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Abstract. We consider the classical risk process (the case σ = 0) and the
classical risk process perturbed by a Brownian motion (the case σ > 0). We
analyze the expected NPV describing the mean of the cumulative discounted
dividend payments paid up to the Parisian or classical ruin time and further
penalized by the number of claims that appeared up to that time. We identify
this function for a constant barrier strategy and we find sufficient conditions
for this strategy to be optimal. We also analyze a numerical example of
exponential claim sizes.
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1. INTRODUCTION

The classical optimal dividend problem has been been considered by many au-
thors since de Finetti [9] who introduced it to address the objection that the risk
process has the unrealistic property that it converges to infinity with probabil-
ity 1. Gerber and Shiu [13], Asmussen and Taksar [1] and Jeanblanc and Shiryaev
[14] considered the optimal dividend problem in the Brownian motion setting.
Azcue and Muler [4] and Schmidli [29] studied the optimal dividend strategy under
the Cramér–Lundberg model using a Hamilton–Jacobi–Bellman (HJB) system of
equations. Further, Avram et al. [2], [3], Kyprianou and Palmowski [18], Loeffen
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[22], [23], Loeffen and Renaud [25], Czarna and Palmowski [7] and many other
authors analyzed the dividend problem for the Lévy risk process using the proba-
bilistic approach.

In this paper we consider a classical risk process perturbed by a Brownian mo-
tion. Such a process is a particular example of a Lévy risk process and it covers a
vast range of examples which are of interest for insurance companies. The classical
risk process models so-called ‘large’ claims and an independent Brownian motion
models ‘small’ claims.

Our approach is to combine two new ingredients appearing in the expected
NPV. The first one concerns choosing the Parisian ruin time instead of the classical
ruin time. Parisian ruin occurs if the risk process stays below zero for a continu-
ous time interval of length greater than a fixed d ­ 0. The name comes from the
Parisian option which is activated or canceled depending on whether the underly-
ing asset price stays above or below the barrier over an uninterrupted period (see
Chesney et al. [5] and Dassios and Wu [8]). We believe that allowing Parisian de-
lay could be reasonable in many situations, as it gives the insurance companies a
chance to achieve solvency. Still, the particular case d = 0 brings us to the classical
set-up, which is also considered in this paper. The second new factor (r ∈ (0, 1])
in the value function concerns an additional component related to the total num-
ber of claims which arrived up to Parisian ruin. Taking into account this extra
factor based on the total number of claims/losses that arrived up to the ruin time
allows one to diminish (penalize) the objective value in the case of a large number
of claims and increase it in the case of a small number of claims. This is a very
natural and practical feature of dividend payments. A similar penalization, based
on the number of reported claims only, can be observed in widely-used bonus-
malus system. There is another argument for choosing the penalization based on
the number of claims. As noted by Gerber [11], de Finetti’s criterion with r = 1
(hence not taking into account the number of claims) has a major disadvantage:
it does not directly protect the company and it maximizes the gain of the bene-
ficiaries of the dividend payments only. As a consequence, it generates optimal
strategies that are hardly acceptable from the practical point of view. Considering
the case r < 1 makes this criterion more realistic, since it additionally penalizes
the event of a large number of claims that the company wants to avoid. There-
fore we believe that the analysis presented in this paper is of value for actuarial
applications.

In Theorem 3.5 we identify the function described above for a barrier strategy
(πa) according to which all the surplus above a fixed level a is paid as dividends.
We also find sufficient conditions for this strategy to be optimal. Finally, we calcu-
late the value function for a process with exponentially distributed claims.

The paper is organized as follows. In Section 2 we introduce the basic notions,
notations and describe the model. In Section 3 we analyze in detail the barrier
strategy πa and the form of the expected NPV. In Section 4 we find sufficient
conditions for the barrier strategy to be optimal. In the last section we present an
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example with exponentially distributed claims.

2. PROBLEM FORMULATION

We consider the following surplus process in continuous time:

(2.1) Xt = x+ ct−
Nt∑
i=1

Ci + σBt,

where the non-negative constant x denotes the initial reserve (later we underline
this initial capital by adding it as a subscript to probability measures, Px(·) =
P(· |X0 = x) with P := P0, and to the corresponding expectations, Ex with
E := E0). The arrival process is a homogeneous Poisson process Nt with inten-
sity λ, describing the number of claims that appeared up to time t. The random
variables {Ci}∞i=1 are claim sizes which are independent, identically distributed
(i.i.d.), non-negative and also independent of Nt. We denote by f(x) and F (x)
the density and the distribution function of the claims, respectively. Throughout
this paper we assume that the claim density f is continuously differentiable. The
positive constant c = λE(C1)(1 + θ) is the rate of premium income and θ > 0 is
the relative security loading factor. The process {Bt}t­0 is a standard Wiener pro-
cess that is independent of the aggregate claims process

∑Nt
i=1Ci, and σ ­ 0 is a

dispersion parameter (see Figure 1 for an example of a sample path where σ = 0).

Figure 1. A sample path of the original surplus process Xt.

We denote a dividend (control strategy) by π, where π = {Lπt : t ­ 0} is a
non-decreasing left-continuous adapted process which starts at zero. The random
variable Lπt represents the cumulative dividends the company has paid out up to
time t under the control strategy π. We denote by

(2.2) Uπt = Xt − Lπt

the controlled risk process under the dividend strategy π. For fixed d ­ 0 let

τπ,d := inf
{
t > 0 : t− sup{s < t : Uπs ­ 0} > d, Uπt < 0

}
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Figure 2. A sample path of the regulated surplus process Uat (case σ = 0).

be the Parisian ruin time, that is, the ruin occurs if the regulated process Uπt stays
below zero for a continuous time interval of length greater than d (see Figure 2).
The case d = 0 corresponds to the classical ruin time:

τπ,0 := inf{t ­ 0 : Uπt < 0}.

Now for any d ­ 0 we formally define the expected NPV for a dividend strategy
π as follows:

vπ(x) := Ex
[
rNτπ,d

τπ,d∫
0

e−qt dLπt

]
,

where r ∈ (0, 1] is a constant and q > 0 is a discounting rate. By the definition
above, it follows that for d = 0,

vπ(x) = 0 if x < 0 and σ = 0,

vπ(x) = 0 if x ¬ 0 and σ > 0,

and for d > 0,

vπ(x) = 0 if x < −cd and σ = 0,

lim
x→−∞

vπ(x) = 0 if σ > 0,

since the ruin (classical or Parisian) will occur before we collect any dividends.
A strategy π is called admissible if ruin does not occur by a dividend payout, that
is, Lπt+ − Lπt ¬ Uπt for t < τπ. Let Π denote the set of all admissible divi-
dend strategies. The objective of the beneficiaries of an insurance company is to
maximize vπ(x) over all admissible strategies π, that is, to find the optimal value
function v∗ given by

v∗(x) = sup
π∈Π

vπ(x)

and to identify the optimal strategy π∗ ∈ Π such that

vπ
∗
(x) = v∗(x).
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3. BARRIER STRATEGY πa

The crucial dividend distribution policy is the barrier policy πa = {Lat := Lπat :
t ­ 0} of transferring all surpluses above a given level a as dividends (see Fig-
ure 2). In this case Lat := (a∨ sups¬tXs)−a. For this specific strategy we denote

Uat := Uπat = Xt − Lat , τd := τπa,d,

with τ := τ0 being the classical ruin time, and

va,d(x) := vπa,d(x) = Ex
[
rNτd

τd∫
0

e−qt dLat
]
.

In this paper we focus on finding the function va,d(x). Later we will identify the
optimal barrier a∗ maximizing va,d(x). Finally, we show that in most of the known
cases of the claim size density f the strategy πa∗ is indeed optimal, that is,

v∗(x) = va
∗,d(x).

3.1. The form of the expected NPV. We start by identifying the function va,d under
the barrier strategy πa for a fixed a. Moreover in the following lemma we present
the basic properties of the function va,d.

LEMMA 3.1. The function va,d is twice continuously differentiable for all
x < a and solves the differential equation

(3.1)
σ2

2
(va,d)′′(x)+c(va,d)′(x)−(λ+q)va,d(x)+λr

∞∫
0

va,d(x−y)f(y) dy = 0.

Proof. The proof of the twice continuous differentiability is based on Li [19,
Thms. 2 and 3], so we skip all the details. Still our reasoning requires some modi-
fications. The main one is that we add a new term I4(x), which is given by

I4(x) =
t0∫
0

λre−(λ+q)s ds
b∫
−b
H(b, s, y) dy(3.2)

×
∞∫

x+cs+σy

Ex+cs+σy−z[r
N
τ+
0 e−qτ

+
0 , τ+

0 < d]va,d(0)f(z) dz

=
t0∫
0

λre−(λ+q)s ds
b∫
−b
H(b, s, y) dy

×
∞∫

x+cs+σy

φ(x+ cs+ σy − z, d)va,d(0)f(z) dz,
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where for u ­ 0,

(3.3) φ(−u, d) := E−u[r
N
τ+
0 e−qτ

+
0 , τ+

0 < d] = E[r
N
τ+u e−qτ

+
u , τ+

u < d],

0 ¬ t0 ¬ (a − x)/(2c), τ+
0 denotes the first time that Xt up-crosses zero, and

H(b, s, y) = P(Bs ∈ dy, τb > s) for τb = inf{s : |Bs| = b}. Indeed, if we take
τ := t0 ∧ τb ∧ T1, where T1 is the occurrence time of the first claim, which is
exponentially distributed with parameter λ, then from the strong Markov property
we get

va,d(x) = Ex[rNτ e−qτva,d(Uaτ )]

= e−qt0Ex[va,d(x+ ct0 + σBt0)1{t0<τb∧T1}]

+ Ex[e−qτbva,d(x+ cτb + σBτb)1{τb¬t0∧T1}]

+ Ex[e−qT1rNT1va,d(x+ cT1 + σBT1 − C1)1{T1<τb∧t0}]

= I1(x) + I2(x) + I(x).

The terms I1(x) and I2(x) are exactly as in [19, Thm. 2]. However, the last ex-
pectation consists of two integrals, i.e. I(x) = I3(x) + I4(x), because Parisian
ruin allows the regulated risk process to go below zero, but not to stay there longer
than d since otherwise we will collect no dividends. Hence we additionally con-
sider the term I4, i.e. the case when the first claim is greater than x + cs + σy.
Furthermore, the function I3(x) is as in [19, Thm. 2] except that in addition λ
should be multiplied by r, because when the first claim arrives, the penalty with
respect to the number of arrived claims gives an additional r = rNT1 .

Now, to prove the twice continuous differentiability of va,d for all x < a, it is
sufficient to show that I4(x) is twice continuously differentiable. Changing vari-
ables in (3.2) gives

I4(x) =
t0∫
0

λre−(λ+q)s ds
b∫
−b
H(b, s, y) dy

∞∫
0

φ(−z, d)va,d(0)f(z+x+cs+σy) dz.

Then from our assumption that the claim density f is continuously differen-
tiable and from the fact that φ is continuously differentiable (which follows from
Lemma 3.7) it follows that I4(x) is twice continuously differentiable. Indeed, from
the above equation one can compute that

I ′4(x) =
t0∫
0

λre−(λ+q)s ds
b∫
−b
H(b, s, y) dy

∞∫
0

φ(−z, d)va,d(0)f ′(z+x+cs+σy) dz.
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Again, by changing variables we obtain

I ′′4 (x) =
t0∫
0

λre−(λ+q)s ds

×
b∫
−b
H(b, s, y) dy

∞∫
z+x+cs+σy

[φ′(z + x+ cs+ σy, d)va,d(0)f ′(z)

− φ(0)va,d(0)f ′(z + x+ cs+ σy)] dz.

Finally, with a similar idea, equation (3.1) can be deduced from [19, Thm. 1] by
changing the upper limit u of integration to∞ and multiplying λ by an additional r
in the last part of equation (2) in [19, Thm. 1]. This completes the proof. �

REMARK 3.2. Later, in Lemma 4.3 we prove that va,d ∈ C2(0,∞) when
σ > 0 and va,d ∈ C1(0,∞) if σ = 0 and the density is absolutely continuous with
respect to Lebesgue measure. This means that equation (3.1) holds true even under
the weaker assumption that the jump density is absolutely continuous.

Now we will express the function va,d in terms of some special function hd

related to first passage times of the process X . Later, we will use two different
methods to obtain an explicit expression for hd. The first one uses the Dickson–
Hipp operator (see Dickson and Hipp [10] and Li and Garrido [21]) and the second
one uses fluctuation theory for Lévy processes.

Formally, let y ∈ R and define the first passage times of X as follows:

τ+
y := inf{t ­ 0 : Xt ­ y}, τ−y := inf{t ­ 0 : Xt ¬ y}.

For x ¬ a and d ­ 0, let

hd(x) := Ex[r
N
τ+a e−qτ

+
a , τ+

a < τd].

We will write h = h0 when d = 0. Note that, for σ = 0 and d > 0, we have

(3.4) hd(x) = 0, x < −cd,

while

(3.5) lim
x→−∞

hd(x) = 0

when σ, d > 0.
Moreover, if d = 0 and σ > 0, we can observe that

(3.6) hd(x) = h(x) = 0, x ¬ 0,

and if d = σ = 0, then

(3.7) hd(x) = h(x) = 0, x < 0.



64 I. Czarna et al.

Using the fact that the process X up-crosses all levels continuously, and the
strong Markov property, we can derive the following representation of the func-
tion va,d.

LEMMA 3.3. The function va,d satisfies

(3.8) va,d(x) =

{
hd(x)va,d(a) if x ¬ a,
x− a+ va,d(a) if x > a.

REMARK 3.4. By Lemmas 3.1 and 3.3 the function hd, similarly to va,d, is
twice differentiable and solves the same differential equation: for x < a we have

(3.9)
σ2

2
(hd)′′(x) + c(hd)′(x)− (λ+ q)hd(x) + λr

∞∫
0

hd(x− y)f(y) dy = 0

with the obvious boundary condition

(3.10) hd(a) = 1

together with (3.4)–(3.7).

We will prove later that

(3.11) (va,d)′(a) = 1.

From (3.8) we can now deduce the following representation of the value function.

THEOREM 3.5. The function va,d is given by

(3.12) va,d(x) =

{
hd(x)

(hd)′(a)
if x ¬ a,

x− a+ 1
(hd)′(a)

if x > a.

The formal proof of (3.11) and hence of Theorem 3.5 is given in the Appendix.
Obviously, to maximize (3.12) we should choose a that minimizes (hd)′(a).

This leads to the following statement.

THEOREM 3.6. If hd ∈ C2(0,∞) then the optimal barrier a∗ such that
va
∗,d(x) = maxa­0 v

a,d(x) solves

(hd)′′(a∗) = 0.

3.2. Identification of hd. Now we will identify the function hd using two differ-
ent techniques. The first one is to solve the equation (3.9) using the Dickson–Hipp
operator. The second one uses fluctuation theory for spectrally negative Lévy pro-
cesses. This allows finding the optimal function va,d and the optimal strategy.
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3.2.1. The Dickson–Hipp operator method. The function hd will be given using the
Dickson operators Tr for Re(r) ­ 0 (see Dickson and Hipp [10] and Li and Gar-
rido [21]). For any integrable real-valued function g it is defined as

Trg(x) :=
∞∫
x

e−r(u−x)g(u) du, x ­ 0.

The operator Tr has the following properties:

1. Tsg(0) =
∫∞

0
e−sxg(x) dx = ĝ(s), the Laplace transform of g;

2. TrTsg(x) =
∫∞
x
e−r(y−x)

∫∞
y
e−s(z−y)g(z) dz dy.

3. The operators Ts pairwise commute, i.e. TsTr = TrTs, namely

(3.13) TsTrf(x) = TrTsf(x) =
Tsf(x)− Trf(x)

r − s
, s 6= r, x ­ 0.

More properties of the operators Tr can be found in Li and Garrido [21].
Now let

vy(k, t) =
d

dt
Vy(k, t)

with

Vy(k, t) = P(Nτ+y
= k, τ+

y ¬ t |X0 = 0), k ∈ N, y > 0, t ­ 0.

LEMMA 3.7. If σ > 0 then

vy(k, t) =
λk

k!
ytk−1e−λt

∞∫
−∞

1√
2πt

e−
x2

2t fk∗(ct+ σx− y) dx,(3.14)

and for σ = 0,

vy(k, t) =
λk

k!
ytk−1e−λtfk∗(ct− y),(3.15)

where fk∗ denotes the kth convolution power of the claim density function.

The proof of this lemma is given in the Appendix.
Finaly, denote

(3.16) wd(x) :=
∞∫
0

d∫
0

e−qt
∞∑
k=0

rkvy(k, t)f(y + x) dt dy.

The next theorem gives an explicit expression for the function hd producing the
value function va,d given in (3.12).
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THEOREM 3.8. The function hd can be expressed as follows:

1. for σ = d = 0 and 0 ¬ x ¬ a,

(3.17) hd(x) = h(x) =

∑∞
n=0(λr/c)n(Tρf)∗n ∗ ζ(x)∑∞
n=0(λr/c)n(Tρf)∗n ∗ ζ(a)

;

2. for σ > 0, d = 0 and 0 < x ¬ a,

(3.18) hd(x) = h(x) =

∑∞
n=0(2λr/σ2)n(β ∗ Tρf)∗n ∗ ζ ∗ β(x)∑∞
n=0(2λr/σ2)n(β ∗ Tρf)∗n ∗ ζ ∗ β(a)

;

3. for σ = 0, d > 0 and −cd ¬ x ¬ a,

(3.19) hd(x) =

∑∞
n=0(2λr/c)n(Tρf)∗n ∗ ϕ(x)∑∞
n=0(2λr/c)n(Tρf)∗n ∗ ϕ(a)

;

4. for σ, d > 0 and x ¬ a,

(3.20) hd(x) =

∑∞
n=0(2λr/σ2)n(β ∗ Tρf)∗n ∗ ϕ1(x)∑∞
n=0(2λr/σ2)n(β ∗ Tρf)∗n ∗ ϕ1(a)

,

where

β(x) := e−(ρ+2c/σ2)x, ζ(x) := eρx, ϕ(x) := ζ(x)− λr

c
ζ ∗ wd(x),

ρ is the unique non-negative root of the Lundberg fundamental equation (3.24),
and

ϕ1(x) :=

(
ρ+

2c

σ2

)
ζ ∗ β(x) + β(x)− 2λr

σ2
ζ ∗ β ∗ wd(x).

Proof. For σ ­ 0 and d ­ 0 we take any y < 0. Then from the strong Markov
property we have

hd(y) = Ey[r
N
τ+
0 e−qτ

+
0 , τ+

0 < d]hd(0) = E0[r
N
τ+−y e−qτ

+
−y , τ+

−y < d]hd(0)

= hd(0)
d∫
0

e−qt
∞∑
k=0

rkv−y(k, t)dt.

Then the equation (3.9) is equivalent to

(3.21)
σ2

2
(hd)′′(x) + c(hd)′(x)− (λ+ q)hd(x) + λr

x∫
0

hd(x− y)f(y) dy

+ λrhd(0)
∞∫
x

f(y)
d∫
0

e−qt
∞∑
k=0

rkvy−x(k, t) dt dy = 0.
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To solve (3.21) we will follow the ideas given in [10] and [20]. We will focus
mainly on cases 2 and 3.

We start from case 2, that is, let σ > 0 and d = 0. Then (3.21) reduces to

(3.22)
σ2

2
(h)′′(x) + c(h)′(x)− (λ+ q)h(x) + λr

x∫
0

h(x− y)f(y)dy = 0

with the boundary conditions (3.6) and (3.10). Taking the Laplace transforms of
both sides of (3.22) we get

(3.23)

(
σ2

2
s2 + cs− (λ+ q)− λrf̂(s)

)
ĥ(s) =

σ2

2
sh(0) +

σ2

2
h′(0) + ch(0),

where ĝ(s) is the Laplace transform of the function g. Let ρ be the unique solution
to the fundamental Lundberg equation (see Gerber and Shiu [12]):

(3.24)
σ2

2
s2 + cs− (λ+ q) + λrf̂(s) = 0.

Then subtracting
[
σ2

2 ρ
2 + cρ− (λ+ q) + λrf̂(ρ)

]
ĥ(s) from the left side of (3.23)

and dividing the resulting equation by
(
σ2

2 (s+ ρ) + c
)
(s− ρ) produces

ĥ(s) =
2λr/σ2

s+ ρ+ 2c/σ2
ξ̂(s)TsTρf(0) +

(ρ+ 2c/σ2)h(0) + h′(0)

(s− ρ)(s+ ρ+ 2c/σ2)

+
h(0)

s+ ρ+ 2c/σ2
.

Inverting the above Laplace transforms gives

h(x) =
2λr

σ2

x∫
0

h(x− y)β ∗ Tρf(y)dy(3.25)

+ [(ρ+ 2c/σ2)h(0) + h′(0)]ζ ∗ β(x) + h(0)β(x).

On the other hand, we know that the general solution of (3.22) is

h(x) = η1h1(x) + η2h2(x) for 0 ¬ x ¬ a,

where h1(x) and h2(x) are two linearly independent particular solutions of (3.22)
and η1, η2 are any real numbers. One can find two linearly independent solutions
h1(x) and h2(x) by specifying the initial conditions:{

h1(0) = 1 and h′1(0) = −(ρ+ 2c/σ2),

h2(0) = 0 and h′2(0) = 1.
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These conditions together with (3.6) and (3.10) give h(x) = h2(x)/h2(a). Since
h2(x) is a particular solution of (3.22), from (3.25) with the boundary conditions
h2(0) = 0 and h′2(0) = 1 we have

h2(x) =
2λr

σ2

x∫
0

h(x− y)β ∗ Tρf(y)dy + ζ ∗ β(x)

=
∞∑
n=0

(
2λr

σ2

)n
(β ∗ Tρf)∗n ∗ ζ ∗ β(x).

Finally, we conclude that

h(x) =

∑∞
n=0(2λr/σ2)n(β ∗ Tρf)∗n ∗ ζ ∗ β(x)∑∞
n=0(2λr/σ2)n(β ∗ Tρf)∗n ∗ ζ ∗ β(a)

.

To analyze case 3 we assume that σ = 0 and d > 0. Since P(τ+
a < τd) > 0,

the definition of hd(x) yields hd(0) 6= 0. Dividing both sides of (3.21) by hd(0)
and letting ξ(x) = hd(x)/hd(0) produces

(3.26) cξ′(x)− (λ+ q)ξ(x) + λr
x∫
0

ξ(x− y)f(y) dy + λrwd(x) = 0,

where wd(x) is given in (3.16). Taking the Laplace transforms of both sides of
(3.26), for sufficiently large s we get

csξ̂(s)− cξ(0)− (λ+ q)ξ̂(s) + λrf̂(s)ξ̂(s) + λrŵd(s) = 0,

which after rearranging terms and using the fact that ξ(0) = 1 leads to

(3.27) [cs− (λ+ q) + λrf̂(s)]ξ̂(s) = c− λrŵd(s).

Recall that ρ is the unique non-negative root of the Lundberg fundamental equation
(3.24) with σ = 0. Then subtracting [cρ− (λ+ q) +λrf̂(ρ)]ξ̂(s) from the left side
of (3.27) and dividing the resulting equation by s− ρ produces

(3.28) ξ̂(s) =
λr

c
ξ̂(s)TsTρf(0) +

1

s− ρ
− λrŵd(s)

(s− ρ)c
.

Inverting the Laplace transforms in (3.28) gives

ξ(x) =
λr

c

x∫
0

ξ(x− y)Tρf(y)dy + eρx − λr

c
ζ ∗ wd(x) =

∞∑
n=0

(
λr

c

)n
∗ ϕ(x).

Since

(3.29) hd(x) = hd(0)ξ(x) = hd(0)

[ ∞∑
n=0

(
λr

c

)n
∗ ϕ(x)

]
,
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from the boundary condition (3.10) we get

hd(0) =
1∑∞

n=0(λr/c)n ∗ ϕ(a)
.

Then (3.29) produces (3.19), which completes the proof of case 3.
Cases 1 and 4 could be analyzed analogously. More precisely, in case 1 equation

(3.21) reduces to

(3.30) cξ′(x)− (λ+ q)ξ(x) + λr
x∫
0

ξ(x− y)f(y) dy = 0.

In the next step we take the Laplace transforms of both sides of this equation.
Then we again take ρ as the unique non-negative root of the Lundberg fundamental
equation. In the next steps we subtract [cρ−(λ+q)+λrf̂(ρ)]ξ̂(s), divide the result
by s − ρ and finally invert the Laplace transform. Using the boundary condition
(3.10) produces (3.17).

Similarly, to get the result of case 4 we divide both sides of (3.21) by hd(0) > 0
and consider ξ(x) = hd(x)/hd(0). Then we again take the Laplace transforms of
both sides and subtract

[
σ2

2 ρ
2 + cρ − (λ + q) + λrf̂(ρ)

]
ξ̂(s), where again ρ is

the unique non-negative root of the Lundberg fundamental equation. Finally, we
divide the result by

(
σ2

2 (s+ρ)+c
)
(s−ρ) and by inverting the Laplace transforms

and by using the boundary conditions (3.10) and (3.5) we end up with (3.20). �

3.2.2. Fluctuation theory method. Before starting the identification of the func-
tions hd, we introduce a little extra notation and background on spectrally negative
Lévy processes. We say that X = {Xt, t ­ 0} is a spectrally negative Lévy pro-
cess on the filtered probability space (Ω,F , {Ft : t ­ 0},P) if X is a stochastic
process issued from the origin which has stationary and independent increments
and càdlàg paths that have no positive jump discontinuities. One can easily verify
that process (2.1) is an example.

The Laplace exponent of X is denoted by ψ(θ), i.e.

ψ(θ)t = logE[eθXt ],

which is well defined for θ ­ 0. This allows us to define, for q ­ 0, the largest
root Φ(q) of the equation ψ(θ) = q:

Φ(q) = sup{θ ­ 0 : ψ(θ) = q}.

We further introduce the q-scale function W (q) of X , which is the strictly increas-
ing, continuous function uniquely defined on [0,∞) through its Laplace transform
which is given by

∞∫
0

e−θxW (q)(x) dx =
1

ψ(θ)− q
, θ > Φ(q).
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We extend W (q) to the whole real line by setting W (q)(x) = 0 for x < 0. We write
W = W (0) when q = 0. We will also use the following results for the classical
ruin and Parisian ruin probability (for details see [15] and [24]):

(3.31)

Px(τ0 =∞) = E[X1]W (x),

Px(τd =∞) = E[X1]

∫∞
0
W (x+ z)z P(Xd ∈ dz)∫∞

0
z P(Xd ∈ dz)

.

The basic observation used in this section is that by (2.1) the process

(3.32) Zαt := αXt + log(r)Nt = αx+ αct−
Nt∑
i=1

(αCi − log(r)) + ασBt

is again a Lévy processes. Hence from the Lévy–Khinchin theorem there exists a
function ψr(α) such that

(3.33) logE[eαXt+log(r)Nt ] = logE[rNteαXt ] = ψr(α)t.

Moreover,

ψr(α) = cα+ 1
2σ

2α2 + λr
∞∫
0

e−αzf(z) dz − λ(3.34)

= cα+ 1
2σ

2α2 + λr
∞∫
0

e−αzf(z) dz − λr − λ(1− r)

and hence ψr is the Laplace exponent of the Lévy process

Xr
t := x+ ct−

Nr
t∑

i=1

Ci + σBt

killed with fixed intensity λ(1 − r), where N r
t is a Poisson process with inten-

sity λr. Note also that for fixed r the function α 7→ ψr(α) is continuous and goes
to infinity as α tends to infinity.

Thus there exists Φr(q) such that

(3.35) ψr(Φr(q)) = q.

Moreover, we can define a new scale function W (q)
r : [0,∞) → [0,∞) for ψr as

follows:

(3.36)
∞∫
0

e−θyW (q)
r (y) dy =

1

ψr(θ)− q
, θ > Φr(q).
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We will also use the following classical change of measure for the process Zαt
given in (3.32):

(3.37)
dPα,r

dP

∣∣∣∣
Ft

= rNt exp(αXt − ψr(α)t) = exp(Zαt − ψr(α)t).

Under the measure Pα,r the process Zα is still a Lévy process with the new triple
(see Palmowski and Rolski [26] and Kyprianou [16] for details). We will use the
above change of measure with α = Φr(q) defined in (3.35). Observe that for this
choice of α the functionW (q)

r (x) defined formally in (3.36) equals eΦr(q)xW
(0)
r (x)

for W (0)
r (x) calculated under the new measure PΦr(q),r.

We will express hd(x) in terms of the above modified scale function W (q)
r (x).

This can be seen as solving the Parisian-type two-sided exit problem penalized by
the number of claims.

THEOREM 3.9. For any σ ­ 0 the function hd(x) can be expressed as follows:

hd(x) = Ex[r
N
τ+a e−qτ

+
a , τ+

a < τd] =

∫∞
0
W

(q)
r (x+ z)z P(Xd ∈ dz)∫∞

0
W

(q)
r (a+ z)z P(Xd ∈ dz)

and

h(x) = h0(x) = Ex[r
N
τ+a e−qτ

+
a , τ+

a < τ0] =
W

(q)
r (x)

W
(q)
r (a)

.

Proof. We will use similar arguments to those used for the classical two-sided
upward exit problem for a spectrally negative Lévy process (see Kyprianou and
Palmowski [17]). First we apply the change of measure (3.37) together with the
Optional Stopping Theorem and use the crucial observation thatX(τ+

a ) = a (since
X has no strictly positive jumps) to conclude that

hd(x) = Ex[r
N
τ+a e−qτ

+
a , τ+

a < τd] = eΦr(q)(x−a)PΦr(q),r
x (τ+

a < τd).

Then from the strong Markov property we can derive the following representation:

(3.38) hd(x) = Ex[r
N
τ+a e−qτ

+
a , τ+

a < τd] = eΦr(q)(x−a)P
Φr(q),r
x (τd =∞)

PΦr(q),r
a (τd =∞)

.

The identity (3.38) together with (3.31) completes the proof. �

4. OPTIMALITY

We will now give the main results of this paper which give sufficient conditions for
optimality of the barrier strategy πa∗ .

DEFINITION 4.1. We say that a function g is sufficiently smooth whenever
g ∈ C1(0,∞) if σ = 0 and g ∈ C2(0,∞) if σ > 0.
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Let Γ be an extended generator of Xt defined by

Γg(x) = cg′(x) +
σ2

2
g′′(x)− λg(x) + λr

∫
(0,∞)

g(x− y)f(y) dy

acting on sufficiently smooth functions.
We will start from the classical Verification Lemma.

THEOREM 4.2. Suppose π is an admissible dividend strategy such that vπ is
sufficiently smooth and for all x > 0,

(4.1) max{(Γ− q)vπ(x), 1− (vπ)′(x)} ¬ 0.

Then vπ(x) = v∗(x) for all x ∈ R.

REMARK. The inequality (4.1) is called the Hamilton–Jacobi–Bellman system
and is classical in all stochastic optimization problems.

Proof of Theorem 4.2. We follow classical arguments. Suppose that g is is suf-
ficiently smooth and that

max{(Γ− q)g(x), 1− g′(x)} ¬ 0.

We will prove that

(4.2) g(x) ­ sup
π∈Π

vπ(x), x ∈ R.

Having a strategy π∗ for which g(x) = vπ
∗,d(x) will complete the proof. To prove

(4.2) we will consider the Markov process (t,Nt, Xt, ς
X
t ) with

ςZt = t− sup{s ¬ t : Zt ­ 0}

for some process Z. By Sato [28, Ch. 6, Thm. 31.5] the function $(t, k, x, z) :=
rke−qtg(x)1{z¬r} is in the domain of the extended generatorA of this four-dimen-
sional process. In fact using similar arguments to those in deriving (3.1) from the
definition of the infinitesimal generator, one can prove that

(A− qI)$(t, k, x, z) = rk(Γ− q)g(x).

Recall that Uπt = Xt − Lπt and note that the regulations Lπt do not modify the
jump process of X . Note that a finite number of discontinuities of g and hence also
a single discontinuity of 1{z¬r} are allowed here. Hence we can apply Itô’s lemma
and letting U = Uπ and L = Lπ we derive

(4.3) e−qtrNtg(Ut)1{ςUt ¬r} − g(U0) = rNtJg(t)− rNt
t∫
0

e−qsg′(Us−) dLcs

+
t∫
0

e−qsrNs(Γg − qg)(Us−) ds+Mt,
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where Mt is a local martingale with M0 = 0, Lc is the pathwise continuous part
of L and

(4.4) Jg(t) =
∑
s¬t

e−qs[g(As +Bs)− g(As)]1{Bs 6=0},

where As = Us− + ∆Xs with ∆Xs = Xs − Xs−, and Bs = −∆Ls denotes
the jump of −L at time s. Let Tn be a localizing sequence of M . Applying the
Optional Stopping Theorem to the stopping times T ′k = Tk ∧ τπ,d and using the
Fatou Theorem we derive

g(x) ­ Exr
NT ′n [e−qT

′
ng(UT ′n)1{ςU

T ′n
¬r} − Jg(T

′
n)] + Exr

NT ′n

T ′n∫
0

e−qsg′(Us−) dLcs

− Ex
T ′n∫
0

rNse−qs(Γg − qg)(Us−) ds.

Invoking the variational inequalities g′(x) ­ 1 (hence g(As + Bs) − g(As) ¬
−∆Ls if As > 0) and (Γ− q)g(x) ¬ 0 we have

g(x) ­ Exe−qT
′
nr
NT ′ng(UT ′n)1{ςU

T ′n
¬d} + Exr

NT ′n

T ′n∫
0

e−qs dLs

­ Ex[rNτπ,de−qτ
π,d
g(Uτπ,d), τ

π,d ¬ T ′n]

+ ExrNτπ,d
[τπ,d∫

0

e−qs dLs, τ
π,d ¬ T ′n

]
.

Letting n → ∞ and using the monotone convergence theorem and the fact that
1{ςU

τπ,d
¬d} = 0 completes the proof. �

We will now focus on the optimality of the barrier strategy πa
∗
.

LEMMA 4.3. The function va,d is sufficiently smooth.

Proof. From Theorem 3.5 it follows that it sufficient to prove that hd is suffi-
ciently smooth or by Theorem 3.9 that W (q)

r is sufficiently smooth. The function
W

(q)
r is just the scale function for the Lévy process Xr

t . Hence from Kyprianou
et al. [15, Lem. 2.4, p. 117], if σ = 0 and the Lévy measure is absolutely contin-
uous with respect to the Lebesgue measure, then W (q)

r ∈ C1(0,∞). Moreover, if
σ > 0 then by [15, Thm. 3.10, p. 136] we have W (q)

r ∈ C2(0,∞). �

THEOREM 4.4. If

(4.5) (Γ− q)hd(x) ¬ 0 for x ­ a∗,

then the barrier strategy πa
∗

is optimal.



74 I. Czarna et al.

Proof. Note that from (3.9) it follows that

(4.6) (Γ− q)hd(x) = 0 for x ¬ a∗.

From the choice of a∗ and Theorem 3.5 it follows that (va
∗,d)′(x) ¬ 1. This com-

pletes the proof in view of the Verification Lemma 4.2. �

Moreover, we can give another sufficient condition for the barrier strategy to be
optimal.

COROLLARY 4.5. Suppose that

(hd)′(a) ¬ (hd)′(b) for all a∗ ¬ a ¬ b.

Then the barrier strategy πa∗ at a∗ is an optimal strategy.

Proof. With the use of Theorem 4.4 and (4.6), the proof is the same as that of
[22, Theorem 2]. �

THEOREM 4.6. Suppose that the claims Ci (i = 1, 2, . . .) have density f
with f ′ decreasing. Then va

∗,d = v∗ and πa∗ is an optimal strategy.

Proof. The proof follows the same idea as the proof of [7, Corollary 5.2] and
it is based on Theorem 3.9. �

5. EXAMPLES

In this section we consider the case when the claim sizes are exponentially dis-
tributed with parameter µ > 0, that is, f(x) = µe−µx for x > 0. Moreover, we
present a formula for the function hd in case σ > 0 determined by the second
method (i.e. via change of measure) and a formula in case σ = 0 determined by
the Dickson–Hipp operator method.

1. Assume that σ > 0. One can compute that

ψr(θ) =
σ2

2
θ2 + cθ + λr

µ

θ + µ
− λ.

Now using the same argument as in [15] we can prove that the equation ψr(θ) = q
has exactly three real solutions Φr(q), $1(q), $2(q), which satisfy −$1(q) <
−µ < −$2(q) < 0 ¬ Φr(q). Then

W (q)
r (x) =

eΦr(q)x

ψ′r(Φr(q))
+

e−$1(q)x

ψ′r(−$1(q))
+

e−$2(q)x

ψ′r(−$2(q))

and

P(Xd ∈ dz) = e−µd
∞∑
k=0

(µd)k

k!

∞∫
0

µyk−1e−µy

(k − 1)!
N (( dz + y − cd)σ

√
d) dy,
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where N is a standard normal distribution function.The above formulas together
with Theorem 3.9 give the value function (3.12).

2. Assume that σ = 0. Since f is an exponential density, Tρf(x) becomes

Tρf(x) =
∞∫
x

e−ρ(y−x)µe−µydy =
µ

ρ+ µ
e−µx.

Then

(Tρf)∗n(x) =

(
µ

ρ+ µ

)n xn−1

(n− 1)!
e−µx, n > 1,(5.1)

and

(5.2)
wd(x) = e−µxu(d), where u(d) =

∞∑
k=0

rkλk(µc)k+1

k!(k + 1)!

d∫
0

t2ke−(λ+q+µc)t dt.

Substituting (5.1) and (5.2) into (3.17) and (3.19), respectively, gives

hd(x) =

{
ϑ(x)
ϑ(a) , d = 0 and 0 ¬ x ¬ a,
%(x)
%(a) , d > 0 and −cd ¬ x ¬ a,

where

ϑ(x) =
∞∑
n=1

(λrµ)n

(n− 1)!cn(ρ+ µ)n
eρx

x∫
0

yn−1e−(ρ+µ)y dy + eρx,

%(x) =
∞∑
n=1

(λrµ)n

(n− 1)!cn(ρ+ µ)n

×
[(

1− λru(d)

c(ρ+ µ)

)
eρx

x∫
0

yn−1e−(ρ+µ)y dy +
λr, u(d)

cn(ρ+ µ)
xne−µx

]
+ eρx − λru(d)

c(ρ+ µ)
(eρx − e−µx).

Moreover,

ϑ′(x) =
∞∑
n=1

(λrµ)n

(n− 1)!cn(ρ+ µ)n

[
ρeρx

x∫
0

yn−1e−(ρ+µ)y dy + xn−1e−µx
]

+ ρeρx

and

%′(x) =
∞∑
n=1

(λrµ)n

(n− 1)!cn(ρ+ µ)n

×
[(

1− λru(d)

c(ρ+ µ)

)
ρeρx

x∫
0

yn−1e−(ρ+µ)y dy+ xn−1e−µx − λµru(d)

cn(ρ+ µ)
xne−µx

]
+ ρeρx − λru(d)

c(ρ+ µ)
(ρeρx + µe−µx).
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Further, by differentiating we can get expressions for ϑ′′(x) and %′′(x). Then solv-
ing the equations ϑ′′(x) = 0 and %′′(x) = 0 we will derive the optimal barrier
level a∗ for d = 0 and d > 0, respectively.

To sum up, for d = 0 we have

va
∗,d(x) =

{
ϑ(x)
ϑ′(a∗) if 0 ¬ x ¬ a∗,
x− a∗ + ϑ(a∗)

ϑ′(a∗) if x > a∗,

and for d > 0,

va
∗,d(x) =

{
%(x)
%′(a∗) if −cd ¬ x ¬ a∗,
x− a∗ + %(a∗)

%′(a∗) if x > a∗.

5.1. Numerical analysis. Using the above expressions we were able to find the
function hd(x) numerically and hence the value function. We also identified the
optimal barriers. This shows that the algorithms presented can be used in practice.

Let λ = 10, µ = 1, c = 15, q = 0.1, r = 0.8. We will consider two cases:
d = 0 and d = 2. The positive root of (3.24) is ρ = 0.24493. For d = 0 solv-
ing ϑ′′(x) = 0 produces a∗ ≈ 0.7693 and for d = 2 solving %′′(x) = 0 gives
a∗ ≈ 0.52202. In Figures 3 and 5 we show what va

∗,d looks like. With the help of

Figure 3. va
∗,d for λ = 10, µ = 1, c = 15, q = 0.1, r = 0.8 and d = 0.

Figure 4. (Γ− q)va
∗,d(x) for λ = 10, µ = 1, c = 15, q = 0.1, r = 0.8 and d = 0.



Optimal Parisian-type dividend payments penalized by the number of claims 77

Figure 5. va
∗,d for λ = 10, µ = 1, c = 15, q = 0.1, r = 0.8 and d = 2.

Figure 6. (Γ− q)va
∗,d(x) for λ = 10, µ = 1, c = 15, q = 0.1, r = 0.8 and d = 2.

Mathematica we also plotted (Γ − q)va∗,d(x) (see Figures 4 and 6). In all cases
we have (Γ − q)va∗,d(x) ¬ 0, hence by Theorem 4.4 the barrier a∗ produces the
optimal strategy in both cases (this is also straightforward from Theorem 4.6 and
the choice of the exponential claim size).

APPENDIX

Proof of Theorem 3.5. Observe that the process given in (2.1) is a spectrally
negative Lévy process. Moreover, it is a Markov process. Since this process up-
crosses all levels continuously, from the Markov property it follows that for general
b > a,

Ex[r
N
τ+
b e−qτ

+
b , τ+

b < τd]

= Ex[r
N
τ+a e−qτ

+
a , τ+

a < τd]Ea[r
N
τ+
b e−qτ

+
b , τ+

b < τd].

Taking gd(x) := Ex[r
N
τ+
b e−qτ

+
b , τ+

b < τd] we have

(5.1) hd(x) =
gd(x)

gd(a)
.
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In fact for any x < y we have

(5.2) Ex[r
N
τ+y e−qτ

+
y , τ+

y < τd] =
gd(x)

gd(y)
.

Note that for n ∈ N,

va,d(a) ­ Ea[r
N
τ+
a+1/ne

−qτ+
a+1/n , τ+

a+1/n < τd]va,d
(
a+

1

n

)
= Ea[r

N
τ+
a+1/ne

−qτ+
a+1/n , τ+

a+1/n < τd]

(
va,d(a) +

1

n

)
and

va,d(a) ¬ Ea[r
N
τ+
a+1/ne

−qτ+
a+1/n , τ+

a+1/n < τd]

(
va,d(a) +

1

n

)

+
1

n
Ea
[
r
N
τ+
a+1/n

τ+
a+1/n∫

0

e−qt dt, τ+
a+1/n < τd

]
+ Ea

[
rNτd

τd∫
0

e−qt dLat , τ
d < τ+

a+1/n

]
since Lat = Xt − a under Pa can increase only by 1/n each time the regulated
process is above a up to time τ+

a+1/n. Moreover, since r ¬ 1 we have

Ea
[
rNτd

τd∫
0

e−qt dLat , τ
d < τ+

a+1/n

]
¬ 1

n
Pa(τd < τ+

a+1/n).

Note that we have limn→∞ Ea[r
N
τ+
a+1/n

∫ τ+
a+1/n

0 e−qtdt, τ+
a+1/n < τd] = 0 and

limn→∞ Pa(τd < τ+
a+1/n) = 0. All details of the above estimation can also be

found in [27, proof of Proposition 1] where T ′n = min{τ+
a+1/n, τ

0} should be

changed to T ′n = min{τ+
a+1/n, τ

d
0 }. Taking b > a+ 1/n in the definition of gd(x),

from (5.1) we derive

va,d(a) =
gd(a)

gd(a+ 1/n)

(
va,d(a) +

1

n

)
+ o

(
1

n

)
.

Hence

(5.3) va,d(a) =
gd(a)

gd,′(a)
=

1

(hd)′(a)
.

The assertion of the theorem follows now from (3.8) and (5.3). �
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Proof of Lemma 3.7. For r ∈ (0, 1] and q > 0 we define the joint Laplace
transform of Nτ+y

and τ+
y :

φ(y) := E[r
N
τ+y e−qτ

+
y I(τ+

y <∞)] =
∞∫
0

e−qt
∞∑
k=0

rkvy(k, t) dt.(5.4)

First we assume that σ > 0. Similarly to [19, Thm. 2] one can show that φ is twice
differentiable and in contrast to the proof of Lemma 3.1 we do not have here any
additional term, since there is no Parisian delay. Moreover, φ solves the integro-
differential equation

(5.5)
σ2

2
φ′′(y)− cφ′(y)− (λ+ δ)φ(y) + λr

∞∫
0

φ(y + x)f(x) dx = 0.

Clearly, we have two boundary conditions:

φ(0) = 1,(5.6)
lim
y→∞

φ(y) = 0.(5.7)

Since the solution of (5.5) with the boundary conditions (5.6) and (5.7) is unique,
we will check that φ(y) is of the form

φ(y) = e−b0y

for some b0. Note that the real part of b0 must be positive, because otherwise it
would be a contradiction to limy→∞ φ(y) = 0. Let ρ be the unique solution to the
Lundberg fundamental equation (3.24). Observe that

(5.8) φ(y) = e−ρy.

Taking the inverse Laplace transform with respect of q it follows from (5.4) that

(5.9)
∞∑
k=0

rkvy(k, t) = L−1
q (e−ρy)

=
∞∑
k=0

rk
λk

k!
ytk−1e−λt

∞∫
−∞

1√
2πt

e−
x2

2t fk∗(ct+ σx− y) dx.

The details can be found in Czarna et al. [6]. The case of σ = 0 could be proved in
a similar way. �

REFERENCES

[1] S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insur-
ance Math. Econom. 20 (1997), 1–15.



80 I. Czarna et al.

[2] F. Avram, Z. Palmowski, and M. R. Pistorius, On the optimal dividend problem for a spectrally
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negative Lévy processes, in: Lévy Matters II, Lecture Notes in Math. 2061, Springer, 2012,
97–186.
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model, J. Appl. Probab. 44 (2007), 420–427.
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