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Abstract. Lin’s condition is used to establish the moment determi-
nacy/indeterminacy of absolutely continuous probability distributions. Re-
cently, a number of papers related to Lin’s condition for functions of random
variables have appeared. In the present paper, this condition is studied for
products of random variables with given densities in the case when their
joint distribution is singular. It is proved, assuming that the densities of both
random variables satisfy Lin’s condition, that the density of their product
may or may not satisfy this condition.
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1. INTRODUCTION

Lin’s condition plays a significant role in the investigation of the moment deter-
minacy of absolutely continuous probability distributions. Generally speaking, it
is used along with Krein’s logarithmic integral to establish the so-called ‘converse
criteria’. See, for example, [4, Section 5, Theorems 5–10] and [7, Section 2]. This
condition was introduced and applied by G. D. Lin [3], while the name ‘Lin’s con-
dition’ was put forth in [10]. Let us recall the pertinent notions.

DEFINITION 1.1. Let f be a probability density continuously differentiable on
(0,+∞). The function

(1.1) Lf (x) := −xf
′(x)

f(x)

is called Lin’s function of f .

Formula (1.1) implies that Lin’s function of f is defined only at the points where
f does not vanish. In this article, we consider the probability densities of positive
random variables whose Lin’s functions are defined for all x > 0.
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DEFINITION 1.2. Let f ∈ C1(0,+∞) be a probability density of a positive
random variable. We say that f satisfies Lin’s condition on (x0,+∞) if Lf (x) is
increasing on (x0,+∞) and limx→+∞ Lf (x) = +∞.

In [7], it was shown that if a density f satisfies Lin’s condition, then f be-
longs to the Karamata class of rapidly varying functions of index−∞. In addition,
some generalizations of Lin’s results for such densities were obtained in connec-
tion with the ‘converse’ conditions for the moment determinacy of probability dis-
tributions. Due to the importance of this condition for establishing the moment
(in)determinacy of absolutely continuous probability distributions (see [4], [8] and
references therein), it is of interest how various operations on random variables
affect Lin’s condition. Recently, Kopanov and Stoyanov in [2] proved that if a den-
sity f of a positive random variable X fulfills Lin’s condition, then the densities of
Xr, r > 0, and of lnX have this property, too. In addition, if Lf (x)/x→ +∞ as
x→ +∞, then the density of eX also satisfies Lin’s condition.

The moment problem for products of random variables naturally leads to con-
sidering Lin’s condition for the densities of products. In [2], it was asked whether
Lin’s condition is inherited by the products of random variables whose densities
satisfy Lin’s condition. It was conjectured that the answer is affirmative in the case
of an absolutely continuous joint distribution. While this statement holds for inde-
pendent random variables, the results of [1] show that it may not be true in general.
For more information on the moment problem for products we refer to [4, Sec-
tion 6] and [5], [6], [9].

In the present paper, this problem is investigated for the case when the joint
distribution of factors ξ1 and ξ2 is singular rather than absolutely continuous. More
precisely, the following question is examined: assuming that the densities of both
ξ1 and ξ2 satisfy Lin’s condition, their joint distribution is singular, and Lin’s func-
tion of the product ξ1 · ξ2 exists, can it be claimed that the density of ξ1 · ξ2 satisfies
Lin’s condition? Although it is so for some natural examples, this work reveals that
even for the simplest case when f1 = f2 = f satisfies Lin’s condition, Lin’s func-
tion of the product may exhibit a rather ‘hectic’ behaviour. This is demonstrated in
the next statement, which is the main result of this paper.

THEOREM 1.1. Let f1 and f2 be densities of positive random variables, both
having Lin’s functions on (0,+∞). Then there exists a random vector (ξ1, ξ2) with
a singular distribution P and satisfying the conditions below:

(1) ξ1 and ξ2 have densities f1 and f2, respectively;

(2) the density g of the product ξ1 · ξ2 is continuously differentiable on (0,+∞);

(3) the following equalities hold:

(1.2) lim sup
x→+∞

Lg(x) = +∞, lim inf
x→+∞

Lg(x) = −∞.
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REMARK 1.1. Clearly, equalities (1.2) imply that g does not fulfill Lin’s con-
dition on any interval (x0,+∞), so assuming that the densities of ξ1 and ξ2 satisfy
Lin’s condition on (0,+∞), we deduce that, in general, this property is not inher-
ited by their product ξ1 · ξ2 when the joint distribution of ξ1 and ξ2 is singular.

2. PROOF OF THE MAIN THEOREM

We start with the construction of a singular distribution with given marginal posi-
tive densities, which will be used in what follows.

LEMMA 2.1. Let f1 and f2 be continuous probability densities positive on
(0,+∞) and vanishing elsewhere. Then there exists a singular distribution P̃ con-
centrated on a curve x2 = ϕ(x1) such that the projections of P̃ on the coordinate
axes have the given densities f1(x1) and f2(x2). Here, ϕ is a continuously differ-
entiable strictly increasing function.

Proof. Let F1 and F2 be the distribution functions with densities f1 and f2,
respectively. By the assumptions of the lemma, both F1 and F2 are continuously
differentiable and strictly increasing, hence so are their quantile functions. Using
the quantile Q2 = F−12 , define

(2.1) ϕ(x) := Q2(F1(x)), x > 0.

Now, for a random variable ξ1 with distribution function F1, set ξ2 = ϕ(ξ1). Then
ξ2 has density f2 because

Fξ2(x) = P{ϕ(ξ1) 6 x} = P{F1(ξ1) 6 F2(x)} = F2(x), x > 0,

due to the fact that F1(ξ1) is uniformly distributed on (0, 1).
Next, consider the random vector (ξ1, ξ2). Obviously, it has a singular distribu-

tion, say P̃ , concentrated on the curve

(2.2) K := {(x1, x2) : x2 = ϕ(x1)},

while its coordinates have the prescribed densities. It can be derived from (2.1) that

ϕ′(x1) =
f1(x1)

f2(ϕ(x1))

for all x1. Therefore, x2 = ϕ(x1) is a solution to the initial value problem

(2.3)
dx2
dx1

=
f1(x1)

f2(x2)
, x2(0) = 0.

Since ϕ′(x1) > 0 for all x1 ∈ (0,+∞), it follows that ϕ is strictly increasing. �
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EXAMPLE 2.1. If f1 = f2, that is, ξ1 and ξ2 are identically distributed, then
K is the straight line x2 = x1.

LEMMA 2.2. Let (ξ1, ξ2) be a random vector with distribution P̃ constructed
above. Then the density g(z, P̃ ) of the product ξ1 · ξ2 is given by

(2.4) g(z, P̃ ) = f1(x1(z))
x1(z)

z + ϕ′(x1(z))x21(z)
,

where x1(z) is a unique solution of the equation x1(z)ϕ(x1(z)) = z.

Proof. For every z > 0, we denote by Γz the set of hyperbolae in the first
quadrant

Γz := {(x1, x2) : x1 > 0, x2 > 0, x1x2 = z}.
Given z > 0, denote K ∩ Γz = {(x1(z), x2(z))}. Obviously, x1(z) and x2(z) are
continuous strictly increasing functions on (0,+∞). The curve K has the follow-
ing parametric representation in terms of z:

−→x (z) = (x1(z), x2(z)) = (x1(z), ϕ(x1(z))).

To find the distribution function G(z; P̃ ) of the product ξ1 · ξ2, write

G(z; P̃ ) = P
(
ξ1 · ξ2 6 z

)
= P

(
ξ1 6 x1(z)

)
= Fξ1(x1(z)),

whence

(2.5) g(z; P̃ ) = f1(x1(z)) · x′1(z).

It has to be pointed out that x1(z) is a continuously differentiable function of z,
which can be rigorously proved with the help of the Mean Value Theorem. As
the proof is rather straightforward, it is omitted. Meanwhile, the differentiation of
x1(z) · ϕ(x1(z)) = z leads to

x′1(z) =
ϕ(x1(z))

zϕ′(x1(z)) + ϕ2(x1(z))
.

Notice that the denominator on the right-hand side is strictly positive. Furthermore,
with the help of (2.3) it can be shown that ϕ′′ exists as well. Substituting the last
expression for x′1(z) into (2.5), one derives (2.4). �

EXAMPLE 2.2. If f1 = f2 = f , then K = {(x1, x2) : x1 = x2}, x1(z) =√
z, and (2.4) implies that

g(z, P̃ ) =
f(
√
z)

2
√
z
,

whence
Lg(z) = 1

2 + 1
2Lf (

√
z),

demonstrating that g fulfills Lin’s condition whenever f1 does.



On Lin’s condition 101

Finally, we present the proof of our main result.

Proof of Theorem 1.1. To construct a singular probability distribution P in R2

satisfying the conditions of Theorem 1.1, first consider its construction inside a
single rectangle Π = [a, b]× [ϕ(a), ϕ(b)]. Denote byQ the restriction of the distri-
bution P̃ constructed in Lemma 2.1 to Π. Select a small δ > 0. Precise conditions
on δ will be specified later.

Clearly, one has a = x1(s) and b = x1(t) for some s < t. Choose b ′ =
x1(t − 3δ) < b close to b and consider a non-negative function τ ∈ C∞(0,+∞)
satisfying

τ(z) =

{
0 when z /∈ [t− 3δ, t],

ε sin2(νz) when z ∈ [t− 2δ, t− δ].
(2.6)

The behaviour of τ outside [t − 3δ, t] \ [t − 2δ, t − δ], as long as this function is
non-negative and infinitely differentiable on (0,+∞), is of no importance for this
proof. Here, ε and ν are positive real numbers subject to certain restrictions, which
will be explained below.

Figure 1

Recalling (2.2), consider the arc

l
(1)
δ = {(x1, x2) ∈ K : b′ 6 x1 6 b} = {−→x (z) : t− 3δ 6 z 6 t}
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and consider the measure µ1 on this arc whose (linear) density with respect to z
equals τ(z). To be specific, µ1 is a measure concentrated on l(1)δ and defined in
such a way that

µ1({−→x (z) : z1 6 z 6 z2}) =
z2∫
z1

τ(z) dz whenever t− 3δ 6 z1 < z2 6 t.

Therefore, µ1 is singular with respect to the Lebesgue measure in R2. In addition,
its spectrum S(µ1) is l(1)δ (recall that the spectrum S(λ) of a measure λ is defined
by S(λ) := {v ∈ R2 : ∀δ > 0, λ(Bδ(v)) > 0}, where Bδ(v) is the open disc
of radius δ centered at v ∈ R2). Select ε in (2.6) so that Q − µ1 is a (positive)
measure in Π. Next, shift the mass on l(1)δ with density τ(z) by d = ϕ(b ′)− ϕ(a)

units down vertically so that the shifted arc l(2)δ = l
(1)
δ − (0, d) has starting point

(b ′, ϕ(a)) and terminal point (b, ϕ(b) − d). Denote the resulting measure by µ2.
To be more exact, for each Borel set B ⊂ R2, one has

µ2(B) = µ1(B + (0, d))

where B + (0, d) = {(x1, x2 + d) : (x1, x2) ∈ B}. The arc l(1)δ has to be so small
that ϕ(b) − ϕ(b ′) < ϕ(b ′) − ϕ(a) (this is ensured by the smallness of δ). The
shifting defines a singular measure q1 in the rectangle Π by

q1(B) = (Q− µ1)(B) + µ2(B).

The construction of q1 implies that the projections of Q and q1 on the x1-axis are
the same. However, to guarantee equal projections on both coordinate axes, the
procedure has to be continued. Consider the measure µ2 concentrated on l(2)δ and
find a ′ > a from the condition ϕ(a ′) = ϕ(a) + (ϕ(b) − ϕ(b ′)). When δ is small
enough, we have a ′ < b ′. Let µ3 be the measure concentrated on the arc

l
(3)
δ = {(x1, x2) : x2 = ϕ(x1), a 6 x1 6 a ′}

and having the same projection on the x2-axis as µ2. More precisely, µ3 is con-
structed in the following manner. Let Lc,d := {(x1, x2) : x1 ∈ R, c < x2 < d}
be a horizontal strip in R2. For any c, d such that ϕ(a) 6 c < d 6 ϕ(a ′), where
ϕ(a) and ϕ(a ′) are the x2-coordinates of the endpoints of l(3)δ , set

µ3(Lc,d ∩ l
(3)
δ ) = µ2(Lc,d ∩ l

(2)
δ ).

Naturally, µ3(B) = 0 whenever B ∩ l(3)δ = ∅. The measure µ3 is well-defined
since the function ϕ is strictly increasing. Notice that when ε > 0 is small enough,
Q− µ3 is a measure on l(3)δ . Finally, shift vertically the mass defined by µ3 on l(3)δ
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as a whole by d units upwards, that is, define a measure µ4(B) = µ3(B − (0, d))

concentrated on the arc l(4)δ = l
(3)
δ + (0, d). As a result, we obtain a measure Q̃ on

Π = [a, b]× [ϕ(a), ϕ(b)] given by

Q̃ := Q− µ1 + µ2 − µ3 + µ4.

Here, δ and ε are assumed to be sufficiently small to fulfill all the conditions men-
tioned above and to guarantee the positivity of Q̃. The process of constructing Q̃
is illustrated in Figure 1. Evidently, S(Q̃) = (Π ∩ K) ∪ l(2)δ ∪ l

(4)
δ , whence Q̃

is a singular measure in R2, while the configuration of S(Q̃) implies that there
is no functional relation between ξ1 and ξ2. In addition, the projections of Q̃
on the coordinate axes coincide with the distributions of ξ1 and ξ2 on [a, b] and
[ϕ(a), ϕ(b)], respectively; that is, they have the given densities f1 and f2 on [a, b]
and [ϕ(a), ϕ(b)]. As before, denote by g(z, Q̃) the density of ξ1·ξ2 in the case when
the joint distribution of ξ1 and ξ2 coincides with Q̃ in Π. If δ > 0 is so small that
the arcs l(2)δ and l(4)δ do not intersect Γz , then g(z, Q̃) = g(z, P̃ ), where g(z, P̃ )
is given by (2.4). It remains to show that when ν is large enough, the z-derivative
of g(z, Q̃) can take arbitrarily large values, both positive and negative. To see this,
first notice that for z ∈ [t− 2δ, t− δ], by Lemma 2.2,

(2.7) g(z, Q̃) = (f1(x1(z))− ε sin2(νz))
x1(z)

z + ϕ′(x1(z))x21(z)
.

Now, consider Lin’s function for the density (2.7):

Lg(z) = −z g
′(z, Q̃)

g(z, Q̃)
.

For z ∈ [t − 2δ, t − δ], the ratio z/g(z, Q̃) is bounded, while the behaviour of
g′(z, Q̃) is governed by (ε sin2(νz))′ = νε sin(2νz), which oscillates rapidly tak-
ing positive and negative values arbitrarily large in magnitude on [t − 2δ, t − δ]
when ν is sufficiently large.

Finally, in order to find the joint distribution of ξ1 and ξ2, consider an infi-
nite sequence {Πn} of a disjoint rectangles, Πn = [an, bn] × [ϕ(an), ϕ(bn)] with
an → +∞. Denote by Qn, n ∈ N, the restriction of the measure P to Πn. For
each Πn, construct Q̃n as described above, making at every step the derivatives
p′(z∗n) and p′(z∗∗n ) as large in magnitude as necessary but with opposite signs. To
complete the picture, set

P = P̃ −
∞∑
n=1

Qn +
∞∑
n=1

Q̃n.

It is clear that the measure P satisfies all conditions stated in Theorem 1.1. �
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