)(1− a3)
.

After appropriate transformations we obtain the following explicit formulas for
ULBEs:

L0(a) = a0E0K,

L1(a) = a1

[
δ10

w1

w0
E0 +E1

]
Q1 = a1

[
(1− a0)

1− a2
1− a1a2

E0 +E1

]
Q1,
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L2(a) = a2

[
δ20

w2

w0
E0 + δ21

w2

w1
E1 +E2

]
Q2

= a2

[
(1− a0)

1− a1
1− a1a2

E0 +E2

]
Q2,

L3(a) = a3

[
δ30

w3

w0
E0 + δ31

w3

w1
E1 + δ32

w3

w2
E2 +E3

]
Q3

= a3

[
(1− a0)

(1− a1)(1− a2)
1− a1a2

E0 + (1− a1)E1 + (1− a2)E2 +E3

]
Q3.

For a complete characterization of admissible linear estimators L′Y of K′Xβ,
it is enough to give a form of limits of ULBEs. Note that Li, i = 1, 2, 3, can be
expressed as

L1(a) = a1

[
δ10

w1

w0
E0 + E1

]
Q1 = a1[E1 + (1− a0)A1E0]Q1,

L2(a) = a2

[
δ20

w2

w0
E0 + δ21

w2

w1
E1 + E2

]
Q2 = a2[E2 + (1− a0)A2E0]Q2,

L3(a) = a3

[
δ30

w3

w0
E0 + δ31

w3

w1
E1 + δ32

w3

w2
E2 + E3

]
Q3

= a3[E3 + (1− a0)(A1 +A2 − 1)E0 + (1− a1)E1 + (1− a2)E2]Q3,

where

(5.2) A1 =
1

1−a1
1

1−a1 + 1
1−a2 − 1

, A2 =
1

1−a2
1

1−a1 + 1
1−a2 − 1

for a1, a2 ∈ [0, 1).

Of course for A1 and A2 defined by (5.2) we have 1 < A1 + A2 ¬ 2. Since
1

1−a1 + 1
1−a2 → +∞ as a1 → 1 or a2 → 1, we have A1 + A2 → 1 and Ai → 0

for i = 1, 2. So each linear estimator of K ′ EY admissible among L0 is a limit of
members of L0 that are uniquely best among L0 in T .

6. SIMULATIONS

In simulation studies we considered the following model:

(6.1) Yi1i2 = β + u1i1 + ei1i2 , i1 = 1, . . . , n1, i2 = 1, . . . , n2.

For this model we have

ψ0 = ∅, ψ1 = {i1}, ψ2 = {i1, i2},
Z0 = 1n1 ⊗ 1n2 , Z1 = In1 ⊗ 1n2 , Z2 = In1 ⊗ In2 ,

p0 = n1n2, p1 = n2, p2 = 1.
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We choose K = 1
p0
Z0 and Q1 = 1

p1
Z1, so that the estimated parameter vector θ is

θ = (β, u11, u12, . . . , u1n1)′.

An admissible estimator of θ takes the form

(6.2) L′Y = (a0E0K, a1[E1 + (1− a0)E0]Q1)
′Y,

where a0, a1 ∈ [0, 1], while E0 = 1
p0
Z0Z

′
0 and E1 = 1

p1
Z1Z

′
1 − E0.

If we decide to compare estimators using the quadratic risk function, then from
the theoretical point of view each admissible estimator is a good choice. But ad-
missibility does not guarantee good effects of estimation from the practical point
of view. For example, the estimator (6.2) with a0 = a1 = 0 is perfect as an esti-
mator of θ but only for µ = 0 and σ21 = 0. When µ 6= 0 and σ21 6= 0, it cannot
be recommended. Simulations presented below suggest that a satisfactory result is
obtained for a0 very close to (or equal to) 1 and for a1 close to 1.

For chosen a0, a1 ∈ [0, 1] and a fixed number N of generated data denote by

(β̂j , û11j , û12j , . . . , û1n1j)
′, j = 1, . . . , N,

values of estimators of θ.
As a result of simulations, in the tables below we present the means of estimates

(the first row for a1 given in the first column), that is,

β̄ =
1

N

N∑
j=1

β̂j , ū1i1 =
1

N

N∑
j=1

û1i1j , i1 = 1, . . . , n1,

and the average square of the difference between the estimated values and corre-
sponding estimates (the second row for given a1, in brackets), i.e.

1

N

N∑
j=1

(β̂j − β)2,
1

N

N∑
j=1

(û1i1j − u1i1j)2, i1 = 1, . . . , n1.

In simulation we used the following parameters:

n1 = 4, n2 = 10, β= 10, u1i1 ∼N(0, 1), ei1i2 ∼N(0, 1) and N = 10000.

Table 1. Simulation results for a0 = 0.90 and selected a1.

0.85 9.015 0.848 0.848 0.854 0.856
(1.782) (1.646) (1.645) (1.647) (1.637)

0.90 9.015 0.898 0.898 0.904 0.907
(1.782) (1.692) (1.690) (1.694) (1.686)

0.95 9.015 0.948 0.947 0.954 0.957
(1.782) (1.759) (1.755) (1.762) (1.755)

1.00 9.015 0.998 0.997 1.004 1.007
(1.782) (1.845) (1.841) (1.849) (1.844)
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Table 2. Simulation results for a0 = 0.95 and selected a1.

0.85 9.515 0.422 0.422 0.428 0.431
(1.138) (1.192) (1.188) (1.190) (1.187)

0.90 9.515 0.447 0.447 0.453 0.456
(1.138) (1.178) (1.173) (1.175) (1.174)

0.95 9.515 0.472 0.472 0.478 0.481
(1.138) (1.180) (1.173) (1.178) (1.178)

1.00 9.515 0.497 0.496 0.503 0.507
(1.138) (1.198) (1.190) (1.196) (1.199)

Table 3. Simulation results for a0 = 1.00 and selected a1.

0.85 10.016 −0.003 −0.004 0.002 0.005
(1.001) (1.105) (1.098) (1.098) (1.102)

0.90 10.016 −0.004 −0.004 0.002 0.005
(1.001) (1.074) (1.066) (1.067) (1.073)

0.95 10.016 −0.004 −0.004 0.002 0.005
(1.001) (1.058) (1.048) (1.051) (1.059)

1.00 10.016 −0.004 −0.004 0.003 0.006
(1.001) (1.057) (1.046) (1.050) (1.060)
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