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BY
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Abstract. For a centered self-similar Gaussian process {Y (t) : t ∈ [0,∞)}
and R ­ 0 we analyze the asymptotic behavior of

HRY (T ) = E exp
(

sup
t∈[0,T ]

(√
2Y (t)− (1 + R)σ

2
Y (t)

))

as T → ∞. We prove that HRY = limT→∞HRY (T ) ∈ (0,∞) for R > 0

and

HY = lim
T→∞

H0
Y (T )

T γ
∈ (0,∞)

for suitably chosen γ > 0. Additionally, we find bounds for HRY , R > 0,
and a surprising relation betweenHY and the classical Pickands constants.
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1. INTRODUCTION

For a centered Gaussian process {Y (t) : t ∈ [0,∞)} with a.s. continuous sample
paths, Var(Y (t)) = σ2

Y (t) and Y (0) = 0 a.s., let

HRY (T ) = E exp
(

sup
t∈[0,T ]

(√
2Y (t)− (1 +R)σ2

Y (t)
))
,(1.1)

where R ­ 0 and letHY (T ) := H0
Y (T ).

The functionals HRY (T ),HY (T ) play an important role in many areas of prob-
ability theory. For example, consider a fractional Brownian motion {Bκ(t) :
t ∈ [0,∞)} with Hurst parameter κ/2 ∈ (0, 1], i.e. a centered Gaussian pro-
cess with stationary increments, continuous sample paths a.s. and variance func-
tion Var(Bκ(t)) = tκ. Then, for κ ∈ (0, 2], the Pickands constants HBκ defined
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as

HBκ = lim
T→∞

HBκ(T )

T
,(1.2)

and the Piterbarg constantsHRBκ , for R > 0, defined as

HRBκ = lim
T→∞

HRBκ(T )(1.3)

play a key role in the extreme value theory of Gaussian processes; see, e.g., [25],
[26], [27] or more recent contributions [18], [24]. In [6] it was observed that the no-
tion of Pickands and Piterbarg constants can be extended to generalized Pickands
and Piterbarg constants, defined as

Hη = lim
T→∞

Hη(T )

T
and HRη = lim

T→∞
HRη (T )

respectively, where R > 0 and {η(t) : t ∈ (0,∞)} is a centered Gaussian process
with stationary increments. We refer to [2], [3], [5], [12], [14], [16] for proper-
ties and other representations of HBκ , HRBκ and generalized Pickands–Piterbarg
constants, and to [10], [11] for multidimensional analogs of Pickands–Piterbarg
constants.

Recently (see e.g. [12]), it was found that for general Gaussian processes Y (sat-
isfying some regularity conditions) the functionals (1.1) appear in the formulas for
exact asymptotics of suprema of some Gaussian processes (see Proposition 2.1).

The interest in (1.1) also stems from an important contribution [16] which
established a direct connection between Pickands constants and max-stationary
stable processes (see also [7], [8], [9]).

The constants HY (T ) also appear in the context of convex geometry where
they are known as Wills functionals (see [28]).

In this contribution we analyze the properties ofHRY (T ) andHY (T ) for a class
of general self-similar Gaussian processes Y with non-stationary increments. In
particular, we find analogs of limits (1.2), (1.3) and give some bounds for them.
Surprisingly, it appears that, up to some explicitly given constant, HY is equal to
the classicalHBκ for some appropriately chosen κ.

2. NOTATION AND PRELIMINARY RESULTS

Let {Y (t) : t ­ 0} be a centered Gaussian process with a.s. continuous sample
paths and let

VY (s, t) := Var(Y (s)− Y (t)), RY (s, t) := Cov(Y (s), Y (t)).

We say that a stochastic process Y (·) is self-similar with index H > 0 if for all
a > 0,

(2.1) {Y (at) : t ­ 0} D= {aHY (t) : t ­ 0}.
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A straightforward consequence of (2.1) is that for self-similar Gaussian processes,
σ2
Y (t) = σ2

Y (1)t2H for t ­ 0.
We write Y ∈ S(α, κ, cY ) if

S1. Y (·) is self-similar with index α/2 > 0 and σ2
Y (1) = 1;

S2. there exist κ ∈ (0, 2] and cY > 0 such that

Var(Y (1)− Y (1− h)) = cY |h|κ + o(|h|κ) as h→ 0.

It is well known (see Lamperti [21]) that {Y (t) : t ­ 0} is a self-similar
Gaussian process with index α/2 if and only if its Lamperti transform X(t) =
e−(α/2)tY (et) is a stationary Gaussian process. Thus, there is a unique correspon-
dence between self-similar Gaussian processes and stationary Gaussian processes.
In fact condition S2 relates to regularity of the covariance function of the stationary
counterpart of Y . More precisely, let {X(t) : t ∈ R} be a stationary Gaussian pro-
cess such thatRX(t, 0) = 1−a|t|κ+o(|t|κ) as t→ 0 with κ ∈ (0, 2], a > 0. Then
one can check that the self-similar process Y (t) := tα/2X(log t) for α ∈ (0, 2] is
S(α, κ, cY ) with

cY =

{
2a for κ < 2,

α2/4 + 2a for κ = 2.

Below we specify some important classes of self-similar Gaussian processes
that satisfy S1–S2.

� Fractional Brownian motion Bα is in S(α, α, 1) with α/2 ∈ (0, 1].

� Bifractional Brownian motion {Y (1)(t) : t ­ 0} with parameters α ∈ (0, 2) and
K ∈ (0, 1] is a centered Gaussian process with covariance function

RY (1)(t, s) =
1

2K
((tα + sα)K − |t− s|αK)

(see e.g. [19], [22]). We have Y (1) ∈ S(αK,αK, 21−K).

� Sub-fractional Brownian motion {Y (2)(t) : t ­ 0} with parameter α ∈ (0, 2) is
a centered Gaussian process with covariance function

RY (2)(t, s) =
1

2− 2α−1

(
tα + sα − (t+ s)α + |t− s|α

2

)
(see [4], [17]). Then Y (2) ∈ S(α, α, (2− 2α−1)−1).



300 K. Dębicki and K. Tabiś

� k-fold integrated fractional Brownian motion {Y (3),k(t) : t ­ 0} with parame-
ters k ∈ N := {1, 2, . . . } and α ∈ (0, 2] is a Gaussian process defined as

Y (3),1(t) =
√
α+ 2

t∫
0

Bα(s) ds,

Y (3),k(t) =

√
k(α+ 2k)(α+ k − 1)

α+ 2k − 2

t∫
0

Y (3),k−1(s) ds for k ­ 2.

Then Y (3),k ∈ S
(
α+ 2k, 2, k(α+2k)(α+k−1)

α+2k−2

)
for k ­ 1.

� Time-average of fractional Brownian motion {Y (4)(t) : t ­ 0} with parameter
α ∈ (0, 2] is a Gaussian process defined as

Y (4)(t) =
√
α+ 2

1

t

t∫
0

Bα(s) ds.

Its covariance function is

RY (4)(t, s) =
(α+ 2)(sα+1t+ stα+1) + |t− s|α+2 − tα+2 − sα+2

2(α+ 1)ts

and we have Y (4) ∈ S(α, 2, 1).

� Dual fractional Brownian motion {Y (5)(t) : t ­ 0} with parameter α ∈ (0, 2]
is a centered Gaussian process defined as

Y (5)(t) = tα+1

√
2

Γ(α+ 1)

∞∫
0

Bα(s)e−st ds

(see [23]). We have

RY (5)(t, s) =
tαs+ sαt

t+ s

and Y (5) ∈ S(α, 2, α/2).

In the rest of the paper, X(s) := X(s)/σX(s), and Ψ(·) denotes the tail distri-
bution function of the standard normal random variable.

The following proposition plays a key role in the proofs of our main results,
confirming also that the functionals HY (·) and HRY (·) for Y ∈ S(α, κ, cY ) appear
in the asymptotics of extremes of Gaussian processes.

PROPOSITION 2.1. Let Y ∈ S(α, κ, cY ) and let {X(t) : t ­ 0} be a centered
Gaussian process withRX(t, s) = exp(−aVY (t, s)) for a > 0 and σX(t) = 1

1+btβ

for b ­ 0, β > 0.
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(i) If α = β, then as u→∞,

P
(

sup
t∈[0,Tu−2/α]

X(t) > u
)

= Hb/aY (a1/αT )Ψ(u)(1 + o(1)).

(ii) If α < β, then as u→∞,

P
(

sup
t∈[0,Tu−2/α]

X(t) > u
)

= HY (a1/αT )Ψ(u)(1 + o(1)).

The proof of Proposition 2.1 is given in Section 4.1.

3. PICKANDS–PITERBARG CONSTANTS FOR SELF-SIMILAR GAUSSIAN PROCESSES

The aim of this section is to find analogs of Pickands and Piterbarg constants for
self-similar Gaussian processes Y ∈ S(α, κ, cY ).

3.1. Piterbarg constants. For R > 0 and Y ∈ S(α, κ, cY ) let us introduce an
analog of the Piterbarg constantHRBκ as follows:

HRY := lim
T→∞

HRY (T ) = lim
T→∞

E exp
(

sup
t∈[0,T ]

(√
2Y (t)− (1 +R)tα

))
.

In the next theorem we prove that HRY is well-defined and we compare it with the
classical Piterbarg constants.

THEOREM 3.1. Let Y ∈ S(α, κ, cY ). Then, for any R > 0,

HRY ∈ (0,∞).

Furthermore
HR/c1Bκ

¬ HRY ¬ H
R/c2
Bκ

,

where

c1 = inf
x∈[0,1)

VY (1, xκ/α)

|1− x|κ
and c2 = sup

x∈[0,1)

VY (1, xκ/α)

|1− x|κ
.

The proof of Theorem 3.1 is given in Section 4.2.

PROPOSITION 3.2. Let Y ∈ S(α, κ, cY ). Then

HRY ­
1

2

(
1 +

√
1 +

1

R

)
.

The proof of Proposition 3.2 is postponed to Section 4.3.
The following corollary follows from Theorem 3.1 combined with the fact that

HRB1
= 1 + 1/R (see, e.g., [13]) andHRB2

= 1
2(1 +

√
1 + 1/R) (see, e.g., [20]).
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COROLLARY 3.3. Let Y ∈ S(α, κ, cY ).

(i) If κ = 1, then

1 +
1

R

(
inf

x∈[0,1)

VY (1, x1/α)

|1− x|

)
¬ HRY ¬ 1 +

1

R

(
sup
x∈[0,1)

VY (1, x1/α)

|1− x|

)
.

(ii) If κ = 2, then

1

2

(
1 +

√
1 +

1

R

)
¬ HRY ¬

1

2

(
1 +

√
1 +

1

R

(
sup
x∈[0,1)

VY (1, x2/α)

|1− x|2

))
.

In the following example we specify Corollary 3.3 for some particular self-
similar processes introduced in Section 2.

EXAMPLE 3.1. The following bounds hold:

� k-fold integrated fractional Brownian motion Y (3),k:

1

2

(
1 +

√
1 +

1

R

)
¬ HR

Y (3),k ¬
1

2

(
1 +

√
1 +

4k(α+ k − 1)

R(α+ 2k)(α+ 2k − 2)

)
.

� Time-average of fractional Brownian motion Y (4) with parameter α ∈ (0, 2]:

1

2

(
1 +

√
1 +

1

R

)
¬ HR

Y (4) ¬
1

2

(
1 +

√
1 +

4

R(α+ 2)

)
.

The above bounds improve the results obtained in [15] for the constants

Fα = lim
T→∞

E exp

(
sup
t∈(0,T ]

1

t

t∫
0

(
√

2Bα(s)− sα) ds

)
= lim

T→∞
E exp

(
sup
t∈(0,T ]

(
Y (4)(t)− α+ 2

α+ 1
tα
))

= H1/(α+1)

Y (4) ,

leading to

1

2
(1 +

√
2 + α) ¬ Fα ¬

1

2
(1 +

√
1 + 4(α+ 1)/α2),

while in [15] it was proved that Fα ¬ 2 + α for α ∈ [1, 2).

� Dual fractional Brownian motion Y (5) with parameter α ∈ (0, 2]:

1

2

(
1 +

√
1 +

1

R

)
¬ HR

Y (5) ¬
1

2

(
1 +

√
1 +

2

Rα

)
.
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3.2. Pickands constants. In this section we focus on an analog of Pickands con-
stants for Y ∈ S(α, κ, cY ). Let

HY := lim
T→∞

HY (T )

Tα/κ
= lim

T→∞

E exp(supt∈[0,T ](
√

2Y (t)− tα))

Tα/κ
.

We observe that for Y (t) = Bκ(t) the above definition agrees with the notion of
the classical Pickands constantHBκ , since α = κ in this case.

In the following theorem we show thatHY is well-defined and find a surprising
relation betweenHY andHBκ .

THEOREM 3.4. Let Y ∈ S(α, κ, cY ). ThenHY ∈ (0,∞) and

HY =
κ

α
(cY )1/κHBκ .

A complete proof of Theorem 3.4 is presented in Section 4.4.
The following corollary is an immediate consequence of Theorem 3.4 and the

fact thatHB1 = 1 andHB2 = 1/
√
π.

COROLLARY 3.5. Let Y ∈ S(α, κ, cY ).

(i) If κ = 1, then

HY = lim
T→∞

E exp(supt∈[0,T ](
√

2Y (t)− tα))

Tα
=
cY
α
.

(ii) If κ = 2, then

HY = lim
T→∞

E exp(supt∈[0,T ](
√

2Y (t)− tα))

Tα/2
=

2

α

√
cY
π
.

In the following example we specify the findings of this section for self-similar
Gaussian processes introduced in Section 2.

EXAMPLE 3.2. The following equalities hold:

� Bifractional Brownian motion with parameters α ∈ (0, 2) and K ∈ (0, 1]:

HY (1) = lim
T→∞

E exp(supt∈[0,T ](
√

2Y (1)(t)− tαK))

T
= 2

1−K
αK HBαK .

� Sub-fractional Brownian motion with parameter α ∈ (0, 2):

HY (2) = lim
T→∞

E exp(supt∈[0,T ](
√

2Y (2)(t)− tα))

T
= (2− 2α−1)−1/αHBα .
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� k-fold integrated fractional Brownian motion with parameters k ∈ N and
α ∈ (0, 2]:

HY (3),k = lim
T→∞

E exp(supt∈[0,T ](
√

2Y (3),k(t)− tk+α/2))

T k+α/2

=

√
4k(α+ k − 1)

π(α+ 2k)(α+ 2k − 2)
.

� Time-average of fractional Brownian motion with parameter α ∈ (0, 2]:

HY (4) = lim
T→∞

E exp(supt∈[0,T ](
√

2Y (4)(t)− tα))

Tα/2
=

2√
π α

.

� Dual fractional Brownian motion with parameter α ∈ (0, 2]:

HY (5) = lim
T→∞

E exp(supt∈[0,T ](
√

2Y (5)(t)− tα))

Tα/2
=

√
2

πα
.

4. PROOFS

In the rest of the paper we use the notation vY (t) := VY (1, t). We begin with the
following lemma, skipping its straightforward proof.

LEMMA 4.1. Let Y ∈ S(α, κ, cY ) and Ŷα1 = Y (tα1) for some α1 > 0. Then,
for any R ­ 0 and T > 0,

(i) HRcY (T ) = HRY (c2/αT ) for any c > 0;

(ii) HR
Ŷα1

(T ) = HRY (Tα1).

4.1. Proof of Proposition 2.1. In the next lemma we present a useful bound on
VY (·, ·) for Y ∈ S(α, κ, cY ).

LEMMA 4.2. Let Y ∈ S(α, κ, cY ). Then there exists a positive constantC such
that for γ = min(α, κ), T > 0 and all t, s ∈ [0, T ],

VY (t, s) ¬ CTα−γ |t− s|γ .

Proof. For t = s the conclusion is obvious. Suppose that 0 ¬ s < t ¬ T and
let ε ∈ (0, 1) be such that for δ ∈ (0, 1),

(1− ε)cY |1− x|κ ¬ VY (1, x) ¬ (1 + ε)cY |1− x|κ
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for all x ∈ [δ, 1] (due to S2). For s/t ­ δ we have

VY (t, s) = tαVY (1, s/t) ¬ tα(1 + ε)cY |1− s/t|κ

¬ tα(1 + ε)cY |1− s/t|min(α,κ)

= tα−γ(1 + ε)cY |t− s|γ ¬ Tα−γ(1 + ε)cY |t− s|γ .

For s/t ¬ δ we have |1− δ|γ ¬ |1− s/t|γ . Hence, tγ |1− δ|γ ¬ |t− s|γ . Then

VY (t, s) = tαVY (1, s/t)

¬ tγtα−γ |1− δ|
γ

|1− δ|γ
max
x∈[0,δ]

VY (1, x) ¬ Tα−γ
maxx∈[0,δ] VY (1, x)

|1− δ|γ
|t− s|γ .

Hence the proof is completed with C = max
(
(1 + ε)cY ,

maxx∈[0,δ] VY (1,x)

|1−δ|γ
)
. �

Proof of Proposition 2.1. Since for any Gaussian process Y (·), the variogram
function VY (·, ·) is negative definite, by the Schoenberg theorem the function
exp(−VY (·, ·)) is positive definite. Thus there exists a Gaussian process {X(t) :
t ­ 0} with RX(t, s) = exp(−VY (t, s)).

The rest of the proof follows straightforwardly from [12, Theorem 2.1] and
Lemma 4.2 applied to Xu(t) = X(tu−2/α). �

4.2. Proof of Theorem 3.1

LEMMA 4.3. Let Y ∈ S(α, κ, cY ) and define Ŷ (t) = Y (tκ/α). Then Ŷ ∈
S(κ, κ, cY (κ/α)κ) and there exist finite and positive constants

c1 = inf
x∈[0,1)

VY (1, xκ/α)

|1− x|κ
= inf

x∈[0,1)

VŶ (1, x)

|1− x|κ
,

c2 = sup
x∈[0,1)

VY (1, xκ/α)

|1− x|κ
= sup

x∈[0,1)

VŶ (1, x)

|1− x|κ
.

Moreover for all t, s ­ 0,

c1|t− s|κ ¬ VY (tκ/α, sκ/α) = VŶ (t, s) ¬ c2|t− s|κ.

Proof. Observe that Ŷ ∈ S(κ, κ, cY (κ/α)κ) with VŶ (t, s) = VY (tκ/α, sκ/α).

Consider the function f(x) =
VŶ (1,x)

|1−x|κ for x ∈ [0, 1). Due to S2, limx→1− f(x) =

cŶ > 0, f(0) = 1 and f(x) = 0 only for x = 1. Hence, c1, c2 > 0 exist.
Moreover, for all t ­ s ­ 0,

c1|t− s|κ = c1t
κ|1− s/t|κ ¬ tκVŶ (1, s/t) ¬ c2t

κ|1− s/t|κ = c2|t− s|κ.

This completes the proof. �
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Proof of Theorem 3.1. Let R, T > 0. Define Ŷ (t) = Y (tκ/α). Then Ŷ ∈
S(κ, κ, cY (κ/α)κ) with VŶ (1, x) = VY (1, xκ/α) and c1, c2 > 0 exist. Let {X(t) :
t ­ 0}, {X1(t) : t ­ 0}, {X2(t) : t ­ 0} be centered Gaussian processes
with RX(t, s) = exp(−VŶ (t, s)), RXi

(t, s) = exp(−ciVBκ(t, s)) and σX(t) =

σXi(t) = 1
1+Rtκ . Then, for all t, s ­ 0,

RX1
(t, s) = exp(−c1VBκ(t, s)) ­ RX(t, s) = exp(−VŶ (t, s))

­ exp(−c2VBκ(t, s)) = RX2
(t, s)

and hence, due to Slepian’s inequality (see, e.g., [1, Corollary 2.4]) we find that for
all u > 0,

P
(

sup
t∈[0,Tu−2/κ]

X1(t) > u
)
¬ P

(
sup

t∈[0,Tu−2/κ]

X(t) > u
)

¬ P
(

sup
t∈[0,Tu−2/κ]

X2(t) > u
)
.

Application of Proposition 2.1(i) to the inequalities above gives

(4.1) HR/c1Bκ
(c

1/κ
1 T ) ¬ HR

Ŷ
(T ) = HRY (T κ/α) ¬ HR/c2Bκ

(c
1/κ
2 T ),

where the equality follows from Lemma 4.1(ii). Note that all functions in (4.1) are
increasing in T , and hence letting T →∞ in (4.1) completes the proof. �

4.3. Proof of Proposition 3.2. Since σ2
Y (t) = tα, the Schwarz inequality implies

that RY (t, s) ¬ (ts)α/2 for all t, s ­ 0. Therefore for t, s ­ 0,

VY (t, s) ­ tα + sα − 2(ts)α/2 = |tα/2 − sα/2|2 = VB̂2
(t, s),

where B̂2(t) = B2(tα/2). Thus, by Slepian’s inequality,

HRY (T ) =
∫
R
exP

(
sup
t∈[0,T ]

(
√

2Y (t)− (1 +R)tα > x)
)
dx

­
∫
R
exP

(
sup
t∈[0,T ]

(
√

2 B̂2(t)− (1 +R)tα > x)
)
dx

= HR
B̂2

(T ) = HRB2
(Tα/2),

where the last equality follows from Lemma 4.1(ii). Letting T → ∞ yields the
conclusion. �

4.4. Proof of Theorem 3.4. To prove Theorem 3.4 we need some technical lemmas.

LEMMA 4.4. Let Ŷ ∈ S(κ, κ, cŶ ). For any ε→ 0+ there exists δε → 0+ such
that for any T > 0 and A ­ T/δε,

(1− ε)cŶ |t− s|
κ ¬ VŶ (A+ t, A+ s) ¬ (1 + ε)cŶ |t− s|

κ

for all t, s ∈ [0, T ].
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Proof. Let ε ∈ (0, 1) be sufficiently small such that

(4.2) (1− ε)cŶ |h|
κ ¬ VŶ (1, 1− h) ¬ (1 + ε)cŶ |h|

κ

for all h ∈ [0, δε] and δε ∈ (0, 1) (due to S2). Then, for any T > 0, A ­ T/δε and
0 ¬ s ¬ t ¬ T we have t−s

A+t ¬
T
A ¬ δε. Combining the fact that

VŶ (A+ s,A+ t) = (A+ t)κVŶ

(
1,
A+ s

A+ t

)
= (A+ t)κVŶ

(
1, 1− t− s

A+ t

)
with (4.2) for h = t−s

A+t ¬ δε, we obtain the assertion. �

LEMMA 4.5. Let Ŷ ∈ S(κ, κ, cŶ ) and let c1, c2 be as in Lemma 4.3. Consider
a centered Gaussian process {X(t) : t ­ 0} with RX(t, s) = exp(−aVŶ (t, s))
with a > 0.

(i) Let {Xi(t) : t ­ 0}, i = 1, 2, be centered stationary Gaussian processes
with RXi

(t, s) = exp(−aciVBκ(t, s)). Then for all u > 0 and any T,A =
A(u) > 0,

P
(

sup
t∈[0,T ]u−2/κ

X1(t) > u
)
¬ P

(
sup

t∈[A,A+T ]u−2/κ

X(t) > u
)

¬ P
(

sup
t∈[0,T ]u−2/κ

X2(t) > u
)
.

(ii) For any ε > 0, let {Xi(t) : t ­ 0}, i = 1, 2, be centered stationary Gaussian
processes with RXi

(t, s) = exp(−a(1 + (−1)iε)cŶ VBκ(t, s)). Then for any
ε→ 0+ there exists δε → 0+ such that for any T > 0 and A = A(u) ­ T/δ,

P
(

sup
t∈[0,T ]u−2/κ

X1(t) > u
)
¬ P

(
sup

t∈[A,A+T ]u−2/κ

X(t) > u
)

¬ P
(

sup
t∈[0,T ]u−2/κ

X2(t) > u
)
.

Proof. (i) The argument is the same as for Theorem 3.1. From Lemma 4.3 we
know that for all t, s ­ 0,

VX1
(t, s) ¬ VX(t, s) ¬ VX2

(t, s)

and hence, due to Slepian’s inequality, for all u > 0,

P
(

sup
t∈[A,A+T ]u−2/κ

X2(t) > u
)
¬ P

(
sup

t∈[A,A+T ]u−2/κ

X(t) > u
)

¬ P
(

sup
t∈[A,A+T ]u−2/κ

X2(t) > u
)
.

Due to stationarity of Xi(·) we obtain the assertion.
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(ii) From Lemma 4.4, for any ε → 0+ there exists δε → 0+ such that for any
T > 0 and A ­ T/δε,

(1− ε)cŶ |t− s|
κ ¬ VŶ (t, s) ¬ (1 + ε)cŶ |t− s|

κ

for all t, s ∈ [A,A + T ]. The same argument as in the proof of (i) completes the
proof. �

LEMMA 4.6. Suppose that limu→∞ f(u)/u = c for some c > 0. Under the
notation of Lemma 4.5, there exist absolute constants F,G > 0 such that

P
(

sup
t∈[A,A+T ]u−2/κ

X(t) > f(u), sup
t∈[t0,t0+T ]u−2/κ

X(t) > f(u)
)

¬ FT 2 exp(−G(t0 − (A+ T ))κ)Ψ(f(u))

for all t0 > A+ T > 0, T ­ 1 and any u ­ u0 = (2ac2)2(t0 + T )κ/2.

Proof. The argument is similar to the one given in, e.g., [6, Lemma 6.2] or [12,
Theorem 2.1]. Thus we only present the main steps.

Let u0 = (2ac2)2(t0 + T )κ/2 and {Zu(t1, t2) : (t1, t2) ∈ [A,A + T ] ×
[t0, t0 + T ]}, where Zu(t1, t2) = X(t1u

−2/κ) +X(t2u
−2/κ). Note that

(4.3) P
(

sup
t∈[A,A+T ]u−2/κ

X(t) > f(u), sup
t∈[t0,t0+T ]u−2/κ

X(t) > f(u)
)

¬ P
(

sup
(t1,t2)∈[A,A+T ]×[t0,t0+T ]

Zu(t1, t2) > 2f(u)
)
.

Since (t0 + T )u−2/κ ¬ (2ac2)−1/κ, by Lemma 4.3 for all t1, t2 ¬ t0 + T ,

ac1u
−2|t2 − t1|κ ¬ aVŶ (t1u

−2/κ, t2u
−2/κ)(4.4)

¬ ac2u
−2|t2 − t1|κ ¬ ac2|(t0 + T )u−2/κ|κ ¬ 1/2.

Hence, as x ¬ 2(1− e−x) ¬ (1− e−4x) for x ∈ [0, 1/2], we obtain

VX(t1u
−2/κ, t2u

−2/κ) = 2
(
1− exp(−aVŶ (t1u

−2/κ, t2u
−2/κ))

)
(4.5)

­ aVŶ (t1u
−2/κ, t2u

−2/κ) ­ ac1u
−2|t2 − t1|κ,

VX(t1u
−2/κ, t2u

−2/κ) ¬ 2(1− exp(−ac2u
−2|t2 − t1|κ))(4.6)

¬ (1− exp(−4ac2u
−2|t2 − t1|κ))

for all t1, t2 ¬ t0 + T . Since

σ2
Zu(t1, t2) = 2 + 2 exp(−aVŶ (t1u

−2/κ, t2u
−2/κ))

= 4− 2
(
1− exp(−aVŶ (t1u

−2/κ, t2u
−2/κ))

)
,
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from (4.5), for any (t1, t2) ∈ [A,A+ T ]× [t0, t0 + T ],

(4.7) 2 ¬ σ2
Zu(t1, t2) ¬ 4− ac1u

−2(t0 − (A+ T ))κ.

Now observe that

P
(

sup
(t,s)∈[A,A+T ]×[t0,t0+T ]

Zu(t1, t2) > 2f(u)
)

¬ P

(
sup

(t1,t2)∈[A,A+T ]×[t0,t0+T ]
Zu(t1, t2) >

2f(u)√
4− ac1u−2(t0 − (A+ T ))κ

)
.

Note that for any (t1, t2), (s1, s2) ∈ [A,A+ T ]× [t0, t0 + T ], we have

(4.8) Var(Zu(t1, t2)− Zu(s1, s2)) ¬ Var(Zu(t1, t2)− Zu(s1, s2))

σZu(t1, t2)σZu(s1, s2)

¬ 1

2
E
(
(X(t1u

−2/κ)−X(s1u
−2/κ)) + (X(t2u

−2/κ)−X(s2u
−2/κ))

)2
¬ VX(t1u

−2/κ, s1u
−2/κ) + VX(t2u

−2/κ, s2u
−2/κ)

¬ (1− exp(−4ac2u
−2|t1 − s1|κ)) + (1− exp(−4ac2u

−2|t2 − s2|κ)),

where the next-to-last inequality follows from (x+ y)2 ¬ 2(x2 + y2), and the last
one follows from (4.6).

Denote u∗ = 2f(u)√
4−ac1u−2(t0−(A+T ))κ

and let c, c > 0 be constants such that

c ¬ f(u)/u ¬ c for all u ­ u0. Note (by (4.4)) that f(u) ¬ u∗ ¬
√

8/7 f(u) for
u ­ u0. Hence, cu ¬ u∗ ¬

√
8/7 cu for u ­ u0, and therefore u−2 ¬ 8

7c
2(u∗)−2

for u ­ u0.
Consider two independent, identically distributed centered stationary Gaussian

processes {Z1,u∗(t1) : t1 ­ 0}, {Z2,u∗(t2) : t2 ­ 0} with RZ1,u∗ (t1, s1) =

exp
(
−32

7 ac
2c2(u∗)−2|t1−s1|κ

)
and let Zu∗(t1, t2) = 1√

2
(Z1,u∗(t1)+Z2,u∗(t2)).

Hence, by (4.8), for any (t1, t2), (s1, s2) ∈ [A,A+ T ]× [t0, t0 + T ],

Var(Zu(t1, t2)− Zu(s1, s2))

¬ (1− exp(−4ac2u
−2|t1 − s1|κ)) + (1− exp(−4ac2u

−2|t2 − s2|κ))

¬
(
1− exp

(
−32

7 ac
2c2(u∗)−2|t1 − s1|κ

))
+
(
1− exp

(
−32

7 ac
2c2(u∗)−2|t2 − s2|κ

))
= Var(Zu∗(t1, t2)− Zu∗(s1, s2)),
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and due to Slepian’s inequality, we obtain

(4.9) P
(

sup
(t1,t2)∈[A,A+T ]×[t0,t0+T ]

Zu(t1, t2) > u∗
)

¬ P
(

sup
(t1,t2)∈[A,A+T ]×[t0,t0+T ]

Zu∗(t1, t2) > u∗
)

= P
(

sup
(t1,t2)∈[0,T ]2

Zu∗(t1, t2) > u∗
)

as u→∞, where the equality follows from stationarity of Zu∗(·, ·). Now

lim
u∗→∞

P(sup(t1,t2)∈[0,T ]2 Zu∗(t1, t2) > u∗)

Ψ(u∗)
=
(
HBκ((16ac2c2/7)1/κT )

)2
¬ (HBκ(1))2 max(1, (16ac2c2/7)2/κ)T 2,

where the equality follows from, e.g., [6, Theorem 2.1] (see also [12, Theorem 3.1])
and the inequality follows from the fact thatHBκ(AT ) ¬ T max(1, A)HBκ(1) for
any T > 1 andA > 0 [26, Corollary D.1]. Hence, there exists a constant F ′ (which
does not depend on t0, A, T ) such that

P
(

sup
(t1,t2)∈[0,T ]2

Zu∗(t1, t2) > u∗
)
¬ F ′T 2Ψ(u∗)

for all u∗ ­ u∗0 = cu0 (i.e. u ­ u0). Thus

(4.10) P
(

sup
t∈[A,A+T ]u−2/κ

X(t) > f(u), sup
t∈[t0,t0+T ]u−2/κ

X(t) > f(u)
)

¬ F ′T 2Ψ(u∗)

for u ­ u0.
Since (in view of 1

1−x ­ 1 + x for x ­ 0)

(u∗)2 =
4f2(u)

4− ac1u−2(t0 − (A+ T ))κ
­ f2(u) +

ac1

4

(
f(u)

u

)2

(t0 − (A+ T ))κ

­ f2(u) +
ac1c

2

4
(t0 − (A+ T ))κ,

we have

Ψ(u∗) ¬
exp
(
−1

2

(
f2(u) + ac1c2

4 (t0 − (A+ T ))κ
))

√
2π

√
f2(u) + ac1c2

4 (t0 − (A+ T ))κ
(4.11)

¬
exp
(
−1

2f
2(u)

)
√

2π f(u)
exp

(
−ac1c

2

8
(t0 − (A+ T ))κ

)
.
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Combination of (4.10) with (4.11) gives

P
(

sup
t∈[A,A+T ]u−2/κ

X(t) > f(u), sup
t∈[t0,t0+T ]u−2/κ

X(t) > f(u)
)

¬ F1F
′T 2 exp

(
−ac1c

2

8
(t0 − (A+ T ))κ

)
Ψ(f(u))

for any u ­ u0 and some positive constant F1 such that exp(− 1
2
f2(u))√

2π f(u)
¬ F1Ψ(f(u))

for u > u0. This completes the proof with F = F1F
′ and G = ac1c

2/8. �

LEMMA 4.7. With the notation of Lemma 4.5, there exist absolute constants
F,G > 0 such that

P
(

sup
t∈[A,A+T ]u−2/κ

X(t) > u, sup
t∈[A+T,A+2T ]u−2/κ

X(t) > u
)

¬ F
(
T 2 exp(−G

√
T κ) +

√
T
)
Ψ(u)

for allA > 0, T > 1 and any u ­ u0 = (2ac2)2(A+2T )κ/2, i.e. (A+2T )u−2/κ ¬
(2ac2)−1/κ.

Proof. Let u0 = (2ac2)2(A+ 2T )κ/2 and Xu(t) = X(tu−2/κ). We have

P
(

sup
t∈[A,A+T ]

Xu(t) > u, sup
t∈[A+T,A+2T ]

Xu(t) > u
)

= P
(

sup
t∈[A,A+T ]

Xu(t) > u,

sup
t∈[A+T,A+T+

√
T ]

Xu(t) > u ∨ sup
t∈[A+T+

√
T ,A+2T ]

Xu(t) > u
)

¬ P
(

sup
t∈[A,A+T ]

Xu(t) > u, sup
t∈[A+T+

√
T ,A+2T+

√
T ]

Xu(t) > u
)

+ P
(

sup
t∈[A+T,A+T+

√
T ]

Xu(t) > u
)

¬ F1T
2 exp(−G

√
T κ)Ψ(u) + P

(
sup

t∈[A+T,A+T+
√
T ]

Xu(t) > u
)
,

where the last inequality follows from Lemma 4.6 with t0 = A+T+
√
T . Applying

Lemma 4.5(i) and Proposition 2.1 (choose b = 0) to P(supt∈[A+T,A+T+
√
T ]Xu(t)

> u), we finally obtain, for sufficiently large u ­ u0,
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P
(

sup
t∈[A,A+T ]

Xu(t) > u, sup
t∈[A+T,A+2T ]

Xu(t) > u
)

¬ F1T
2 exp(−G

√
T κ)Ψ(u) +HBκ(a1/κ

√
T )Ψ(u)(1 + o(1))

¬ F1T
2 exp(−G

√
T κ)Ψ(u) + max(1, a1/κ)HBκ(1)

√
T Ψ(u)(1 + o(1))

¬ F
(
T 2 exp(−G

√
T κ) +

√
T
)
Ψ(u)

for some constant F > 0, where the next-to-last inequality follows from subaddi-
tivity ofHBκ(·) [26, Corollary D.1]. �

Proof of Theorem 3.4. First, we prove the conclusion of the theorem for
Ŷ ∈ S(κ, κ, cY (κ/α)κ), where Ŷ (t) = Y (tκ/α). Let c1, c2 be the constants
of Lemma 4.3. Consider a centered Gaussian process {X(t) : t ­ 0} with
RX(t, s) = exp(−VŶ (t, s)) and let Xu(t) = X(tu−2/κ). Let n ∈ N and choose
εn ∈ (0, 1), δεn = 1/n so that the conclusion of Lemma 4.5(ii) holds. We find a
lower bound and an upper bound separately.

Upper bound. Let T ∈ N be such that T > n. For any u > 0,

P
(

sup
t∈[0,T 2]

Xu(t) > u
)

¬ P
(

sup
t∈[0,nT ]

Xu(t) > u
)

+
T−1∑
k=n

P
(

sup
t∈[kT,(k+1)T ]

Xu(t) > u
)
.

Applying Lemma 4.5 to the right side, by Proposition 2.1 we obtain

HŶ (T 2) ¬ HBκ(c
1/κ
2 nT ) + (T − n)HBκ

(
((1 + εn)cŶ )1/κT

)
,

and hence
(4.12)
HŶ (T 2)

T 2
¬ HBκ(c

1/κ
2 nT )

T 2
+

((1 + εn)cŶ )1/κT 2

T 2

HBκ(((1 + εn)cŶ )1/κT )

((1 + εn)cŶ )1/κT
.

Since limS→∞ S
−1HBκ(S) = HBκ , after letting T →∞ in (4.12) we get

lim sup
T→∞

HŶ (T )

T
¬ ((1 + εn)cŶ )1/κHBκ .

Since this bound holds for any εn → 0+, we have

(4.13) lim sup
T→∞

HŶ (T )

T
¬ (cŶ )1/κHBκ .
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Lower bound. For T ∈ N such that T > n, with ∆k = [kT, (k + 1)T ], again
from Bonferroni’s inequality we deduce that for any u > 0,

(4.14) P
(

sup
t∈[0,T 2]

Xu(t) > u
)
­ P

(
sup

t∈[nT,T 2]

Xu(t) > u
)

­
T−1∑
k=n

P
(

sup
t∈∆k

Xu(t) > u
)
−

∑
1¬k<l¬T−1

P
(

sup
t∈∆k

Xu(t) > u, sup
t∈∆l

Xu(t) > u
)

­
T−1∑
k=n

P
(

sup
t∈∆k

Xu(t) > u
)
− Σ1 − Σ2,

where

Σ1 =
T−2∑
k=1

P
(

sup
t∈∆k

Xu(t) > u, sup
t∈∆k+1

Xu(t) > u
)
,

Σ2 =
T−1∑

1¬k<l 6=k+1

P
(

sup
t∈∆k

Xu(t) > u, sup
t∈∆l

Xu(t) > u
)
.

By Lemma 4.5(ii) and Proposition 2.1, as u→∞,

(4.15)
T−1∑
k=n

P
(

sup
t∈∆k

Xu(t) > u
)
­ (T − n)HBκ

(
((1− εn)cŶ )1/κT

)
Ψ(u)(1 + o(1)).

From Lemma 4.7, for sufficiently large u, we have

(4.16) Σ1 ¬ TF1

(
T 2 exp(−G1

√
T κ) +

√
T
)
Ψ(u).

From Lemma 4.6, for sufficiently large u,

(4.17) Σ2 ¬ T 2F2T
2 exp(−G2T

κ)Ψ(u).

Inserting (4.15)–(4.17) in (4.14) (and using Proposition 2.1), we obtain

HŶ (T 2)

T 2
­

(T − n)HBκ(((1− εn)cŶ )1/κT )

T 2

− F1(T 3 exp(−G1

√
T κ) + T 3/2) + F2T

4 exp(−G2T
κ)

T 2
.

Letting T →∞ and then εn → 0+ yields

(4.18) lim inf
T→∞

HŶ (T )

T
­ (cŶ )1/κHBκ .

From the upper bound (4.13) and the lower bound (4.18) we conclude that

lim
T→∞

HŶ (T )

T
= (cŶ )1/κHBκ .
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For Y ∈ S(α, κ, cY ), cŶ = cY (κ/α)κ and from Lemma 4.1(ii) it follows that

κ

α
(cY )1/κHBκ = (cŶ )1/κHBκ = lim

T→∞

HŶ (T )

T

= lim
T→∞

HY (T κ/α)

T
= lim

T→∞

HY (T )

Tα/κ
. �
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