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Abstract. We show that for local alternatives which are not square inte-
grable the intermediate (or Kallenberg) efficiency of the Neyman–Pearson
test for uniformity with respect to the classical Kolmogorov–Smirnov test is
infinite. By contrast, for square integrable local alternatives the intermediate
efficiency is finite and can be explicitly calculated.
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1. INTRODUCTION AND TESTING PROBLEM

We consider the classical problem of testing for uniformity. We compare the
Neyman–Pearson (NP) test with the classical Kolmogorov–Smirnov (KS) test for
uniformity for a class of local unbounded alternatives in terms of asymptotic rel-
ative efficiency (ARE). By ARE we mean Kallenberg’s intermediate efficiency
which is a limit of the ratio of sample sizes which guarantee the same precision
for both tests (the same significance level tending to 0 less than exponentially fast
and the same asymptotically nondegenerate power).

Our main issue is that for alternatives which are not square integrable the ef-
ficiency of the NP test with respect to the KS test cannot be finite. In particular,
we apply the simplest variant of the intermediate efficiency notion recently elabo-
rated in Inglot et al. [8] and called pathwise intermediate efficiency. We show that
this efficiency for the NP test with respect to the KS test for a class of alternatives
approaching the null distribution, which are not square integrable, is equal to ∞
(Theorem 1).

Recall that the notion of intermediate efficiency was introduced originally by
Kallenberg [9]. Then it was developed and applied to some testing problems and

© Probability and Mathematical Statistics, 2020



332 T. Inglot

several tests in a series of papers in the last two decades e.g. Inglot [3], Inglot
and Ledwina [5], [6], [7], Mason and Eubank [10], Mirakhmedov [11] or recently
Inglot et al. [8] and Ćmiel et al. [1]. For more detailed discussions and up-to-date
remarks and comments we refer the reader to Inglot et al. [8]. Note that, by the
definition, this efficiency notion involves asymmetric requirements for the tests
being compared.

Among other results, Inglot and Ledwina [7] found the intermediate efficiency
of the KS test with respect to the NP test for sequences of bounded alternatives
approaching the null distribution. In the present paper, as a byproduct, we extend
that result to unbounded square integrable alternatives in the reverse formulation,
i.e. taking the KS test as a benchmark procedure and comparing the NP test with it.

Since we consider both a simple testing problem and very regular statistics, and
to make the paper self-contained, we do not refer to general results and technical
tools elaborated in Inglot et al. [8]. Instead, we present all auxiliary results and all
proofs directly.

Let X1, . . . , Xn be independent random variables with values in [0, 1] and the
same distribution P with continuous distribution function. We denote by P0 the
uniform distribution over the interval [0, 1]. We test the simple null hypothesis

H0 : P = P0

against
H1 : P 6= P0.

To compare the tests we consider local alternatives with densities (with respect to
P0) of the form

(1.1) pθn(t) = 1− θn + θnf(t), t ∈ (0, 1),

where θn ∈ (0, 1), θn → 0 as n → ∞ and f is a fixed alternative density. We
denote by Pθn the distribution with density pθn(t). Moreover, Pn0 , P

n
θn

will denote
the n-fold products of P0 and Pθn , respectively.

For each n consider the standardized NP test statistic

(1.2) Vn =
1√
nσ0n

n∑
i=1

(log pθn(Xi)− e0n)

for testing H0 against the simple hypothesis H1n : P = Pθn . Here

e0n =
1∫
0

log pθn(t) dt, σ20n =
1∫
0

log2 pθn(t) dt− e20n

are the first two moments of log pθn(X1) under P0, which are finite due to the
integrability of f . Additionally denote by

en =
1∫
0

pθn(t) log pθn(t) dt, σ2n =
1∫
0

pθn(t) log2 pθn(t) dt− e2n
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the corresponding moments under Pθn , which we assume to be finite. For example,
this is the case if f ∈ Lq[0, 1] for some q > 1.

Now, set

(1.3) bn =
√
n (en − e0n)/σ0n.

The sequence bn will play the role of an asymptotic shift of Vn under Pθn .
For each n and any fixed x ∈ R set

(1.4) αn = αn(x) = Pn0 (Vn ­ x+ bn),

the significance level of the NP test corresponding to the critical value x+bn. Since
Vn is bounded in probability under P0, we have αn → 0 whenever bn →∞.

Let
Kn =

√
n sup
t∈(0,1)

|F̂n(t)− t|,

where F̂n(t) is the empirical distribution function of X1, . . . , Xn, be the classical
unweighted KS test statistic. For each n and every N ­ n let uN,n be the exact
critical value of the KS test at the level αn defined by (1.4) and for the sample
size N , i.e.

PN0 (KN ­ uN,n) = αn.

For each n let Nn be the minimal sample size such that for all k ­ 0,

(1.5) PNn+k
θn

(KNn+k ­ uNn+k,n) ­ Pnθn(Vn ­ x+ bn),

i.e. the minimal sample size beginning from which the power of the KS test un-
der Pθn and at level αn is no smaller than that for the NP test at the same level and
for the sample size n. Obviously, Nn ­ n. The limit of the ratio Nn/n, if it exists,
is called the intermediate efficiency of the NP test with respect to the KS test pro-
vided the asymptotic power of Vn is nondegenerate (cf. Inglot et al. [8]). We study
the asymptotic behaviour of the ratio Nn/n for two cases, when f is heavy tailed
or square integrable, and show that they lead to qualitatively different answers.

The paper is organized as follows. In Section 2 we consider local alternatives
which are not square integrable, while in Section 3 we consider square integrable
ones. In Section 4 we present outcomes of a simulation study nicely illustrating
our theoretical results. All proofs are deferred to Sections 5–8.

We shall use the following notation: for sequences xn, yn of positive numbers,
xn � yn means that for some positive constants c1, c2 one has c1 ¬ xn/yn ¬ c2
for all n, while xn ∼ yn means that xn/yn → 1 as n→∞.

2. HEAVY-TAILED CASE

For any η, C0 > 0 and ζ ∈ R define a decreasing function H(y) =
C0

∫∞
y
u−1−η logζ u du, y ∈ [2,∞), and set h(t) = H−1(t), t ∈ (0, H(2)].
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Assume that a density f in (1.1) satisfies the following condition: for some
η ∈ (1, 2), C0 > 0 and ζ ∈ R there exist 0 < δ < min{1, H(2)} and posi-
tive constants C1 ¬ C2 such that

(2.1) C1h(t) ¬ f(t) ¬ C2h(t) for t ∈ (0, δ], f(t) ¬ C2 for t ∈ [δ, 1].

We may always assume that C2 > 1 and C1h(δ) > 2 (by taking smaller δ if
necessary). This implies f(t) > 2 on (0, δ]. Observe that f ’s satisfying (2.1) are
not square integrable. We call such densities heavy-tailed.

REMARK 1. The assumption (2.1) obviously covers the case h(t) = t−r,
r ∈ (1/2, 1). Then η = 1/r and ζ = 0. Another important example is the Gaussian
scale model. Suppose the null distribution Q0 is the standard normal distribution
and the alternative Q is the mean zero normal distribution with variance σ2 > 2.
For a contamination model Qn = (1 − θn)Q0 + θnQ, after the transformation on
the unit interval by the standard normal distribution function Φ, we get (1.1) with

f(t) =
1

σ
exp

{
σ2 − 1

2σ2
(Φ−1(t))2

}
, t ∈ (0, 1).

Then f1(t) = 2f(t)1(0,1/2](t), where 1E(t) denotes the indicator of the set E, sat-
isfies (2.1) with C0 =

√
σ2/4π(σ2 − 1), η = σ2/(σ2 − 1), ζ = −1/2, C1 = 2/σ

and any C2 > 1. By the symmetry of f(t) with respect to 1/2 the statement of
Theorem 1 below holds for f1(t) as well as for f(t) itself (cf. Remark 3 below).

First we describe the asymptotic behaviour of bn, defined in (1.3). To this end
set κ2n = θηn logζ(1/θn).

PROPOSITION 1. If f satisfies (2.1) then

(2.2) bn �
√
nκn.

Proposition 1 follows immediately from Lemma 3 proved in Section 6. The
next proposition is a simple consequence of (2.2) and is proved in Section 6.

PROPOSITION 2. Let pθn(t) be a sequence of densities given by (1.1) with f
satisfying (2.1) and θn → 0 such that nκ2n →∞. Then for every x ∈ R,

(2.3) 0 < lim inf
n→∞

Pnθn(Vn ­ x+ bn) ¬ lim sup
n→∞

Pnθn(Vn ­ x+ bn) < 1.

THEOREM 1. Let pθn(t) be a sequence of densities given by (1.1) with f sat-
isfying (2.1) and θn → 0 such that nθηn logζ(1/θn)→∞. Then for any x ∈ R and
the significance levels defined by (1.4) we have, for Nn defined by (1.5),

(2.4) lim
n→∞

Nn

n
=∞.

The proof of Theorem 1 is given in Section 5.
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REMARK 2. In terms of intermediate efficiency (as defined in Inglot et al. [8])
Theorem 1 says that for f satisfying (2.1) this efficiency of the NP test with re-
spect to the KS test is equal to∞. The efficiency notion requires a nondegenerate
asymptotic power of a test being compared, here the NP test (with respect to a
benchmark procedure, here the KS test). It is essential in the proof of Theorem 1
and is ensured by our Proposition 2. In the proof of Theorem 1 we directly show
that the intermediate slope of the KS test is equal to 2nθ2n‖A‖2∞ without intro-
ducing such terminology and without referring to regularity conditions (I.1) and
(I.2) in Inglot et al. [8]. For the NP test the regularity condition (II.2) (ibid.) can
be deduced from the proofs of Proposition 2 and Lemma 4. Moreover, it is enough
to show a weaker property than the regularity condition (II.1) (ibid.) saying that
an expression which may be considered as the intermediate slope of the NP test is
at least of order nκ2n. Anyway, here we prove (2.4) in the simplest possible way.
Obviously, the statement (2.4) remains true for any test for uniformity which has
positive and finite intermediate efficiency with respect to the KS test and can be
chosen as a benchmark procedure. For some further comments see Section 2 in
Inglot et al. [8].

REMARK 3. The assumption that f is unbounded at the left end of (0, 1) is not
essential. Obviously, our result is valid for f unbounded at the right end of (0, 1)
or at both ends (not necessarily symmetrically) or at some interior point of (0, 1),
provided a condition analogous to (2.1) is satisfied.

REMARK 4. In Ćmiel et al. [1] the intermediate efficiency of some weighted
goodness of fit tests has been investigated. In particular, from the results of that pa-
per it follows that, in contrast to the statement of Theorem 1, for f ∈ Lq[0, 1],
q > 1, the intermediate efficiency of the integral Anderson–Darling test with
respect to the KS test is finite, with an explicit formula for calculating it. Also,
for f ∈ Lq[0, 1], q > 2, the intermediate efficiencies of the classical Anderson–
Darling (weighted supremum) test and its truncated version with respect to the KS
test exist, with explicit formulae (cf. Remark 4, ibid.).

3. SQUARE INTEGRABLE CASE

Suppose that f in (1.1) belongs to L2[0, 1]. Set

a(t) =
1

c
(f(t)− 1),

where c2 =
∫ 1

0
(f(t) − 1)2 dt. Then by rescaling θn we may rewrite (1.1) in the

equivalent form
pθn(t) = 1 + θna(t), t ∈ (0, 1).

In the present setting the asymptotic behaviour of bn (cf. (1.3)), stated below, is
an immediate corollary of Lemma 5 proved in Section 8.
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PROPOSITION 3. If f ∈ L2[0, 1] then

(3.1) bn ∼
√
n θn and σ0n ∼ θn.

The following result plays the same role as Proposition 2 in the heavy-tailed
case.

PROPOSITION 4. Let pθn(t) be a sequence of densities given by (1.1) with
f ∈ L2[0, 1] and θn → 0 such that nθ2n →∞. Then for every x ∈ R,

(3.2) 0 < lim inf
n→∞

Pnθn(Vn ­ x+ bn) ¬ lim sup
n→∞

Pnθn(Vn ­ x+ bn) < 1.

The proof of Proposition 4 is given in Section 8. Now, we state our second main
result. Its proof is provided in Section 7.

THEOREM 2. Let pθn(t) be a sequence of densities given by (1.1) with f ∈
L2[0, 1] and θn → 0 such that nθ2n → ∞. Then for any x ∈ R and for the
significance levels defined by (1.4) we have, for Nn defined by (1.5),

(3.3) lim
n→∞

Nn

n
=

1

4‖A‖2∞
= E(a),

where

A(t) =
t∫
0

a(u) du

and ‖ · ‖∞ denotes the supremum norm on [0, 1].

REMARK 5. Theorem 2 says that the intermediate efficiency (as defined in In-
glot et al. [8]) of the NP test with respect to the KS test for convergent square
integrable sequences of alternatives exists and equals 1/(4‖A‖2∞). Thus it extends
Corollary 6.2 of Inglot and Ledwina [7] to the case of unbounded square integrable
alternatives. Note that Corollary 6.2 was stated equivalently in terms of the inter-
mediate efficiency of the KS test with respect to the NP test. Note also that in the
proof of Theorem 2 we find that the intermediate slopes of the tests being com-
pared are equal to 2nθ2n‖A‖2∞ and nθ2n/2, respectively, under the assumptions of
this theorem, without introducing that terminology.

EXAMPLE. For r ∈ (0, 1/2) let fr(t) = (1 − r)t−r, t ∈ (0, 1), and conse-
quently ar(t) = (

√
1− 2r/r)((1− r)t−r − 1). Then

(3.4) E(ar) =
(1− r)2−2/r

4(1− 2r)
.

Observe that E(ar) → ∞ as r → 1/2, which nicely agrees with the statement of
Theorem 1.
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4. SIMULATION RESULTS

Below, we present results of a small simulation study showing how (2.4) and (3.3)
are reflected empirically for a particular density

fr(t) = (1− r)t−r, t ∈ (0, 1).

We take the significance level α = 0.05, select some small values of θn = θ and
keep powers separated from 0 and 1. We take heavy-tailed alternatives by choosing
two values of r greater than 1/2 and square integrable alternatives represented by
two values of r smaller than 1/2. In the last two cases the formula (3.4) can be
applied. The results are shown in Tables 1–4.

Table 1. Empirical powers (in %) of the NP and KS tests for the alternative fr ,
small values of θ and several n, with α = 0.05, r = 0.7

n θ = 0.1 n θ = 0.05 n θ = 0.02
KS NP KS NP KS NP

7 4 20 11 4 15 39 4 15
16 5 30 20 4 20 70 5 20
28 6 40 42 5 30 155 5 30
41 7 50 70 6 40 250 5 40
60 9 60 105 7 50 3350 15 99
80 11 70 150 7 60 4900 20 100

195 20 92 540 15 94 7700 30 100
300 30 98 750 20 98 10100 40 100
410 40 100 1200 30 100
520 50 100 1600 40 100
640 60 100 2080 50 100
780 70 100 2500 60 100

Table 2. Empirical powers (in %) of the NP and KS tests for the alternative fr ,
small values of θ and several n, with α = 0.05, r = 0.6

n θ = 0.1 n θ = 0.05 n θ = 0.02
KS NP KS NP KS NP

16 5 20 27 5 15 110 4 15
35 6 30 48 5 20 205 5 20
60 7 40 105 6 30 460 6 30
92 9 50 180 7 40 5400 15 95

127 10 60 260 8 50 7800 20 99
175 13 70 370 9 60 12000 30 100
300 20 86 800 15 85
480 30 96 1200 20 94
640 40 99 1940 30 99
840 50 100 2600 40 100
1040 60 100 3300 50 100
1280 70 100 4100 60 100
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Table 3. Empirical powers (in %) of the NP and KS tests for the alternative fr ,
small values of θ and several n, with α = 0.05, r = 0.4, E(a0.4) = 5.787

n θ = 0.2 n θ = 0.1 n θ = 0.05
KS NP KS NP KS NP

15 5 15 54 5 15 205 6 15
28 6 20 100 6 20 380 6 20
62 9 30 220 8 30 810 8 30

100 11 40 360 11 40 2400 15 59
148 14 50 510 13 50 3450 20 72
153 15 51 600 15 55 5600 30 88
200 18 60 700 16 60
225 20 64 880 20 68
270 24 70 1430 30 84
350 30 79 1950 40 93
490 40 90 2500 50 97
640 50 95 3160 60 99
790 60 97
970 70 99

Table 4. Empirical powers (in %) of the NP and KS tests for the alternative fr ,
small values of θ and several n, with α = 0.05, r = 0.3, E(a0.3) = 3.302

n θ = 0.2 n θ = 0.1 n θ = 0.05
KS NP KS NP KS NP

40 6 15 160 5 15 640 6 15
75 7 20 290 7 20 1200 7 20

165 10 30 610 10 30 2300 10 30
255 13 40 950 13 40 4800 15 47
300 15 44 1200 15 47 6800 20 59
360 17 50 1340 17 50 11100 30 77
435 20 56 1650 20 58
480 22 60 1830 21 60
645 28 70 2800 30 76
710 30 73 3880 40 87
980 40 84 5050 50 93
1260 50 91 6350 60 97
1600 60 96
1950 70 98

Using the results from Tables 1–4 we present in Table 5 the ratiosNn/n for four
values of r, some small values of θ and several powers separated from 0 and 1. For
a better illustration of our results we present those ratios also for α = 0.01 (in bold
face).

From Table 5 it is easily seen that for r > 1/2 the ratios Nn/n behave unstably
and rapidly grow when θ tends to 0, thus confirming the statement of Theorem 1.

By contrast, for r < 1/2 the ratios behave stably and take values relatively
close to the intermediate efficiency of the NP test with respect to the KS test given
by (3.4). For smaller α the ratios become even more stable.
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Table 5. Ratios Nn/n for the alternative fr with small θ, several powers sepa-
rated from 0 and 1 and four values of r, with α = 0.05 and α = 0.01 (bold face)

r power in %
E(ar) θ 15 20 30 40 50 60 70

0.7 0.10 27.9 18.8 14.6 12.7 10.7 9.8
0.05 49.1 37.5 28.6 22.9 19.8 16.7
0.02 85.9 70.0 49.7 40.4

0.10 30.4 23.7 18.2 15.0 12.9 11.0 9.7
0.05 44.8 36.0 27.3 22.3 19.2 16.7
0.02 80.9 63.4 47.5

0.6 0.10 18.8 13.7 10.7 9.1 8.2 7.3
0.05 29.6 25.0 18.5 14.4 12.7 11.1
0.02 49.1 38.0 26.1

0.10 17.9 14.5 11.2 9.7 8.6 7.8 7.0
0.05 24.4 19.9 15.5 13.4 11.6 10.5
0.02 34.7 29.4 23.1

0.4 0.20 10.2 8.0 5.6 4.9 4.3 4.0 3.6
5.787 0.10 11.1 8.8 6.5 5.4 4.9 4.5

0.05 11.7 9.1 6.9

0.20 5.8 5.0 4.4 4.0 3.8 3.6 3.4
0.10 6.2 5.8 5.0 4.6 4.3 4.0 3.8
0.05 6.6 6.3 5.5

0.3 0.20 7.5 5.8 4.3 3.8 3.5 3.3 3.0
3.302 0.10 7.5 5.7 4.6 4.1 3.8 3.5

0.05 7.5 5.7 4.8

0.20 4.3 3.9 3.4 3.2 3.0 2.9 2.9
0.10 4.3 4.0 3.6 3.4 3.3 3.1
0.05 4.4 4.0 3.7

5. PROOF OF THEOREM 1

A key step in the proof of the theorem is a moderate deviation result both for Vn
and Kn under the null distribution. Below we state it as two separate propositions.
The first one is stated in a weak form but sufficient to prove Theorem 1.

PROPOSITION 5. If f in (1.1) satisfies (2.1) then for every sequence xn of
positive numbers such that xn = O(κn) we have

(5.1) − lim sup
n→∞

1

nx2n
logPn0 (Vn ­

√
nxn) > 0.

The proof of Proposition 5 is given in Section 6. The pertaining moderate de-
viation theorem for Knwas obtained in Inglot and Ledwina [4]. For completeness
we state it below.
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PROPOSITION 6. For every sequence xn of positive numbers such that xn → 0
and nx2n →∞,

(5.2) − lim
n→∞

1

nx2n
logPn0 (Kn ­

√
nxn) = 2.

Now, we are ready to prove the theorem. Take any x ∈ R. Proposition 2 says
that the sequence of powers of the NP test at the significance level αn defined by
(1.4) is bounded away from 0 and 1. Set xn = (x+bn)/

√
n . Then by Proposition 1,

xn � κn, and from Proposition 5 it follows that for some positive constants c, c′

and sufficiently large n,

(5.3) − logαn = − logPn0 (Vn ­ x+ bn) ­ c′nx2n ­ cnκ2n.

SetA(t) =
∫ t
0
f(u) du−t and Fn(t) = t+θnA(t). Then by the triangle inequality

and for Nn defined by (1.5) we have

PNn
θn

(KNn ­ uNn,n) = Pr(‖eNn ◦ Fn +
√
Nn θnA‖∞ ­ uNn,n)

¬ Pr(‖eNn‖∞ ­ uNn,n −
√
Nn θn‖A‖∞),

where eN (t) denotes the uniform empirical process for the sample of size N while
Pr denotes the probability on the underlying probability space. From (1.5), Propo-
sition 2 and the convergence of eNn in distribution to a Brownian bridge it follows
that for some positive C,

(5.4) uNn,n −
√
Nn θn‖A‖∞ ¬ C.

This implies uNn,n/
√
Nn → 0. Since PNn

0 (KNn ­ uNn,n) = αn and αn → 0, we
have uNn,n →∞ and Proposition 6 applied to xn = uNn,n/

√
Nn gives

(5.5) − logαn = 2u2Nn,n(1 + o(1)).

This together with (5.3) and (5.4) gives, for sufficiently large n,

cnκ2n ¬ 2u2Nn,n(1 + o(1)) ¬ 2(C +
√
Nn θn‖A‖∞)2(1 + o(1))

¬ 5C2 + 5Nnθ
2
n‖A‖2∞.

As θn/κn → 0 the above implies n/Nn → 0 and finishes the proof of (2.4). �

6. PROOFS OF PROPOSITIONS 2 AND 5

6.1. Auxiliary lemmas. For k = 0, 1 and integer m ­ 1 set

Ikm(n) =
1∫
0

[θng(t)]k logm(1 + θng(t)) dt,

Jkm(n) =
1∫
0

[1 + θng(t)]k|log(1 + θng(t))− e0n|m dt,



Intermediate efficiency 341

where g(t) = f(t) − 1 while f and θn are as in (1.1). The first lemma describes
the asymptotic behaviour of Ikm(n) and Jkm(n) as n→∞.

LEMMA 1. Suppose f satisfies (2.1). Then for any k = 0, 1 and any integer
m ­ 1 such that k +m ­ 2 we have

(6.1) Ikm(n) � κ2n.

Moreover, for any k = 0, 1 and m ­ 2 we have

(6.2) Jkm(n) � κ2n.

The proof of Lemma 1 is based on the following elementary fact.

LEMMA 2. Suppose f satisfies (2.1). Then for any k = 0, 1 and any integer
m ­ 1 such that k +m ­ 2 we have

(6.3) Ikm(n) =
δ∫
0

[θng(t)]k logm(1 + θng(t)) dt � κ2n

and for any k = 0, 1 and any integer m ­ 2 we have

(6.4) Jkm(n) =
δ∫
0

[1 + θng(t)]k|log(1 + θng(t))− e0n|mdt � κ2n.

Proof of Lemma 2. If k+m is odd then the function ψkm(y) = yk logm(1+y)
is increasing on (−1,∞) while for k + m even ψkm(y) is decreasing on (−1, 0)
and increasing on (0,∞). Hence, by the monotonicity of ψkm(y) on (0,∞), the
relation f(t) > 2 on (0, δ] and the inequality y/2 ¬ log(1+y) holding on (0, 1/2),
from (2.1) and after the substitution y = θn(C1h(t) − 1), the integral in (6.3) can
be estimated for n sufficiently large from below by

Ikm(n) ­
δ∫
0

[θn(C1h(t)− 1)]k logm(1 + θn(C1h(t)− 1)) dt

= C0C
η
1 θ

η
n

∞∫
θn(C1h(δ)−1)

yk
logm(1 + y) logζ [(θn + y)/(C1θn)]

(θn + y)1+η
dy

­ 2−1C0C
η
1κ

2
n


∞∫
1

yk−1−η logm(1 + y) dy if ζ ­ 0,

2−m
1/2∫

θn(C1h(δ)−1)
yk+m−1−η dy if ζ < 0.

Denote ln(y) = logζ [(θn+y)/(C2θn)] and ϑn = θn(2C2−1). As h(δ) ­ 2, for n
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sufficiently large the substitution y = θn(C2h(t)− 1) gives

(6.5) Ikm(n) ¬
δ∫
0

[θn(C2h(t)− 1)]k logm
(
1 + θn(C2h(t)− 1)

)
dt

= C0C
η
2 θ

η
n

∞∫
θn(C2h(δ)−1)

yk
logm(1 + y)ln(y)

(θn + y)1+η
dy

¬ C0C
η
2 θ

η
n

[∞∫
1

yk
logm(1 + y)ln(y)

y(3+η)/2(θn + y)(η−1)/2
dy +

1∫
ϑn

yk+m−1−ηln(y) dy

]
.

Since, given η and ζ, the function z(v) = v(1−η)/2 logζ(v/(C2θn)) is decreasing
on (1,∞) for n sufficiently large, the first term on the right hand side of (6.5) can
be further estimated from above by

C0C
η
2 θ

η
n logζ

(
1

C2θn

)∞∫
1

yk
logm(1 + y)

y(3+η)/2
dy.

To deal with the second term in (6.5) we estimate the factor ln(y) for sufficiently
large n by logζ(1/θn) if ζ ­ 0 and by

logζ 21[ϑn,τn](y) + logζ
(

τn
C2θn

)
1(τn,1](y)

if ζ < 0, where τn = [log(1/θn)]ζ/(k+m−η). Consequently, the second term in
(6.5) can be estimated from above by

C0C
η
2 θ

η
n

2− η

[
logζ(1/θn) + (1 + logζ 2) logζ

(
1

C2θn

)]
.

Since all terms in the above estimates are of order κ2n the relation (6.3) is proved.
Now, observe that for n sufficiently large

(6.6) − 2θn ¬ log(1− θn) ¬ e0n =
1∫
0

log pθn(t) dt ¬ θn
1∫
0

(f(t)− 1) dt = 0.

Moreover, by (6.6) and the relation f(t) > 2 on (0, δ] we have

I0m(n) ¬ Jkm(n) ¬ 2m−1(I0m(n) + I1m(n)) + 22m−1θmn .

Since m ­ 2, (6.4) follows from (6.3). �

Proof of Lemma 1. The monotonicity properties of the functions ψkm(y) de-
fined in the proof of Lemma 2 and boundedness of f(t) on [δ, 1] (cf. (2.1)) imply
that for n sufficiently large,

|Ikm(n)− Ikm(n)| ¬ θkn|log(1− θn)|m + [θnC2]
k logm(1 + θnC2) � θk+mn ,
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and due to (6.6),

|Jkm(n)− Jkm(n)| ¬ (1 + θnC2)
k(log(1 + θnC2)− e0n)m � θmn .

Since k + m ­ 2, (6.1) follows from (6.3), while (6.2) follows from (6.4) and the
assumption m ­ 2. �

LEMMA 3. If f satisfies (2.1) then

(6.7) en − e0n � κ2n and σ20n � κ2n � σ2n.

Proof. Observe that en−e0n = I11(n), σ20n = I02(n)−e20n and σ2n = J12(n)−
(en − e0n)2. Hence, (6.7) follows immediately from Lemma 1. �

LEMMA 4. For each n ­ 1 let X1, . . . , Xn be independent random variables
each with density pθn(t) and let f satisfy (2.1). If θn → 0 and nκ2n → ∞ then for
every y ∈ R,

lim
n→∞

Pnθn

(
1√
nσn

n∑
i=1

(log pθn(Xi)− en) ¬ y
)

= Φ(y).

Proof. Let Yni = log pθn(Xi)− en, i = 1, . . . , n, n ­ 1, be a triangular array
of independent mean 0 random variables. To prove Lemma 4 it is enough to check
the Lyapunov condition. We have Eθn |Yni|3 ¬ 4J13(n) + 4(en − e0n)3 � κ2n by
(6.2) and (6.7). Since σ3n � κ3n by (6.7), the Lyapunov condition holds true due to
the assumption nκ2n →∞. �

6.2. Proof of Proposition 2. Observe that

Vn =
σn
σ0n

[
1√
nσn

n∑
i=1

(log pθn(Xi)− en)

]
+ bn.

So, for x ∈ R,

Pnθn(Vn ­ x+ bn) = Pnθn

(
1√
nσn

n∑
i=1

(log pθn(Xi)− en) ­ xσ0n
σn

)
and (2.3) is an immediate consequence of Lemmas 3 and 4. �

6.3. Proof of Proposition 5. We shall apply the following version of the Bernstein
inequality (cf. Yurinskii [12]).

THEOREM A. Let ξ1, . . . , ξn, n ­ 1, be independent identically distributed
random variables with Eξ1 = 0 and Eξ21 = 1 such that for some constant M > 0,

(6.8) E|ξ1|m ¬
m!

2
Mm−2 for every m ­ 3.

Then for all x > 0,

(6.9) P

(
ξ1 + · · ·+ ξn√

n
­ x

)
¬ 2 exp

{
− x2

2(1 + xM/
√
n )

}
.
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In Theorem A set ξi = (log pθn(Xi) − e0n)/σ0n, i = 1, . . . , n, where
X1, . . . , Xn are independent uniformly distributed over [0, 1]. Then E0|ξ1|m =
J0m(n)/σm0n for all m ­ 3. For m ­ 3 from boundedness of f(t) on [δ, 1] we have

J0m(n) ¬ 2m−1
[
I0m(n) +

1∫
δ

|log(1 + θng(t)|m dt+ |e0n|m
]

(6.10)

¬ 2mI0m(n) + 4mCm2 θ
m
n .

Since
∞∫
1

logm(1 + y)

y(3+η)/2
dy ¬ 2(3+η)/2

∞∫
0

logm(1 + y)

(1 + y)(3+η)/2
dy = 2(3+η)/2

(
2

1 + η

)m+1

m!,

using the estimates of both terms in (6.5) from the proof of Lemma 2, (6.10) and
the relation σ20n � θηn logζ(1/(C2θn)) it follows that there exists a constant D =
D(δ, η, ζ, C0, C2) ­ 1 such that for all m ­ 3,

E0|ξ1|m =
J0m
σm0n
¬ Dm!

2

(
2

σ0n

)m−2
.

This implies that (6.8) holds with e.g. Mn = 2D/σ0n. Applying (6.9) to x =√
nxn we get

Pn0 (Vn ­
√
nxn) ¬ 2 exp

{
− nx2n

2(1 + xnMn)

}
.

By the assumption and Lemma 3 we have xnMn = O(κn/σ0n) = O(1) and hence
(5.1) follows. �

7. PROOF OF THEOREM 2

We shall apply the following moderate deviation result for Vn, proved in Section 8.

PROPOSITION 7. If f in (1.1) satisfies f ∈ L2[0, 1] and nθ2n → ∞, then for
any positive δ < 1/2 and every sequence xn satisfying 2δσ0n < xn < 2(1−δ)σ0n,

(7.1) − lim
n→∞

1

nx2n
logPn0 (Vn ­

√
nxn) =

1

2
.

Now, take any x ∈ R. Proposition 4 says that the sequence of powers of the
NP test at the significance level αn defined by (1.4) is bounded away from 0 and 1.
Set xn = (x + bn)/

√
n . Then, by Proposition 3, xn satisfies the assumption of

Proposition 7 for sufficiently large n. Hence

(7.2) − logαn = − logPn0 (Vn ­ x+ bn) =
nθ2n
2

(1 + o(1)).

Set Fn(t) = t+ θnA(t). Recall that here A(t), defined in Theorem 2, corresponds
to the normalized function a. Repeating the same argument as in the proof of (5.5)
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we get

(7.3) − logαn = 2u2Nn,n(1 + o(1)).

This together with (7.2) gives

nθ2n/2 = 2u2Nn,n(1 + o(1)) ¬ 2(C +
√
Nn θn‖A‖∞)2(1 + o(1)),

which means that

(7.4) lim sup
n→∞

n

Nn
¬ 4‖A‖2∞.

On the other hand, using the minimality property of Nn in (1.5) and Proposition 4,
a similar argument to the one used to get (5.4) leads to

(7.5) uNn−1,n −
√
Nn − 1 θn‖A‖∞ ­ −C

for some positive constant C. Observe that uNn−1,n/
√
Nn − 1 → 0. In-

deed, Proposition 6 applies to x′n = θn
√
n/(Nn − 1) → 0 and shows that

logPNn−1
0 (KNn−1 ­ x′n

√
Nn − 1) = −2nθ2n(1 + o(1)), which together

with (7.2) and the definition of uNn−1,n implies that, for n sufficiently large,
uNn−1,n/

√
Nn − 1 ¬ x′n, thus proving our claim. Again applying Proposition 6 to

xn = uNn−1,n/
√
Nn − 1 we obtain

− logαn = 2u2Nn−1,n(1 + o(1)),

and consequently from (7.2) and (7.5),

nθ2n/2 = 2u2Nn−1,n(1 + o(1)) ­ 2(
√
Nn − 1 θn‖A‖∞ − C)2(1 + o(1)).

Hence,
lim inf
n→∞

n

Nn
­ 4‖A‖2∞,

which together with (7.4) proves (3.3). �

8. PROOFS OF PROPOSITIONS 4 AND 7

Recall some useful simple inequalities:

log2(1 + y) ¬ y, y ­ 0,(8.1)

log3(1 + y) ¬ min
{
3
2y, y

2
}
, y ­ 0,(8.2)

and for any 0 < ε < 1/2,

(1− ε)y2 ¬ y log(1 + y) ¬ (1 + ε)y2, y ∈ [−ε, ε],(8.3)

(1− ε)y2 ¬ log2(1 + y) ¬ (1 + 2ε)y2, y ∈ [−ε, ε].(8.4)

LEMMA 5. If f ∈ L2[0, 1] then en− e0n = θ2n(1 + o(1)), σ20n = θ2n(1 + o(1))
and σ2n = θ2n(1 + o(1)).
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Proof. Taking ε =
√
θn in (8.3) and remembering that a(t) ­ −1 a.s. we have,

for sufficiently large n,

en−e0n =
∫

a<1/
√
θn

θna(t) log(1+θna(t)) dt+
∫

a­1/
√
θn

θna(t) log(1+θna(t)) dt

¬ (1+
√
θn)θ2n

∫
a<1/

√
θn

a2(t) dt+θ2n
∫

a­1/
√
θn

a2(t) dt = θ2n(1+o(1))

and
en − e0n ­

∫
a<1/

√
θn

θna(t) log(1 + θna(t)) dt = θ2n(1 + o(1)),

which proves the first statement.
From (8.4) with ε =

√
θn and a similar argument we get

(8.5)
1∫
0

log2(1 + θna(t)) dt = θ2n(1 + o(1)).

Moreover, the obvious inequality y − y2 ¬ log(1 + y), y ∈ [−1/2, 1/2], implies

(8.6) 0 ­ e0n ­ −θn
∫

a­1/
√
θn

a(t) dt− θ2n = o(θn).

In fact, one may show that e0n = −(θ2n/2)(1 + o(1)). Combining (8.5) and (8.6)
we get the second statement.

To prove the third one, note first that en = (en−e0n)+e0n = o(θn). Moreover,
since a(t) ­ −1 a.s., from (8.1) we get

−θn log2(1− θn) ¬
1∫
0

θna(t) log2(1 + θna(t)) dt

¬ θ2n
∫

a­1/
√
θn

a2(t) dt+
∫

0<a<1/
√
θn

θna(t) log2(1 + θna(t)) dt

¬ θ2n
∫

a­1/
√
θn

a2(t) dt+ θ5/2n = o(θ2n).

From (8.5) and the above,

σ2n =
1∫
0

log2(1+θna(t)) dt+
1∫
0

θna(t) log2(1+θna(t)) dt−e2n = θ2n(1+o(1)). �

LEMMA 6. For each n ­ 1 let X1, . . . , Xn be independent random vari-
ables with density pθn(t) given by (1.1) with f ∈ L2[0, 1] and θn → 0 such that
nθ2n →∞. Then for every y ∈ R,

lim
n→∞

Pnθn

(
1√
nσn

n∑
i=1

(
log(1 + θna(Xi))− en

)
¬ y
)

= Φ(y).

Proof. Denote Yni = log(1 + θna(Xi))− en, i = 1, . . . , n, n ­ 1, a triangular
array of independent mean 0 random variables. It is enough to check the Lyapunov
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condition. Indeed, from (8.2), (8.6) and Lemma 5, for sufficiently large n we have

Eθn |Yni|3 ¬ 4e3n + 4
∫

a­1/
√
θn

(1 + θna(t)) log3(1 + θna(t)) dt

+ 4
∫

a<1/
√
θn

(1 + θna(t))|log(1 + θna(t))|3 dt

¬ 4e3n + 10θ2n
∫

a­1/
√
θn

a2(t) dt+ 4
√
θn (σ2n + e2n) = o(θ2n).

By Lemma 5 and the assumption nθ2n →∞ the Lyapunov condition holds. �

It is easily seen that with the use of Lemma 6 the proof of Proposition 4 goes
exactly in the same way as that of Proposition 2.

The proof of Proposition 7 is based on the following moderate deviation result
of Ermakov [2].

THEOREM B. Let Yn1, . . . , Ynn, n ­ 1, be a triangular array of independent
identically distributed random variables with EYn1 = 0, VarYn1 = 1 and for
some sequence hn > 0, hn → 0, nh2n →∞ and some C > 0 we have

(i) EehnYn1 < C;

(ii) E|Yn1|3 ¬ Cωn/hn for some ωn > 0 (possibly depending on hn).

Then for all x such that εhn ¬ x ¬ (1− ε)hn for some ε > 0,

(8.7) logP

(
Yn1 + · · ·+ Ynn√

n
­
√
nx

)
= −nx

2

2
+O(nh2nωn).

In Theorem B set Yni = (log(1 + θna(Xi))− e0n)/σ0n and hn = 2σ0n. Then
nh2n →∞ by the assumption and Lemma 5. Moreover, for sufficiently large n,

E0e
hnYn1 = e−2e0n

1∫
0

(1 + θna(t))2 dt < 2,

which proves condition (i) in the theorem. From (8.2) and (8.6) we have

E0|Yn1|3 ¬
4|e0n|3

σ30n
+

4

σ30n

∫
a­1/

√
θn

log3(1 + θna(t)) dt

+
4
√
θn

σ30n

∫
a<1/

√
θn

log2(1 + θna(t)) dt

¬ 4√
θn

(1 + o(1)) +
4

θn

∫
a­1/

√
θn

a2(t) dt.

So, condition (ii) of Theorem B holds with ωn = max{
√
θn,
∫
a­1/

√
θn
a2(t) dt}

tending to 0 and (7.1) follows from (8.7) by inserting xn in place of x. �
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50-370 Wrocław, Poland
E-mail: Tadeusz.Inglot@pwr.edu.pl

Received 5.2.2019;
revised version 8.7.2019


	1 Introduction and testing problem
	2 Heavy-tailed case
	3 Square integrable case
	4 Simulation results
	5 Proof of Theorem 1
	6 Proofs of Propositions 2 and 5
	6.1 Auxiliary lemmas
	6.2 Proof of Proposition 2
	6.3 Proof of Proposition 5

	7 Proof of Theorem 2
	8 Proofs of Propositions 4 and 7
	References

