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Abstract. We prove a Tauberian theorem for the Laplace–Stieltjes trans-
form, a Karamata-type theorem, and a monotone density theorem in the
framework of regularly log-periodic functions. We provide several applica-
tions of these results: for example, we prove that the tail of a nonnegative
random variable is regularly log-periodic if and only if the same holds for
its Laplace transform at 0, and we determine the exact tail behavior of fixed
points of certain smoothing transforms.

2020 Mathematics Subject Classification: Primary 44A10; Secondary
60E99.

Key words and phrases: regularly log-periodic functions, Tauberian theo-
rem, Karamata theorem, monotone density theorem, smoothing transform,
semistable laws, supercritical branching processes

1. INTRODUCTION

A function f : [0,∞)→ [0,∞) is regularly log-periodic, written f ∈ RL or f ∈
RL(p, r, ρ), if f is measurable, there is a function ` slowly varying at infinity, real
numbers ρ ∈ R, r > 1, and a positive logarithmically periodic function p ∈ Pr,
such that

(1.1) lim
n→∞

f(rnz)

(rnz)ρ`(rnz)
= p(z), z ∈ Cp,

where Cp stands for the set of continuity points of p, and for r > 1,
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Pr =
{
p : (0,∞)→ (0,∞) : inf

x∈[1,r]
p(x) > 0, p is bounded,

right-continuous, and p(xr) = p(x), ∀x > 0
}
.

This function class is a natural and important extension of regularly varying
functions, and it appears in different areas of theoretical and applied probability.
This class arises in connection with various random fixed point equations, such
as the smoothing transform and the perpetuity equation. Regularly log-periodic
functions are the basic ingredients in the theory of semistable laws. The tail of the
limiting random variable of a supercritical Galton–Watson process is also regu-
larly log-periodic. These facts are spelled out in detail in Section 3. Here we only
mention some results for the perpetuity equation

(1.2) X
D
= AX +B,

where (A,B) and X on the right-hand side are independent. Under appropriate
assumptions, Grincevičius [20, Theorem 2] showed that the tail of the solution of
(1.2) is regularly log-periodic with constant slowly varying function. Under sim-
ilar assumptions the same asymptotic behavior was shown for the max-equation
X
D
= max{AX,B}, which corresponds to the maximum of perturbed random

walks (see Iksanov [25, Theorem 1.3.8]). More generally, this type of tail behav-
ior appears in implicit renewal theory in the arithmetic case (see Jelenković and
Olvera-Cravioto [26, Theorem 3.7] and Kevei [27]). In general, functions of the
form p(x)eλx, λ ∈ R, where p is a periodic function, are solutions of certain inte-
grated Cauchy functional equations (see Lau and Rao [29]). For physical relevance
of log-periodicity we refer to Sornette [35].

The name ‘regularly log-periodic’ comes from Buldygin and Pavlenkov [10],
[11], where a function f is called regularly log-periodic if

(1.3) f(x) = xρ`(x)p(x), x > 0,

where `, ρ and r are as above, and p ∈ Pr is continuous; see also Definition 5.13
in the recent monograph on extensions of regular variation by Buldygin et al. [9].
Condition (1.3) is stronger than (1.1); see Subsection 2.1 for examples and prop-
erties. In the examples given above, the continuity does not necessarily hold, and
this is the reason for the extension of the definition. Moreover, our main motivation
comes from the studies of the St. Petersburg distribution, where the corresponding
p function is not continuous (see Example 3.1 at the end of Subsection 3.1).

In what follows, we assume that U : [0,∞)→ [0,∞) is a nondecreasing right-
continuous function, and

(1.4) Û(s) =
∫

[0,∞)

e−sx dU(x)

denotes its Laplace–Stieltjes transform.
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For r > 1 we further introduce the sets of functions

(1.5) Pr,ρ = {p : (0,∞)→ (0,∞) : p ∈ Pr, and

xρp(x) is nondecreasing if ρ ­ 0, and nonincreasing if ρ < 0}.

In order to characterize the Laplace–Stieltjes transform of regularly log-periodic
functions, for r > 1 and ρ ­ 0 put

(1.6) Qr,ρ = {q : (0,∞)→ (0,∞) : s−ρq(s) is completely monotone
and q(sr) = q(s), ∀s > 0}.

For ρ = 0 both Pr,0 and Qr,0 are the set of constant functions.
The aim of the present paper is to prove a Tauberian theorem for the Laplace–

Stieltjes transform, and Karamata-type theorems in the framework of regularly
log-periodic functions. The ratio Tauberian theorem [8, Theorem 2.10.1], a gen-
eral version of the Tauberian theorem for Laplace–Stieltjes transforms, holds for
O-regularly varying functions (see Section 2 for the definition). The equivalence
of the behavior of U at infinity and Û at zero holds if and only if U∗(λ) =
lim supx→∞ U(λx)/U(x) is continuous at 1. The latter condition for functions
defined in (1.3) is equivalent to the continuity of p (see Proposition 2.2). In par-
ticular, the discontinuity of p is the reason that the ratio Tauberian theorem [8,
Theorem 2.10.1] does not hold in this setup. However, in Theorem 2.1 below we
do provide an equivalence between the tail behavior of a function and the behav-
ior of its Laplace–Stieltjes transform at zero. Karamata theorems in the sense of
Theorems 1.5.11 (direct half) and 1.6.1 (converse half) of Bingham, Goldie and
Teugels [8] for functions satisfying (1.3) with continuous p were proved by Buldy-
gin and Pavlenkov [10], [11]. Their results and further properties are contained in
[9, Chapter 6]. Here we extend these results.

Section 2 contains the main results of the paper. After some preliminaries, we
first deal with a Tauberian theorem for the Laplace–Stieltjes transform, then we
prove the direct half of the Karamata theorem, and a monotone density theorem.
In Section 3 we give some applications. We prove that the tail of a nonnegative
random variable is regularly log-periodic if and only if the same is true for its
Laplace transform at 0. Using this result we determine the tail behavior of fixed
points of certain smoothing transforms. We re-prove, in a special case, a result by
Watanabe and Yamamuro [38] for tails of semistable random variables. Finally, we
spell out some related results on limits of supercritical branching processes.

2. RESULTS

2.1. Preliminaries. First we discuss the place of regularly log-periodic functions
among well-known function classes, which are extensions of regularly varying
functions (extended, pseudo-, and O-regularly varying functions). For the defini-
tions and properties of these functions we refer to the monographs [8], [9].



162 P. Kevei

In the following we always assume that f : [0,∞) → [0,∞) is measurable.
For λ > 0 let

f∗(λ) = lim sup
x→∞

f(λx)

f(x)
, f∗(λ) = lim inf

x→∞

f(λx)

f(x)
.

A function f is extended regularly varying ([8, Section 2.0.2], [9, Definition 4.34])
if for some constants c, d ∈ R,

(2.1) λd ¬ f∗(λ) ¬ f∗(λ) ¬ λc, λ > 1;

pseudo-regularly varying [9, Definition 3.16] if

(2.2) lim sup
λ→1

f∗(λ) = 1;

and O-regularly varying ([8, Section 2.0.2], [9, Definition 3.7]) if for all λ > 0,

0 < f∗(λ) ¬ f∗(λ) <∞.

First we note that regularly log-periodic functions can be quite irregular.

EXAMPLE 2.1. Consider the function

(2.3) f(x) =

{
n if x ∈ [(1 + n−1)2n, (1 + 2n−1)2n], n ­ 2,

1 otherwise.

Then formula (1.1) holds with `(x) ≡ 1, ρ = 0, r = 2, and p(x) ≡ 1. Indeed,
limn→∞ f(2

nx) = 1 for every x > 0, but f is not even bounded, and the excep-
tional intervals are large.

For monotone log-periodic functions the situation is not so bad. A function
f : [0,∞) → [0,∞) is ultimately monotone if it is monotone (nondecreasing or
nonincreasing) for large enough x.

PROPOSITION 2.1. Let f ∈ RL(p, r, ρ) be ultimately monotone. Then

lim sup
x→∞

f(x)

xρ`(x)
<∞,

and f is O-regularly varying.

Proof. Assume that f is ultimately nondecreasing; the nonincreasing case fol-
lows the same way.

For ρ < 0 the boundedness of p implies limx→∞ f(x) = 0, therefore nec-
essarily ρ ­ 0. Suppose, contrary to our claim, that f(xn)/(x

ρ
n`(xn)) → ∞ for

some xn ↑ ∞. Write xn = rknzn, where zn ∈ [1, r). By the Bolzano–Weierstrass
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theorem, we may assume that zn → λ ∈ [1, r]. With some λ < η ∈ Cp, for large
enough n,

f(rknzn)

(rknzn)ρ`(rknzn)
¬ f(rknη)

(rkn)ρ`(rknzn)
,

and the upper bound tends to ηρp(η) as n → ∞, which is a contradiction. The
O-regular variation follows from the boundedness and strict positivity of p. �

For extended regular variation, and for continuity of f∗, stronger conditions are
needed. In the next statement we consider the subclass of regularly log-periodic
functions for which the representation (1.3) holds for a slowly varying function `
with ρ ∈ R, r > 1, and p ∈ Pr.

PROPOSITION 2.2. Assume that f ∈ RL(p, r, ρ) satisfies (1.3). Then f is

(i) pseudo-regularly varying if and only if p is continuous;
(ii) extended regularly varying if and only if p is Lipschitz on [1, r];

(iii) regularly varying if and only if p is constant.

Note that a logarithmically periodic function is globally Lipschitz if and only if
it is constant.

Proof of Proposition 2.2. The logarithmic periodicity of p implies

(2.4) f∗(λ) = λρ sup
x∈[1,r]

p(λx)

p(x)
,

from which we see that f∗ is continuous at 1 if and only if p is continuous. By
[9, Proposition 3.21] this is equivalent to pseudo-regular variation (see also [9,
Remark 5.69]).

We turn to (ii). First we show that if p is a Lipschitz function on [1, r] then, by
logarithmic periodicity, it is a Lipschitz function on [a, b] for any 0 < a < b <∞.
Clearly, it is enough to show this for [a, b] = [1, r2]. Let L be the Lipschitz constant
on [1, r]. Then for x, y ∈ [r, r2] we have

|p(x)− p(y)| = |p(x/r)− p(y/r)| ¬ L

r
|x− y|,

while for x ∈ [r, r2] and y ∈ [1, r],

|p(x)− p(y)| ¬ |p(x)− p(r)|+ |p(r)− p(y)| ¬ L

r
|x− r|+L|r− y| ¬ L|x− y|,

proving the claim.
From (2.4) we see that condition (2.1) holds for λ large, so we only have to

check it as λ ↓ 1. Let λ ∈ (1, r). If the Lipschitz constant of p on [1, r2] is L, then
for x ∈ [1, r] we have p(λx) ¬ p(x) + Lx(λ− 1), thus

sup
x∈[1,r]

p(λx)

p(x)
¬ 1 + L(λ− 1) sup

x∈[1,r]

x

p(x)
¬ λc−ρ
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for some c > 0. The proof of the lower bound is similar. For the converse, assume
contrary to our claim that p is not Lipschitz. Then there are sequences λn ↓ 1 and
xn → x ∈ [1, r] such that

|p(λnxn)− p(xn)| ­ nxn(λn − 1),

so (2.1) cannot hold. Finally, (iii) is obvious. �

The following lemma from [27] states that for continuous p the conditions (1.1)
and (1.3) are equivalent.

LEMMA 2.1. Assume that f ∈ RL(p, r, ρ) is monotone and p ∈ Pr is contin-
uous. Then

f(x) ∼ xρ`(x)p(x) as x→∞.

However, the next example shows that if p is not continuous then (1.1) and (1.3)
are different even for nondecreasing continuous functions.

EXAMPLE 2.2. Consider the function

f(x) =

{
2n, 2n + 1 ¬ x ¬ 2n+1 − 1, n ­ 1,

2n−1
[
1 + h

(
x−2n+1

2

)]
, 2n − 1 ¬ x ¬ 2n + 1, n ­ 1,

where h : [0, 1] → [0, 1] is a continuous increasing function such that h(0) = 0
and h(1) = 1. For any z ∈ (1, 2),

lim
n→∞

f(z2n)

z2n
= z−1 = 2−{log2 z},

with {·} standing for fractional part. That is, (1.1) holds with ρ = 1, ` ≡ 1, r = 2,
p(z) = 2−{log2 z}. For z = 1, i.e. for z 6∈ Cp,

lim
n→∞

f(2n)

2n
=

1

2
(1 + h(1/2)) 6= p(1).

Moreover, changing h to h1 and h2 for n even and odd, respectively, it is easy
to construct continuous, nondecreasing examples where the limit in (1.1) does not
even exist for z 6∈ Cp.

2.2. Tauberian theorem for the Laplace transform. Recall (1.5) and (1.6). There
is a natural correspondence between Pr,ρ and Qr,ρ.

LEMMA 2.2. For p ∈ Pr,ρ with ρ > 0, define the operator Ar,ρ = Aρ as

(2.5) Aρp(s) = sρ
∫

[0,∞)

e−sx d(p(x)xρ).

Then Aρ : Pr,ρ → Qr,ρ is one-to-one.
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Proof. It is clear from the definition that Aρp ∈ Qr,ρ.
Conversely, let q ∈ Qr,ρ. Since s−ρq(s) is completely monotone, there is a

nondecreasing right-continuous function g : [0,∞) → [0,∞) with g(0) = 0 such
that

(2.6) s−ρq(s) =
∫

[0,∞)

e−sx dg(x).

To prove that p(x) := x−ρg(x) ∈ Pr,ρ we only have to show the logarithmic
periodicity of p. Substituting s→ rs in (2.6) and using q(rs) = q(s) we obtain∫

[0,∞)

e−sx dg(x) =
∫

[0,∞)

e−sx d[rρg(x/r)].

Uniqueness of the Laplace–Stieltjes transform implies g(x)= rρg(x/r) for x∈Cg,
so p(x) = p(x/r) for x ∈ Cp. If two right-continuous functions agree at all but
countably many points, then they agree everywhere. �

In the following, ` stands for a slowly varying function, either at infinity or
at zero. The set of slowly varying functions at infinity [zero] is denoted by SV∞
[SV0]. Recall the definition Û(s) =

∫
[0,∞)

e−sx dU(x) from (1.4).

THEOREM 2.1. Let U : [0,∞) → [0,∞) be a nondecreasing right-continuous
function, ρ ­ 0, r > 1, and let ` ∈ SV∞. Then the conditions

(2.7) lim
n→∞

U(rnz)

(rnz)ρ`(rnz)
= p(z) for each z ∈ Cp, for some p ∈ Pr,

and

(2.8) Û(s) ∼ s−ρ`(1/s)q(s) as s ↓ 0, for some q ∈ Pr,

are equivalent. In each case, necessarily p ∈ Pr,ρ, q ∈ Qr,ρ, and Aρp = q for
ρ > 0, and p = q for ρ = 0.

Moreover, if p is continuous, then (2.7) implies

(2.9) U(x) ∼ xρ`(x)p(x) as x→∞.

REMARK 2.1. (i) For ρ = 0 the result follows from [8, Theorem 1.7.1].
(ii) The equivalence of U(rnz) = o(rn`(rn)) and Û(s) = o(s−ρ`(1/s)) also

follows from [8, Theorem 1.7.1].
(iii) For continuous p the ratio Tauberian theorem [8, Theorem 2.10.1] (see

also Korenblyum [28], Feller [17], Stadtmüller and Trautner [36]) states that (2.8)
and (2.9) are equivalent. Indeed, by Propositions 2.1 and 2.2 the function U is
always O-regularly varying, and p is continuous if and only if U∗(λ) is contin-
uous at 1. Moreover, the Laplace–Stieltjes transform of xρp(x) is s−ρq(s). The-
orem 2.10.1(iii) in [8] states that the continuity of U∗ at 1 is also necessary in
general for the equivalence of (2.8) and (2.9).
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Proof of Theorem 2.1. In view of Remark 2.1(i), we may assume that ρ > 0.
The proof follows the standard idea of Tauberian theorems (see [8, Theorem 1.7.1])
combined with Lemma 2.1.

First we show the implication (2.7)⇒(2.8). The monotonicity of U and (2.7)
readily imply that p ∈ Pr,ρ. From Proposition 2.1,

(2.10) lim sup
x→∞

U(x)

xρ`(x)
<∞.

Using Potter’s bounds we obtain, for x large enough,

Û(x−1) =
∫

[0,∞)

e−y/x dU(y) ¬ U(x) +
∞∑
n=1

e−2
n−1

U(2nx)

¬ 2Kxρ`(x)
[
1 +

∞∑
n=1

e−2
n−1

2n(ρ+1)
]
,

for some constant K > 0. Therefore Û(x−1)/(xρ`(x)) is bounded. Introduce the
notation

Ux(y) =
U(xy)

xρ`(x)
.

Using logarithmic periodicity, for any z > 0 we have

lim
n→∞

Urnz(y) = yρp(zy) =: Vz(y) for all y such that zy ∈ Cp.

It is easy to see that

Ûx(s) =
Û(s/x)

xρ`(x)
.

Since Urnz(y) converges, the continuity and uniqueness theorem for Laplace–
Stieltjes transforms implies that

lim
n→∞

Û(s/(rnz))

(rnz)ρ`(rnz)
= V̂z(s)

for all s > 0, as V̂z , being a Laplace–Stieltjes transform, is continuous. Choosing
s = 1, after a short calculation we have

lim
n→∞

Û(1/(rnz))

(rnz)ρ`(rnz)
= q(1/z)

with q = Aρp. With the notation f(x) = Û(1/x) we obtain

lim
n→∞

f(rnz)

(rnz)ρ`(rnz)
= q(1/z)
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for each z > 0, since q is continuous. Lemma 2.1 implies f(x) ∼ xρ`(x)q(1/x)
as x→∞, which is the same as Û(s) ∼ s−ρ`(1/s)q(s) as s ↓ 0, as stated.

Next we show the implication (2.8)⇒(2.7). Note that (2.8) implies

Ûx(s) =
Û(s/x)

xρ`(x)
∼ s−ρq(s/x) as x→∞.

Since q ∈ Pr we have, for any z > 0,

(2.11) lim
n→∞

Ûrnz(s) = s−ρq(s/z).

Therefore, the continuity theorem gives

lim
n→∞

Urnz(y) = uz(y), y ∈ Cuz ,

for some nondecreasing function uz . Therefore ûz(s) = s−ρq(s/z), which im-
plies q ∈ Qr,ρ. A short calculation shows that the right-hand side of (2.11) is the
Laplace–Stieltjes transform of uz(y) := yρp(zy). Note that 1 ∈ Cuz whenever
z ∈ Cp, and thus (2.7) holds.

The last statement follows from Lemma 2.1. �

The same proof gives an analogous result in the case x ↓ 0, s → ∞ (see [8,
Theorem 1.7.1′]).

2.3. Karamata and monotone density theorems. Let Pmr,ρ denote the set of func-
tions in Pr,ρ which are m times differentiable on (0,∞) (we do not assume con-
tinuity of the mth derivative). For r > 1 and ρ > 0 introduce the operator
Br,ρ = Bρ : Pr → P1

r,ρ by setting

(2.12) Bρp(x) = x−ρ
x∫
0

yρ−1p(y) dy.

A short calculation using logarithmic periodicity shows that
rm∫
0

sρ−1p(s) ds =
rmρ

rρ − 1

r∫
1

sρ−1p(s) ds,

and thus

(2.13) Bρp(x) = r−ρ{logr x}
[

1

rρ − 1

r∫
1

sρ−1p(s) ds+
r{logr x}∫

1

sρ−1p(s) ds

]
,

where {x} = x − bxc stands for the fractional part of x. It is easy to see that
Bρp ∈ P1

r,ρ. Moreover, it is one-to-one with inverse

(2.14) B−1ρ q(x) = x1−ρ
d

dx
[xρq(x)], q ∈ P1

r,ρ.

The following statement is a Karamata-type theorem for regularly log-periodic
functions (see [8, Theorem 1.5.11]).
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THEOREM 2.2. Assume that for some ρ > 0,

(2.15) lim
n→∞

u(rnz)

(rnz)ρ−1`(rnz)
= p0(z) for each z ∈ Cp0 , for some p0 ∈ Pr,

u is locally integrable, and

(2.16) lim sup
x→∞

u(x)

xρ−1`(x)
<∞.

Then, with p = Bρp0,

(2.17) U(x) =
x∫
0

u(y) dy ∼ xρ`(x)p(x) as x→∞.

REMARK 2.2. (i) For continuous p0 the condition u(x) ∼ xρ−1`(x)p0(x) as
x→∞ implies (2.17) (see [11, Lemma 3] and [9, Theorem 6.6]; compare them to
formula (2.13), noting that our ρ and their ρ are different.)

(ii) It is again straightforward to extend this result to the case when the limit in
(2.15) is zero.

Proof of Theorem 2.2. From (2.16) we readily find as in [8, Proposition 1.5.8]
that

(2.18) lim sup
x→∞

U(x)

xρ`(x)
<∞.

A short calculation gives, for any 0 < ε < 1,

U(rnz)− U(rnzε)

(rnz)ρ`(rnz)
=

1∫
ε

u(rnzt)

(rnzt)ρ−1`(rnzt)
tρ−1

`(rnzt)

`(rnz)
dt.

Whenever zt ∈ Cp the integrand converges to p0(zt)tρ−1. Since the set of discon-
tinuity points of a right-continuous function is at most countable, and an integrable
majorant exists by (2.16) and by an application of Potter’s bounds, we see that

lim
n→∞

U(rnz)− U(rnzε)

(rnz)ρ`(rnz)
=

1∫
ε

tρ−1p0(zt) dt.

Finally, (2.18) implies

lim sup
ε↓0

lim sup
n→∞

U(rnzε)

(rnz)ρ`(rnz)
= 0.

Combining the last two limit relations we obtain

lim
n→∞

U(rnz)

(rnz)ρ`(rnz)
=

1∫
0

tρ−1p0(zt) dt

= z−ρ
z∫
0

sρ−1p0(s) ds = Bρp0(z).

(2.19)

Since Bρp0 is continuous, the statement follows from Lemma 2.1. �
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The statement remains true for ρ = 0 in the following version. For similar re-
sults for the more general class of regularly log-bounded functions see [11, Conjec-
ture 1] and [9, Proposition 6.7]. Just as condition (2.16) in Theorem 2.2, condition
(2.21) below is not very restrictive, and necessary in general.

LEMMA 2.3. Assume that for some p0 ∈ Pr,

(2.20) lim
n→∞

rnz u(rnz)

`(rnz)
= p0(z) for each z ∈ Cp0 ,

u is locally integrable, and

(2.21) 0 < lim inf
x→∞

xu(x)

`(x)
¬ lim sup

x→∞

xu(x)

`(x)
<∞.

Then U(x) =
∫ x
0
u(y) dy is slowly varying, and limx→∞ U(x)/`(x) =∞.

Proof. The proof is similar to the proof of [8, Proposition 1.5.9a]. Put

lim inf
x→∞

xu(x)

`(x)
=: k > 0.

Then

lim inf
x→∞

U(x)

`(x)
­ k

2
lim inf
x→∞

1

`(x)

x∫
εx

`(y)

y
dy =

k

2
log ε−1.

As ε ↓ 0 we get limx→∞ U(x)/`(x) = ∞. Put ε(x) = xu(x)/U(x). We have
shown that limx→∞ ε(x) = 0. Noticing

d

dx
logU(x) =

U ′(x)

U(x)
=
ε(x)

x
,

we see that the representation theorem for slowly varying functions [8, Theorem
1.3.1] implies the statement. �

The converse part of Karamata’s theorem for regularly log-periodic functions
was proved in [11] (see also [9, Theorem 6.8]). Here we deal with monotone den-
sity results, which can also be seen as a converse of Theorem 2.2.

THEOREM 2.3. Assume that U(x) =
∫ x
0
u(y) dy, u is ultimately monotone,

and (2.7) holds with ρ ­ 0. If ρ > 0, then p = Bρp0 for some p0 ∈ Pr. For ρ = 0
let p0(x) ≡ 0. In both cases

lim
n→∞

u(rnz)

(rnz)ρ−1`(rnz)
= p0(z) for each z ∈ Cp0 .

Moreover, if p0 is continuous, then

u(x) ∼ xρ−1`(x)p0(x) as x→∞.
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REMARK 2.3. (i) We see from the statement that if (2.7) holds, and U has an
ultimately monotone density, then p in (2.7) is necessarily differentiable.

(ii) For ρ = 0 the statement follows from the ‘usual’ monotone density theorem
[8, Theorem 1.7.2], since p ∈ Pr is necessarily constant. Theorem 1.7.2 in [8] also
implies that the result remains true when the limit p in (2.7) is zero.

Proof of Theorem 2.3. By (2.7),

U(bx)− U(ax)

xρ`(x)
=

b∫
a

u(sx)

xρ−1`(x)
ds

is bounded as x → ∞. Since u is ultimately monotone, this readily implies that
the integrand is bounded too as x → ∞, which allows us to use Helly’s selection
theorem. Fix z > 0, and consider the sequence rnz. By the selection theorem,
there is a subsequence nk and a monotone limit function vz such that

(2.22) lim
k→∞

u(rnkzs)

(rnkz)ρ−1`(rnkz)
= vz(s) for each s ∈ Cvz .

On the other hand, U(xy)/(xρ`(x)) converges on the sequence rnz, and thus for
the limit function vz ,

(2.23)
b∫
a

vz(s) ds = bρp(bz)− aρp(az)

for 0 < a < b < ∞ such that az, bz ∈ Cp. This clearly determines the limit
function at its continuity points, and so the convergence in (2.22) holds along the
whole sequence n. The latter implies that vz(rs) = rρ−1vz(s). From (2.23) we
find that p ∈ P1

r,ρ. Let p0 = B−1ρ p. By (2.14),

vz(s) =
d

ds
(sρp(sz)) = sρ−1p0(sz).

If z ∈ Cp0 , then s = 1 is a continuity point of vz in (2.22), and the first statement
follows. The second follows from Lemma 2.1. �

The following statements are versions of the previous results, which we need
later. Since the proofs are the same, we omit them.

First we deal with the case when ρ < 0. As before, let P1
r,ρ denote the set of

functions inPr,ρ which are differentiable on (0,∞). For r > 1 and ρ < 0 introduce
the operator Br,ρ = Bρ : Pr → P1

r,ρ by setting

(2.24) Bρp(x) = x−ρ
∞∫
x

yρ−1p(y) dy.

As before Bρp ∈ P1
r,ρ, and Bρ is one-to-one with inverse

(2.25) B−1ρ q(x) = −x1−ρ d

dx
[xρq(x)], q ∈ P1

r,ρ.
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PROPOSITION 2.3. Let U(x) =
∫∞
x
u(y) dy, where u is locally integrable,

r > 1, and ρ < 0. If lim supx→∞
u(x)

xρ−1`(x)
<∞ then the condition

(2.26) lim
n→∞

u(rnz)

(rnz)ρ−1`(rnz)
= p0(z) for each z ∈ Cp0 , for some p0 ∈ Pr,

implies

(2.27) lim
n→∞

U(rnz)

(rnz)ρ`(rnz)
= p(z) for each z ∈ Cp, for some p ∈ Pr.

Conversely, if u is ultimately nonincreasing then the reverse implication also holds,
i.e. (2.27) implies (2.26). Moreover, p = Bρp0, in particular p ∈ Pr,ρ is continu-
ous, and thus

U(x) ∼ xρ`(x)p(x) as x→∞.

For ρ = 0 assume further that
∫∞
0
u(y) dy <∞. Then limx→∞ U(x)/`(x) =∞,

and U ∈ SV∞.

For continuous p see [11, Lemma 3], [9, Theorem 6.8].
The corresponding result at 0 is the following.

PROPOSITION 2.4. Let U(x) =
∫ x
0
u(y) dy, where u is ultimately monotone

and locally integrable, r > 1, ρ > 0, and ` ∈ SV0. Then

lim
n→∞

u(r−nz)

(r−nz)ρ−1`(r−nz)
= p0(z) for each z ∈ Cp0 , for some p0 ∈ Pr,

if and only if

lim
n→∞

U(r−nz)

(r−nz)ρ`(r−nz)
= p(z) for each z ∈ Cp, for some p ∈ Pr.

Moreover, p = Bρp0, in particular p is continuous, and thus

U(x) ∼ xρ`(x)p(x) as x ↓ 0.

3. APPLICATIONS

3.1. Tails of nonnegative random variables. Tail behavior of random variables is an
important topic in probability theory, as the tail determines the asymptotic behav-
ior of sums of iid and, under appropriate dependence conditions, non-iid random
variables. When dealing with iid sums, the Laplace transform is a considerably
simpler object than the distribution function. Moreover, for nonnegative random
variables, the Laplace transform determines the distribution, in particular it also
includes information about tail behavior.
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In this subsection we prove that the tail of a nonnegative random variable is
regularly log-periodic if and only if the same holds for its Laplace transform at 0.
The corresponding result for regularly varying tails was proved by Bingham and
Doney [7, Theorem A] (see also [8, Theorem 8.1.8]).

Let X be a nonnegative random variable with distribution function F . If the
moment condition EXm <∞ holds then the Laplace transform

(3.1) F̂ (s) =
∫

[0,∞)

e−sx dF (x)

can be expanded in a Taylor series up to the term sm as

F̂ (s) =
m∑
k=0

µk
(−s)k

k!
+ o(sm) as s ↓ 0,

where µk = EXk. In order to compare the tail behavior of X with the behavior
of F̂ (s) as s ↓ 0, we define the remainder fm of the Taylor expansion, and its
derivative gm for m ­ 0 as

fm(s) = (−1)m+1

[
F̂ (s)−

m∑
k=0

µk
(−s)k

k!

]
,

gm(s) =
dm

dsm
fm(s) = µm − (−1)mF̂ (m)(s).

(3.2)

For m = 0 we simply have f0(s) = g0(s) = 1− F̂ (s).

THEOREM 3.1. Let ` ∈ SV∞, m ∈ {0, 1, . . .}, α = m + β, β ∈ [0, 1], and
q̃m, qm, p ∈ Pr. The following are equivalent:

(3.3) fm(s) ∼ sα`(1/s)q̃m(s) as s ↓ 0;
(3.4) gm(s) ∼ sβ`(1/s)qm(s) as s ↓ 0;

(3.5)



lim
n→∞

`(rnz)−1
∫

(rnz,∞)

ym dF (y) = p(z), z ∈ Cp, β = 0,

lim
n→∞

(rnz)α

`(rnz)
F (rnz) = p(z), z ∈ Cp, β ∈ (0, 1),

lim
n→∞

`(rnz)−1
∫

[0,rnz]

ym+1 dF (y) = p(z), z ∈ Cp, β = 1.

If β > 0, then (3.3)–(3.5) are further equivalent to

(3.6) (−1)m+1F̂ (m+1)(s) ∼ sβ−1`(1/s)qm+1(s) as s ↓ 0,

and qm+1 = B−1β qm.
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Moreover, the relations between the functions involved are the following:

qm = B−1α−(m−1)B
−1
α−(m−2) . . .B

−1
α q̃m, β ∈ [0, 1], q0 = q̃0,

p0,m = B−11−βA
−1
1−βqm, β ∈ (0, 1),

p = p0,m −mB−m−βp0,m, p0,m = p+mB−βp, β ∈ (0, 1).

If β ∈ {0, 1}, then necessarily p(x) ≡ p > 0, qm(s) ≡ qm > 0, and p = qm.

Since p(x) is constant for β ∈ {0, 1}, by Lemma 2.1 the correspond-
ing conditions in (3.5) are further equivalent to

∫
(x,∞)

ym dF (y) ∼ p`(x) and∫
[0,x]

ym+1 dF (y) ∼ p`(x) as x→∞, respectively.

Proof of Theorem 3.1. We follow the proof of [8, Theorem 8.1.8].
First we show that (3.3)⇔(3.4)⇔(3.6). The equivalence of (3.3) and (3.4) fol-

lows from iterated application of Proposition 2.4. (Note that the derivatives of fm
are monotone.) We find that qm = B−1α−(m−1)B

−1
α−(m−2) . . .B

−1
α q̃m. Furthermore,

for β > 0 both (3.3) and (3.4) are equivalent to (3.6), and qm+1 = B−1β qm.
The more difficult part is the equivalence (3.4)⇔(3.5). Put

Um(x) =
x∫
0

∫
(t,∞)

ym dF (y) dt,

and note that by Fubini’s theorem,

Ûm(s) =
∞∫
0

e−sx dUm(x) =
∞∫
0

∫
(x,∞)

e−sxym dF (y) dx

=
1

s

∫
[0,∞)

ym(1− e−sy) dF (y) = gm(s)

s
.

Therefore (3.4) is equivalent to

(3.7) Ûm(s) ∼ sβ−1`(1/s)qm(s) as s ↓ 0.

For β ∈ [0, 1], by Theorem 2.1 with ρ = 1− β, (3.7) is further equivalent to

(3.8) lim
n→∞

Um(r
nz)

(rnz)1−β`(rnz)
= pm(z), z ∈ Cpm ,

where pm = A−11−βqm for β 6= 1, and pm = qm for β = 1.
First assume β ∈ (0, 1). By Theorems 2.2 and 2.3 with ρ = 1− β, (3.8) holds

if and only if

(3.9) lim
n→∞

um(r
nz)

(rnz)−β`(rnz)
= p0,m(z), z ∈ Cp0,m ,



174 P. Kevei

where um(x) =
∫
(x,∞)

ym dF (y) and B1−βp0,m = pm. Note that for m = 0 this
is exactly (3.5). Partial integration gives

(3.10) um(x) = xmF (x) +m
∞∫
x

ym−1F (y) dy.

Assume (3.5). Then applying Proposition 2.3 with ρ = −β for the function
ym−1F (y) in the second term on the right-hand side of (3.10), we obtain

lim
n→∞

(rnz)α−m

`(rnz)

∞∫
rnz

ym−1F (y) dy = B−βp(z), z ∈ CB−βp.

Thus (3.9) holds true with p0,m = p+mB−βp, so (3.4) follows.
Conversely, assume (3.4), which is equivalent to (3.9). Using Fubini’s theorem

we have

xm
∞∫
x

y−m−1um(y) dy =
∞∫
x

ym−1F (y) dy,

and therefore, by (3.10),

(3.11) xmF (x) = um(x)−mxm
∞∫
x

y−m−1um(y) dy.

Now, Proposition 2.3 with ρ = −m− β shows that (3.9) implies

(3.12) lim
n→∞

∫∞
rnz

y−m−1um(y) dy

(rnz)−m−β`(rnz)
= B−m−βp0,m(z).

Thus, if (3.9) holds, then by (3.11),

lim
n→∞

(rnz)m+β

`(rnz)
F (rnz) = p0,m(z)−mB−m−βp0,m(z), z ∈ Cp0,m ,

which is exactly (3.5).
For β = 0 conditions (3.8) and (3.9) are still equivalent. If (3.9) holds, then the

monotonicity of u forces that p0,m is constant, and (3.5) follows with p = p0,m.
The converse is obvious.

For β = 1 note that (−1)m+1F̂ (m+1)(s) is the Laplace–Stieltjes transform of∫
[0,x]

ym+1 dF (y). Therefore, by Theorem 2.1, (3.5) and (3.6) are equivalent, and
qm+1 = p. �

We spell out this result in the most important special case, when m = 0. In this
case f0(s) = g0(s) = 1− F̂ (s).
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COROLLARY 3.1. Let ` ∈ SV∞, α ∈ [0, 1], and q0, p ∈ Pr. The following are
equivalent:

(3.13) 1− F̂ (s) ∼ sα`(1/s)q0(s) as s ↓ 0;

(3.14)


lim
n→∞

(rnz)α

`(rnz)
F (rnz) = p(z), z ∈ Cp, α ∈ [0, 1),

lim
n→∞

`(rnz)−1
∫

[0,rnz]

y dF (y) = p(z), z ∈ Cp, α = 1.

If α > 0, then (3.13) and (3.14) are further equivalent to

(3.15) −F̂ ′(s) ∼ sα−1`(1/s)q1(s) as s ↓ 0,

and q1 = B−1α q0.
Moreover, p = B−11−αA

−1
1−αq0 if α ∈ (0, 1). If α ∈ {0, 1}, then necessarily

p(x) ≡ p > 0, q0(s) ≡ q0 > 0, and p = q0.

EXAMPLE 3.1 (Generalized St. Petersburg games). The random variable X
has the generalized St. Petersburg distribution with parameter α ∈ (0, 1] (and
p = q = 1/2) if P{X = 2n/α} = 2−n, n = 1, 2, . . . . The tail of the distribution
function is

F (x) = P{X > x} = 2{α log2 x}

xα
, x ­ 21/α,

where {x} stands for the fractional part of x. For generalized St. Petersburg games
we refer to Csörgő [14], Berkes, Györfi, and Kevei [3], and the references therein.

With the notation of Corollary 3.1, for α < 1 we have r = 21/α, p(z) ≡
2{α log2 z}, and `(x) ≡ 1, while if α = 1 then r = 2, p(z) ≡ 1, and `(x) = log2 x.
In this special case of the Laplace transform

F̂ (s) =
∞∑
n=1

e−2
n/αs2−n

explicit computation shows that

1− F̂ (s) ∼ sα
∞∑

m=−∞

(
1− exp

[
−2

m−{−α log2 s}
α

])
2−m+{−α log2 s} =: sαq0(s)

as s ↓ 0 whenever α < 1, and 1 − F̂ (s) ∼ s log2 s
−1 as s ↓ 0 for α = 1. This

is exactly the statement of Corollary 3.1. A somewhat lengthy but straightforward
calculation shows that q0 = A1−αB1−αp for α < 1.

3.2. Fixed points of smoothing transforms. Let T = (Ti)i∈N be a sequence of
nonnegative random variables; it can be finite or infinite, dependent or independent.
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A random variable X , or its distribution, is the fixed point of the homogeneous
smoothing transform corresponding to T if

(3.16) X
D
=
∑
i­1

XiTi,

where on the right-hand sideX1, X2, . . . are iid copies ofX , and they are indepen-
dent of T .

The theory of smoothing transforms goes back to Mandelbrot [31]. Existence
and behavior of the solution of equations of type (3.16) was investigated by Dur-
rett and Liggett [16], Guivarc’h [22], Liu [30], Biggins and Kyprianou [5], and
Alsmeyer, Biggins, and Meiners [1], to mention but a few. For applications and
references we refer to Section 5.2 in the monograph [12] by Buraczewski, Damek,
and Mikosch.

Most of the results on the tail behavior of the solution provide conditions which
imply exact power-law tail. We are aware of very few exceptions. Theorem 2.2
in [30] states that in the arithmetic case, under appropriate conditions there is an
α > 0 such that

0 < lim inf
x→∞

xαP{X > x} ¬ lim sup
x→∞

xαP{X > x} <∞.

Guivarc’h [22, p. 268] noted without proof that in the arithmetic case under appro-
priate conditions on the tail of X , the solution of (3.16) behaves like p(x)x−α for
some p ∈ Pr,α.

To prove tail asymptotics for the solutions of general stochastic fixed point
equations, implicit renewal theory is a powerful technique. The idea goes back to
Grincevičius [20] who determined the tail behavior of the solution of the perpetuity
equation (1.2). The method was extended and developed further by Goldie [19] to
determine the tail of more general stochastic fixed point equations. For the non-
homogeneous smoothing transform the method was worked out by Jelenković and
Olvera-Cravioto [26] both in the arithmetic and in the nonarithmetic case. Implicit
renewal theory typically works in situations where the properties of the solution
are determined by the second root of the equation and m(θ) = 1, where m(θ) is
a convex function related to the fixed point equation. (For the perpetuity equation
(1.2) and m(θ) = EAθ, for the smoothing transform see below.) In the following
example in the setup of [1], the behavior of the solution is governed by the root α
of the equation m(θ) = 1 for which m′(α) < 0 (see conditions (iii) and (iv)), so
implicit renewal theory does not work.

In order to state the main result in [1] we need some further definitions and
assumptions. Let N =

∑
i I(Ti > 0) denote the number of positive terms on

the right-hand side of (3.16), and assume without loss of generality that N =
sup{i ­ 1 : I(Ti) > 0}, where I(A) stands for the indicator of the set A. Put
m(θ) = E

∑N
i=1 T

θ
i . Assume that
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(i) P{T ∈ {0, 1}N} < 1;
(ii) EN > 1;

(iii) there exists α ∈ (0, 1] such that 1 = m(α) < m(β) for β ∈ [0, α);
(iv) either there is a θ ∈ [0, α) such that m(θ) <∞, or

E
∑
i­1

Tαi log Ti ∈ (−∞, 0) and E
(∑
i­1

Tαi

)
log+

∑
i­1

Tαi <∞;

(v) there exists a nonnegative random variable W , not identically 0, such that

W
D
=
∑
i­1

Tαi Wi,

where W1,W2, . . . are iid copies of W that are independent of T , and T has
the same distribution as in (3.16);

(vi) the positive elements of T are concentrated on rZ for some r > 1, and r is the
smallest such number.

Under the above assumptions, in [1, Corollary 2.3] it was showed that the Laplace
transform ϕ of the solution of the fixed point equation (3.16) has the form

(3.17) ϕ(t) = ψ(h(t)tα), t ­ 0,

where α ∈ (0, 1], h is a logarithmically r-periodic function such that h(t)tα is a
Bernstein function, i.e. its derivative is completely monotone, and ψ is the Laplace
transform of the random variableW in (v) such that (1−ψ(t))t−1 is slowly varying
at 0.

The tail behavior of the solutions was not discussed in [1]. Theorem 3.1, in
particular Corollary 3.1, allows us to determine it. Namely, (3.17) and the slow
variation of (1− ψ(t))t−1 imply

1− ϕ(t) = 1− ψ(h(t)tα)
h(t)tα

h(t)tα =: `

(
1

h(t)tα

)
h(t)tα = ˜̀(1/t)h(t)tα

for some function ` slowly varying at infinity. Note that ` ∈ SV∞ implies ˜̀(x) =
`(xαh(x)) ∈ SV∞. We can apply Corollary 3.1. Noting that `(xαh(x)) ∼ `(xα)
as x→∞, we obtain the following.

COROLLARY 3.2. Assume (i)–(vi). If α < 1, then for the solution of (3.16) we
have

lim
n→∞

(rnz)α

`(rαn)
P{X > rnz} = p(z), z ∈ Cp,

where p = B−11−αA
−1
1−αh. If α = 1, then h(t) ≡ h is necessarily a constant, and for

the truncated first moment we have

E(XI(X ¬ x)) ∼ h `(x) as x→∞.
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3.3. Semistable laws. Logarithmically periodic functions and regularly log-peri-
odic functions naturally arise in the analysis of semistable distributions. The class
of semistable laws, introduced by Paul Lévy, is an important subclass of infinitely
divisible laws. This class includes the stable laws and those infinitely divisible dis-
tributions which have no normal component and whose Lévy measure µ in the
Lévy–Khinchin representation satisfies

µ((x,∞)) = x−αp+(x), µ((−∞,−x)) = x−αp−(x), x > 0,

where α ∈ (0, 2), r > 1, and p+, p− ∈ Pr,−α ∪ {0} (here 0 is the identically zero
function), with p+, p− not both identically 0. For properties, characterization, ap-
plications and some history of semistable laws we refer to the monograph by Meer-
schaert and Scheffler [32], to the papers by Megyesi [33] and by Huillet, Porzio,
and Ben Alaya [24], and to the references therein. For a more recent account of
semistability see Chaudhuri and Pipiras [13]. We note that in the characterization
of the domain of geometric partial attraction regularly log-periodic functions play
an important role: see Grinevich and Khokhlov [21], and Megyesi [33].

Although there has been much interest in semistable laws in the last 50 years,
the tail behavior was determined completely only in 2012 by Watanabe and Ya-
mamuro [38]; for partial results for nonnegative semistable distributions see [24,
p. 357] for p continuous, and Shimura and Watanabe [34, Theorem 1.3] for gen-
eral p. We re-prove some of the results in [38], emphasizing that more precise and
more general results were shown there. In particular, we restrict ourselves to non-
negative semistable laws, since the technique developed in this paper works only
for one-sided laws.

The Laplace transform of a nonnegative semistable random variable W has the
form

(3.18) Ee−sW = exp
{
−as−

∫
(0,∞)

(1− e−sy)µ(dy)
}
,

where a ­ 0, and µ is a Lévy measure such that µ(x) = p(x)x−α with p ∈ Pr,−α,
α ∈ (0, 1), and µ(x) = µ((x,∞)) for x > 0. Integration by parts gives∫

(0,∞)

(1− e−sy)µ(dy) =
∞∫
0

e−sysµ(y) dy = sÛ(s),

where

U(x) =
x∫
0

µ(y) dy = x1−αB1−αp(x).

From Theorem 2.1 we have Û(s) ∼ sα−1q(s) as s ↓ 0 with q = A1−αB1−αp.
Thus, (3.18) gives

1−Ee−sW ∼ as+
∫

(0,∞)

(1− e−sy)µ(dy) ∼ sαq(s) as s ↓ 0.
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Corollary 3.1 implies limn→∞(rnz)αP{W > rnz} = p(z) for each z ∈ Cp, or,
which is the same,

(3.19) lim
n→∞

rnαP{W > rnz} = µ(z) for each z ∈ Cp.

This is stated in [38, Theorem 1]. However, the limit above is determined there
for any z > 0. The proof in [38] exploits the fact that the distribution of W is
infinitely divisible and relies on the heavy machinery regarding the ratio of the
tail of the distribution function and the tail of the Lévy measure. Our method only
uses the asymptotic behavior of the Laplace transform at zero, which is basically
the same for any distribution from the domain of geometric partial attraction of
the semistable law W . As described in Example 2.2, it is possible to change the
distribution function in such a way that the limit in (3.19) does not change for
z ∈ Cp, but does not even exist for z 6∈ Cp. Therefore, based only on Tauberian
theorems, the limit in (3.19) for z 6∈ Cp cannot be determined.

3.4. Supercritical Galton–Watson processes. Consider a Galton–Watson process
(Zn)n∈N, Z0 = 1, with offspring generating function f(s) = EsZ1 , and offspring
mean µ = EZ1 ∈ (1,∞). Let q ∈ [0, 1) denote the extinction probability, i.e. the
smallest root of f(s) = s in [0, 1]. Denote by fn the n-fold iterate of f , which
is the generating function of Zn. For a general theory of branching processes see
Athreya and Ney [2].

Further assume EZ1 logZ1 <∞, which ensures that

(3.20) Zn/µ
n →W as n→∞ a.s.,

with EW = 1. The Laplace transform of W , ϕ(t) = Ee−tW , t ­ 0, satisfies the
Poincaré functional equation

(3.21) ϕ(µt) = f(ϕ(t)).

The latter equation always has a unique solution (up to scaling), which is the
Laplace transform of a distribution. However, the law of W can be determined
explicitly only in very few special cases. Therefore, it is important to obtain asymp-
totic behavior of the tail probabilities. Assume that we are in the Schröder case, that
is, γ = f ′(q) > 0. Put ρ = − log γ/logµ. Harris [23, Theorem 3.3] proved that

(3.22) ϕ(s)− q ∼ K(s)/sρ as s→∞,

where K is a logarithmically periodic function with period µ. Note that the limit
distribution in (3.20) puts mass q at 0, therefore lims→∞ ϕ(s) = q. From a version
of Theorem 2.1 with n → −∞ in (2.7) and s → ∞ in (2.8), it follows for the
distribution function

G(x) = P{W ¬ x} = P{W = 0}+P{0 < W ¬ x} = q +P{0 < W ¬ x}
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that

(3.23) lim
n→∞

[G(r−nz)− q](r−nz)−ρ = p(z)

with p = A−1ρ K, where K comes from (3.22).
Much more is known about the tail probabilities P{0 < W ¬ x} as x ↓ 0. The

distribution of the limiting random variable W is absolutely continuous on (0,∞)
[2, Theorem I.10.4, Corollary I.12.1], and the density function g is continuous (see
Dubuc [15]). Therefore, (3.23) can be written as

(3.24) lim
n→∞

∫ r−nz
0

g(y) dy

(r−nz)ρ
= p(z),

which suggests by Proposition 2.4 that

(3.25) g(x) ∼ xρ−1p0(x) as x ↓ 0,

where p0 = B−1ρ p. Note that this argument is not a proof, as the monotonicity of g
is missing, which is a crucial condition in Proposition 2.4. Based on the functional
equation (3.21), Biggins and Bingham [4, Theorem 4] proved that (3.25) is indeed
correct, where p0 is a continuous, positive, logarithmically periodic function with
period µ. For further results on tail asymptotics ofW we refer to Bingham [6], Big-
gins and Bingham [4], and to the more recent papers by Fleischmann and Wachtel
[18] and by Wachtel, Denisov, and Korshunov [37].

Acknowledgments. I am grateful to the anonymous referees for their remarks and
suggestions which improved the paper.
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