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Abstract. Let {Xk, k ­ 1} be a sequence of independent identically dis-
tributed random variables with common probability density function f , and
let f̂n denote a Wegman–Davies recursive density estimator

f̂n(x) =
1

nh
1/2
n

n∑
j=1

1

h
1/2
j

K

(
x−Xj

hj

)

where K is a kernel function and hn is a band sequence. In the present
paper, the moderate deviation principle and the large deviation principle for
the estimator f̂n are established.
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1. INTRODUCTION

Given a sequence of independent identically distributed random variables
X1, X2, . . . with common probability density function f(x), how can one esti-
mate f(x)? This problem has been of long-lasting interest among statisticians, and
numerous interesting and fundamental results have been obtained.

1.1. Rosenblatt estimator. Rosenblatt [15] introduced the following kernel estima-
tor of the density f(x):

f∗n(x) =
1

nhn

n∑
j=1

K

(
x−Xj

hn

)
,

and Parzen [14] studied many important properties of these estimators, such as
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consistency, asymptotic normality, uniform consistency, etc. Csörgö and Horváth
[1] considered the central limit theorem for the Lp-norm of f∗n. Lu [9] studied the
kernel methods for density estimation of stationary samples under generalized con-
ditions, which unify both the linear and α-mixing processes and also apply to the
non-linear and/or non-α-mixing processes. Furthermore, under general, mild con-
ditions, the estimators f∗n were shown to be asymptotically normal. Louani [8] es-
tablished a large deviation limit theorem of Chernoff type for f∗n in theL1-distance.
Louani [7] and Gao [3] obtained the large deviation and moderate deviation prin-
ciples for f∗n for pointwise and L∞ convergence. Mokkadem et al. [13] studied the
large and moderate deviation principles for kernel estimators of the partial deriva-
tives of f . Gao [4] proved the moderate deviation principle and the law of the
iterated logarithm in L1(Rd) for f∗n.

1.2. Wolverton–Wagner estimator or Yamato estimator. It is well known that the
Rosenblatt estimator f∗n is a non-recursive kernel density estimator. Wolverton and
Wagner [17] defined a related estimator

f̃n(x) =
1

n

n∑
j=1

1

hj
K

(
x−Xj

hj

)
,

which was apparently independently introduced by Yamato [18]. The estimator
f̃n(x) is useful in practice, because it can be calculated recursively,

f̃n(x) =
n− 1

n
f̃n−1(x) +

1

nhn
K

(
x−Xn

hn

)
.

Masry and Györfi [11] obtained the sharp rates for almost sure convergence of
f̃n when the process {Xi, i ­ 1} is asymptotically uncorrelated. Liang and Baek
[5], [6] discussed the point asymptotic normality and the Berry–Esseen bounds
of f̃n for strictly stationary samples of negatively associated random variables.
Mokkadem et al. [12] obtained the large and moderate deviation principles for
the recursive kernel estimator of the probability density function f̃n and its partial
derivatives in the multivariate case.

1.3. Wegman–Davies estimator. Wegman and Davies [16] introduced another re-
lated estimator f̂n(x) by

f̂n(x) =
1

nh
1/2
n

n∑
j=1

1

h
1/2
j

K

(
x−Xj

hj

)
,

which can also be calculated recursively:

f̂n(x) =
n− 1

n

(
hn−1
hn

)1/2

f̂n−1(x) +
1

nhn
K

(
x−Xn

hn

)
.
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Masry and Györfi [11] established the sharp rates for almost sure convergence
of f̂n when the process {Xi, i ­ 1} is asymptotically uncorrelated. Liang and
Baek [6] discussed the Berry–Esseen bounds of f̂n for strictly stationary samples
of negatively associated random variables. Zhang and Liang [19] obtained the point
asymptotic normality of f̂n for such samples.

Motivated by that work, in the present paper we shall discuss the large deviation
and the moderate deviation behaviour of the estimators f̂n.

2. MODERATE DEVIATION PRINCIPLE

We assume that K is a Borel function satisfying

(2.1) ‖K‖∞ := sup
y∈R
|K(y)| <∞,

∫
R
|K(y)| dy <∞, lim

y→±∞
|yK(y)| = 0,

and that {hn} is a sequence of positive real numbers satisfying

(2.2) hn ↓ 0, nhn →∞.

Other assumptions about K and {hn} will be made as needed. Firstly, we recall
the following theorem of Wegman and Davies [16].

THEOREM 2.1 ([16, Theorem 1]). Let K and {hn} satisfy (2.1) and (2.2).

(a) If f is continuous at x, then

nhn Var(f̂n(x))→ f(x)
∫
R
K2(u) du.

(b) Let
K∗(u) =

∫
R
e−iuyK(y) dy

be the Fourier transform of K. Suppose that for some positive integer β,

lim
u→0

[1−K∗(u)]/|u|β = kβ

is finite and the derivative f (β)(x) of order β at x exists. Suppose finally that

(2.3) nhβ+1/2
n →∞ and

1

nh
β+1/2
n

n∑
j=1

h
β+1/2
j → γβ+1/2.

Then

Ef̂n(x)− f(x)n−1h
−1/2
n

∑n
j=1 h

1/2
j

hβn
→ γβ+1/2 · kβ · f (β)(x).
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REMARK 2.1. If there exists a value of β such that kβ is non-zero, it is called
the characteristic exponent of K∗(u), and kβ is the characteristic coefficient.

THEOREM 2.2. Let K and {hn} satisfy (2.1) and (2.2). Assume that a se-
quence {bn} of positive real numbers satisfies

(2.4) lim
n→∞

bn =∞, lim
n→∞

bn√
nhn

= 0.

If f is continuous at x, then for any r > 0,

lim
n→∞

1

b2n
logP

(√
nhn
bn
|f̂n(x)− Ef̂n(x)| ­ r

)
= − r2

2σ2(x)

where

σ2(x) = f(x)
∞∫
−∞

K2(u) du.

Proof. For any r > 0, we will prove

1

b2n
logP

(√
nhn
bn

(f̂n(x)− Ef̂n(x)) ­ r
)
→ − r2

2σ2(x)
;

the proof of

1

b2n
logP

(√
nhn
bn

(f̂n(x)− Ef̂n(x)) ¬ −r
)
→ − r2

2σ2(x)

is similar. For any λ ∈ R, let

Λ(λ) :=
λ2σ2(x)

2
.

The Fenchel–Legendre transform of Λ(·) is

Λ∗(r) := sup
λ∈R
{λr − Λ(λ)} = sup

λ∈R

{
λr − λ2σ2(x)

2

}
=

r2

2σ2(x)
, r ∈ R.

Let Zn :=
√
nhn
bn

(f̂n(x)−Ef̂n(x)), and let Λn(·) be the logarithmic moment gener-
ating function of Zn. By the Gärtner–Ellis theorem [2, Theorem 2.3.6], it is enough
to show that for any λ ∈ R,

(2.5) Λ(λ) = lim
n→∞

1

b2n
Λn(λb2nZn).

Define

Yj := h
−1/2
j

(
K

(
x−Xj

hj

)
− EK

(
x−Xj

hj

))
.
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Then we have
1

b2n
Λn(λb2nZn) =

1

b2n
logE exp

(
λbn
√
nhn(f̂n(x)−Ef̂n(x))

)
=

1

b2n

n∑
j=1

logE exp

(
λbn√
n
h
−1/2
j

(
K

(
x−Xj

hj

)
−EK

(
x−Xj

hj

)))
=

1

b2n

n∑
j=1

logE exp

(
λbn√
n
Yj

)
and∣∣∣∣ 1

b2n

n∑
j=1

logE exp

(
λbn√
n
Yj

)
− λ2σ2(x)

2

∣∣∣∣
¬ 1

b2n

n∑
j=1

∣∣∣∣logE exp

(
λbn√
n
Yj

)
−
[
E exp

(
λbn√
n
Yj

)
− 1

]∣∣∣∣
+

1

b2n

∣∣∣∣ n∑
j=1

[(
E exp

(
λbn√
n
Yj

)
− 1

)
− λ2b2nσ

2(x)

2n

]∣∣∣∣
=: 41 +42.

Now we need to control the terms41 and42. For42 we can write

42 =
1

b2n

∣∣∣∣ n∑
j=1

[(
E exp

(
λbn√
n
Yj

)
− 1

)
− λ2b2nσ

2(x)

2n

]∣∣∣∣
¬ 1

b2n

n∑
j=1

∣∣∣∣E exp

(
λbn√
n
Yj

)
− 1− λ2b2n

2n
EY 2

j

∣∣∣∣
+

1

b2n

∣∣∣∣ n∑
j=1

λ2b2n
2n

EY 2
j −

λ2b2nσ
2(x)

2n

∣∣∣∣
=: 421 +422.

For the term421, by using the elementary inequality∣∣∣∣ex − 1− x− x2

2

∣∣∣∣ ¬ |x|36
e|x| for all x ∈ R,

the condition (2.4) and the fact that K(·) is a bounded Borel function (which im-
plies |Yi| ¬ 2h

−1/2
i ‖K‖∞), for any n large enough we get

421 =
1

b2n

n∑
j=1

∣∣∣∣E exp

(
λbn√
n
Yj

)
− 1− λ2b2n

2n
EY 2

j

∣∣∣∣
¬ 1

b2n

n∑
j=1

1

6

λ3b3n
n3/2

E|Y 3
j | exp

(
λbn√
n
|Yj |
)

¬ C0
bnλ

3

n1/2
1

n

n∑
j=1

E|Yj |3 ¬ C1
bnλ

3

n1/2h
1/2
n

1

n

n∑
j=1

EY 2
j
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where C0, C1 are positive constants depending on the function K(·). So by using
(2.4) again, and the fact (Theorem 2.1) that

(2.6)
1

n

n∑
j=1

EY 2
j =

1

n

n∑
j=1

h−1j E
(
K

(
x−Xj

hj

)
− EK

(
x−Xj

hj

))2

= nhn Var(f̂n(x))→ σ2(x),

we have421 → 0. Next we consider the term422. From (2.6), we have

422 =
λ2

2

∣∣∣∣ 1n n∑
j=1

EY 2
j − σ2(x)

∣∣∣∣→ 0.

For the term41, by the elementary inequality

|ex − 1− x| ¬ x2

2
e|x| for all x ∈ R,

and (2.4), for all n large enough we have

(2.7) sup
1¬j¬n

∣∣∣∣E exp

(
λ
bn√
n
Yj

)
− 1

∣∣∣∣ ¬ C2
λ2b2n
2n

sup
1¬j¬n

EY 2
j ¬ C3

λ2b2n
nhn

→ 0

where C2 and C3 are positive constants depending on K(·). Therefore for all n
large enough,

(2.8) sup
1¬j¬n

∣∣∣∣E exp

(
λ
bn√
n
Yj

)
− 1

∣∣∣∣ ¬ 1

2
.

Using the elementary inequality

|log(1 + x)− x| ¬ 2x2 for |x| ¬ 1/2,

and the conditions (2.7) and (2.8), for any n large enough we have

41 =
1

b2n

n∑
j=1

∣∣∣∣logE exp

(
λbn√
n
Yj

)
−
[
E exp

(
λbn√
n
Yj

)
− 1

]∣∣∣∣
¬ 2

b2n

n∑
j=1

(
E exp

(
λbn√
n
Yj

)
− 1

)2

¬ C4
1

b2n

n∑
j=1

λ4b4n
n2

(EY 2
j )2 ¬ C5

λ4b2n
nhn

1

n

n∑
j=1

EY 2
j

where C4 and C5 are positive constants depending on K(·). By (2.4) and (2.6), we
have41 → 0. From the above discussion, we obtain the desired result (2.5). �
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COROLLARY 2.1. Under the assumptions in Theorems 2.1 and 2.2, assume
further that

(2.9)
√
nh

1/2+β
n

bn
→ 0.

Then for any r > 0, we have

lim
n→∞

1

b2n
logP

(√
nhn
bn
|f̂n(x)− γnf(x)| ­ r

)
= − r2

2σ2(x)

where γn = n−1h
−1/2
n

∑n
j=1 h

1/2
j .

Proof. From Theorems 2.1 and 2.2, it is enough to show
√
nhn
bn
|Ef̂n(x)− γnf(x)| → 0;

but the condition (2.9) guarantees this. � The recursive estimator f̂n(x) is not
an (asymptotically) unbiased estimator of f(x), but γ−1n f̂n(x) is asymptotically
unbiased. Hence we have the following corollary.

COROLLARY 2.2. Under the assumptions in Theorems 2.1 and 2.2, set hn =
n−γ , where 0 < γ < 1. Furthermore, for any β > 0 such that γ(β + 1/2) < 1/2,
take bn satisfying b−1n = o(nγ(β+1/2)−1/2) and bn = o(n(1−γ)/2). Then for any
r > 0, we have

lim
n→∞

1

b2n
logP

(√
n1−γ

bn
|γ−1n f̂n(x)− f(x)| ­ r

)
= −r

2(1− γ/2)2

2σ2(x)

where γn = n−1h
−1/2
n

∑n
j=1 h

1/2
j .

Proof. It is easy to see that the conditions (2.3), (2.4) and (2.9) hold and

γn →
1

1− γ/2
.

So from Corollary 2.1, we get the desired result. �

REMARK 2.2. Assume that for some l > 0,

1

n

n∑
j=1

(hj/hn)l → βl as n→∞.

Masry [10] pointed out that under some conditions the recursive estimator f̂n(x)
is not an asymptotically unbiased estimator of f(x). However, it is clear that after
a simple scaling,

ˆ̂
fn(x) =

f̂n(x)

β1/2
,
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ˆ̂
fn(x) is an asymptotically unbiased estimator of f(x). When K(·) is even sym-

metric, the dominant terms of the bias of f̃n(x) and ˆ̂
fn(x) are

bias[
ˆ̂
fn(x)] ∼ c2β2.5f

(2)(x)

2β0.5
h2n,

bias[f̃n(x)] ∼ c2β2f
(2)(x)

2
h2n.

If we take hn = n−ν , then f̃n(x) will generally have smaller bias than that

of ˆ̂
fn(x). Furthermore, Masry [10] showed that f̃n(x) has a larger variance

than ˆ̂
fn(x) under the strong mixing condition for the samples {Xi, i ­ 1}.

3. LARGE DEVIATION PRINCIPLE

In this section, we assume that K is a Borel function and the following conditions
are satisfied:

(L1) The density function f is bounded and K(·) is a non-negative function such
that for any t ­ 0,

(3.1)
∫
R

(etK(z) − 1) dz <∞.

(L1′) K(·) is a non-negative function such that for any t ­ 0,∫
R

(etK(z) − 1) dz <∞, lim
|z|→∞

|z|(etK(z) − 1) = 0.

(L2) hn = n−α with 0 < α < 1.

To state the large deviation principle for the estimator f̂n, we need the following
lemmas. Their proofs are elementary, but we give them for completeness.

LEMMA 3.1. Let an be a sequence of positive numbers such that an → 0. If
(L1) or (L1′) holds, then for each continuity point x of f(·) and for any t > 0, we
have

lim
n→∞

∫
R

(etK(z) − 1)f(x− anz) dz = f(x)
∫
R

(etK(z) − 1) dz,(3.2)

lim
n→∞

∫
R
K(z)f(x− anz) dz = f(x)

∫
R
K(z) dz.(3.3)

Proof. (1) Assume that (L1) is satisfied. By the dominated convergence theo-
rem, the claim (3.2) holds. Furthermore, by using the inequality 1 + x ¬ ex for all
x ∈ R, we have ∫

R
K(z) dz ¬

∫
R

(eK(z) − 1) dz <∞,



MDP and LDP for recursive density estimators 91

which implies (3.3) by the dominated convergence theorem.
(2) Assume that the condition (L1′) is satisfied. For any δ > 0, we have∣∣∣∫

R
(etK(z) − 1)(f(x− anz)− f(x)) dz

∣∣∣
¬

∫
|anz|¬δ

(etK(z) − 1)|f(x− anz)− f(x)| dz

+
∫

|anz|>δ
(etK(z) − 1)|f(x− anz)− f(x)| dz

¬ sup
|anz|¬δ

|f(x− anz)− f(x)|
∫

|anz|¬δ
(etK(z) − 1) dz

+
∫

|anz|>δ
z(etK(z) − 1)

f(x− anz)
z

dz + f(x)
∫

|anz|>δ
(etK(z) − 1) dz

¬ sup
|y|¬δ
|f(x− y)− f(x)|

∫
R

(etK(z) − 1) dz

+
1

δ
sup
|anz|>δ

[|z|(etK(z) − 1)]
∫

|z−x|>δ
f(z) dz + f(x)

∫
|anz|>δ

(etK(z) − 1) dz,

which tends to 0 if one lets first n → ∞, and then δ → 0. From the inequality
1 + x ¬ ex for all x ∈ R, the limit (3.3) holds by a similar proof. �

LEMMA 3.2. Suppose that either (L1) holds, or K(·) is a bounded Borel func-
tion. Then for each x ∈ R and for any t,m > 0, we have

(3.4) EetK(x−mX1) <∞.

Proof. (1) Assume that (L1) is satisfied. Then

E(etK(x−mX1) − 1) =
1

m

∫
R

(etK(u) − 1)f

(
x− u
m

)
du,

which yields the claim (3.4) by the boundedness of f and condition (3.1).
(2) Assume that K(·) is a bounded Borel function. Then∫

R
(etK(z) − 1)f(x−mz) dz =

1

m

∫
R

(etK(x−u
m

) − 1)f(u) du ¬ C

m

where C is a positive constant depending on K. �

THEOREM 3.1. Suppose that either (L1)–(L2) or (L1′)–(L2) hold and K(·)
is a bounded Borel function. Then for each continuity point x of f(·) and for any
r > 0, we have

lim
n→∞

1

n1−α
logP(|f̂n(x)− Ef̂n(x)| ­ r) = −J(r, x)



92 Y. Miao et al.

where

J(r, x) = sup
λ∈R

{
rλ−f(x)

∫
R

[ 1∫
0

s−α(exp(λsα/2K(z))−1−λsα/2K(z)) ds
]
dz
}
.

Proof. We use the Gärtner–Ellis theorem [2, Theorem 2.3.6]. For any j, let

Kj = K

(
x−Xj

j−α

)
.

Then we have (here hn = n−α)

f̂n(x)− Ef̂n(x) =
1

n1−α/2

n∑
j=1

jα/2(Kj − EKj).

Now we need to compute the logarithmic moment generating function of
f̂n(x)− Ef̂n(x). For any λ ∈ R, we have

Λn(λ) :=
1

n1−α
logE exp

(
λ

nα/2

n∑
j=1

jα/2(Kj − EKj)

)
=

1

n1−α

n∑
j=1

[
logE exp

(
λjα/2

nα/2
Kj

)
−
(
E exp

(
λjα/2

nα/2
Kj

)
−1

)]
+

1

n1−α

n∑
j=1

[(
E exp

(
λjα/2

nα/2
Kj

)
−1

)
−f(x)

jα

∫
R

(
exp

(
λjα/2

nα/2
K(z)

)
−1

)
dz

]
+

1

n1−α

n∑
j=1

f(x)

jα

∫
R

(
exp

(
λjα/2

nα/2
K(z)

)
−1−λj

α/2

nα/2
K(z)

)
dz

+
1

n1−α

n∑
j=1

λjα/2

nα/2

(
f(x)

jα

∫
R
K(z) dz−EKj

)
=: I1+I2+I3+I4.

By Lemma 3.1, for any ε > 0 there exists a positive constant N0 such that for
N0 ¬ j ¬ n we have

(3.5)
∣∣∣∣E exp

(
λjα/2

nα/2
Kj

)
− 1

∣∣∣∣
= j−α

∣∣∣∣∫
R

(
exp

(
λjα/2

nα/2
K(z)

)
− 1

)
f(x− j−αz) dz

∣∣∣∣
¬ j−α

∣∣∣∫
R

(e|λ|K(z) − 1)f(x− j−αz) dz
∣∣∣ ¬ j−α(ε+ f(x)

∫
R

(e|λ|K(z) − 1) dz
)
.
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Now we can choose N1 such that∣∣∣∣E exp

(
λjα/2

nα/2
Kj

)
− 1

∣∣∣∣ ¬ 1/2 for N1 ¬ j ¬ n.

By using the elementary inequality

|log(1 + x)− x| ¬ 2x2 for |x| ¬ 1/2,

for N := max{N0, N1} ¬ j ¬ n we have∣∣∣∣logE exp

(
λjα/2

nα/2
Kj

)
−
(
E exp

(
λjα/2

nα/2
Kj

)
− 1

)∣∣∣∣
¬ 2

(
E exp

(
λjα/2

nα/2
Kj

)
− 1

)2

¬ 2j−2α
(
ε+ f(x)

∫
R

(e|λ|K(z) − 1) dz
)2
.

Furthermore, by Lemma 3.2, there exists a positive constant C depending on
K, N , λ and x such that

I1 =
1

n1−α

n∑
j=1

[
logE exp

(
λjα/2

nα/2
Kj

)
−
(
E exp

(
λjα/2

nα/2
Kj

)
− 1

)]
¬ 1

n1−α

N∑
j=1

[
logE exp

(
λjα/2

nα/2
Kj

)
−
(
E exp

(
λjα/2

nα/2
Kj

)
− 1

)]
+

1

n1−α

n∑
j=N+1

[
logE exp

(
λjα/2

nα/2
Kj

)
−
(
E exp

(
λjα/2

nα/2
Kj

)
− 1

)]
¬ CN

n1−α
+

2

n1−α

n∑
j=N+1

j−2α
(
ε+ f(x)

∫
R

(e|λ|K(z) − 1) dz
)2
,

which yields I1 → 0. For the terms I2 and I4, arguing similarly we have

I2 =
1

n1−α

n∑
j=1

j−α
[∫
R

(
exp

(
λjα/2

nα/2
K(z)

)
− 1

)
(f(x− j−αz)− f(x)) dz

]
→ 0

and

I4 =
λ

n1−α/2

n∑
j=1

j−α/2
(
f(x)

∫
R
K(z) dz −

∫
R
K(z)f(x− j−αz) dz

)
→ 0.

For the term I3, by the elementary inequality

|ex − 1− x| ¬ x2

2
e|x| for all x ∈ R,
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we have

1

n

n∑
j=1

(
n

j

)α∣∣∣∣exp

(
λ

(
j

n

)α/2
K(z)

)
− 1− λ

(
j

n

)α/2
K(z)

∣∣∣∣ ¬ λ2

2
K2(z).

Since (L1) or (L1′) implies
∫
RK

2(z) dz <∞, from some analytic considerations
and the dominated convergence theorem we have

I3 =
1

n

n∑
j=1

(
n

j

)α ∫
R

(
exp

(
λ

(
j

n

)α/2
K(z)

)
− 1− λ

(
j

n

)α/2
K(z)

)
f(x) dz

→ f(x)
∫
R

[ 1∫
0

s−α
(
exp(λsα/2K(z))− 1− λsα/2K(z)

)
ds
]
dz.

From the above discussion, the desired result follows. �

COROLLARY 3.1. Under the conditions (L1′)–(L2), assume thatK is bounded
and has Fourier transform K∗(u) =

∫∞
−∞ e

−iuyK(y) dy. Suppose further that for
some positive constant β,

lim
u→0

[1−K∗(u)]/|u|β = kβ

is finite and

f (β)(x) = − 1

2π

∞∫
−∞

e−iux|u|βφ(u) du

exists, where φ(·) denotes the characteristic function of the random variable X
with density function f(x). Then for any α with α(β + 2−1) < 1 and any r > 0,
we have

lim
n→∞

1

n1−α
logP

(
|f̂n(x)− (1− α/2)−1f(x)| ­ r

)
= −J(r, x)

where J(r, x) is defined in Theorem 3.1.

Proof. Note that the condition (L1′) implies∫
R
K(z) dz <∞ and lim

|z|→∞
|z|K(z) = 0.

Then the corollary can be deduced from Theorems 2.1 and 3.1. �
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