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Abstract. We study two ways (two levels) of finding free-probability ana-
logues of classical infinitely divisible measures. More precisely, we identify
their Voiculescu transforms on the imaginary axis. For free-selfdecompos-
able measures we find a formula (a differential equation) for their back-
ground driving transforms. It is different from the one known for classical
selfdecomposable measures. We illustrate our methods on hyperbolic char-
acteristic functions. Our approach may produce new formulas for definite
integrals of some special functions.
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1. INTRODUCTION

There are many notions of infinite divisibility that exhibit some similarities and
also some differences. Here we study the classical infinite divisibility with respect
to the convolution ∗ and the free-infinite divisibility for the box-plus � operation
(Theorem 2.1, Corollary 2.1). For free-selfdecomposable Voiculescu transforms
we found an ordinary differential equation for their background driving transforms;
(Theorem 3.1). It is different from the one we know for classical selfdecomposable
measures. Finally, we illustrate Theorem 2.1 by introducing free-probability ana-
logues of the Laplace (double exponential) and the hyperbolic distributions on the
real line (see Sections 4–6; in Subsection 4.1 the necessary special functions and
formulae are collected).

Hyperbolic distributions were studied from the infinite divisibility point of view
by Pitman and Yor (2003). Here we utilize the fact that all of them are in a proper
subclass of selfdecomposable distributions (also called class L distributions); see
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350 Z. J. Jurek

Jurek (1996) and Jurek and Yor (2004).
The program of this study (that can be applied to other pairs of notions of

infinite divisibility, e.g. Urbanik convolution, boolean convolution) may be viewed
as a particular case of the following abstract set-up:

There are two abstract semigroups (S1, /) and (S2, �), two 1-1 and onto op-
erators A and Z acting on domains D1 and D2, respectively, and a 1-1 and onto
mapping j between D1 and D2.

That is, we have

j : D1 → D2, A : D1 → S1 and Z : D2 → S2.

Consequently, the diagram

D1 (S1, /)

D2 (S2, �)

A

j r

Z

allows us to define the identification r between (S1, /) and (S2, �).
We say that s̃ ∈ (S2, �) is a �-analogue or �-counterpart of an s ∈ (S1, /) if

there exists x ∈ D1 such that A(x) = s, j(x) = y and Z(y) = s̃, that is, we have
r(A(x)) = r(s) = s̃, or Z(j(x)) = s̃.

Similarly, s ∈ (S1, /) is a /-analogue of s̃ ∈ (S2, �) if there exists y ∈ D2 such
that Z(y) = s̃, j−1(y) = x and A(x) = s.

2. INFINITE DIVISIBILITY

2.1. In the setting of this paper, (S1, /) ≡ (ID, ∗) is the (classical) convolution
semigroup ID of all infinitely divisible probability measures µ on the real line with
the convolution operation ∗. Characteristic functions (or Fourier transforms) are
functions given as

φ(t) :=
∫
R
eitxµ(dx), t ∈ R, for some probability measure µ.

Let

D1 := {φ ∈ ID : t 7→ φ1/n(t) is a characteristic function for n = 2, 3, . . . },

that is, D1 consists of all ∗-infinitely divisible characteristic functions.
Further, consider the family of pairs

D2 := {[a,m] : a ∈ R and m is a finite Borel measure on R}.
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Because of the fundamental Khinchin representation formula, φ ∈ D1 iff

(2.1) φ(t) = exp

{
ita+

∫
R

(
eitx − 1− itx

1 + x2

)
1 + x2

x2
m(dx)

}
, t ∈ R,

for uniquely determined parameters a (a number) and m (a finite measure) (for
instance, see Parthasarathy (1967) or Araujo and Giné (1980)), the mapping (iso-
morphism) j : D1 → D2 given as

(2.2) j(φ) := [a,m] iff φ is of the form (2.1)

is well defined.

REMARK 2.1. (i) In some situations and applications, instead of a finite mea-
sure m, in (2.1), one uses the σ-finite measure M(dx) := 1+x2

x2
m(dx) on R \ {0}

(equivalently, m(dx) := x2

1+x2
M(dx)) and a slightly changed integrand as given

below. Then the equality (2.1) can be rewritten as follows:

(2.1′) φ(t) = exp
{
itb− 1

2
t2σ2 +

∫
R\{0}

(eitx − 1− itx 1{|x|¬1}(x))M(dx)
}

where σ2 := m({0}) and b := a+
∫
R x[1{|x|¬1}(x)− 1/(1 + x2)]M(dx).

(ii) The formula (2.1′) is called the Lévy–Khinchin representation of an in-
finitely divisible characteristic function (probability measure). The probability
measure µ corresponding to (2.1′) is represented by the triple µ = [b, σ2,M ].

(iii) The measure M has the following stochastic meaning: M(A) is the ex-
pected number of jumps that occur up to time 1 and are of sizes in the set A, of the
corresponding Lévy process (Y (t), t ­ 0), where φ is the characteristic function
of the random variable Y (1).

2.2. Further, (S2, �) ≡ (ID,�) is the semigroup of all � free-infinitely divisible
probability measures. Namely, for a probability measure ν on R, one introduces
its Voiculescu transform Vν (an analogue of a characteristic function φ) and an
operation � on measures in such a way that

Vµ�ν(z) = Vµ(z) + Vν(z);

see Voiculescu (1999). This property allows us to introduce the notion of �-infinite
divisibility and one has the following analogue of the Khinchin representation:

(2.3) ν ∈ (ID,�) iff Vν(z) = a+
∫
R

1 + zx

z − x
m(dx), z ∈ C \ R,

for a uniquely determined constant a ∈ R and finite (Borel) measure m; see
Voiculescu (1999) or Bercovici and Voiculescu (1993) or Bercovici and Pata
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(1999). However, for the uniqueness questions regarding the representation (2.3), it
is enough to consider Voiculescu transforms only on the imaginary axis; see Jurek
(2006, 2007) or Jankowski and Jurek (2012).

The formulas (2.1) and (2.2) suggest defining a mapping A : D1 → (ID, ∗) by

(2.4) A(φ) := µ iff φ(t) =
∫
R
eitx µ(dx), t ∈ R,

and r : (ID, ∗)→ (ID,�) by

(2.5) r(µ) := µ̃ iff Vµ̃(it) = it2
∞∫
0

log φ(s) e−ts ds, t > 0.

Consequently, by (2.5), we get the composition r / A : D1 → (ID,�).
On the other hand, at the Z level in the diagram of Section 1, using the map-

ping j from (2.2) we define Z : D2 → (ID,�) as

(2.6) Z([a,m]) := ν iff Vν(it) = a+
∫
R

1 + itx

it− x
m(dx).

So we have the following question:

(2.7) Does j(φ) = [a,m] imply that r(A(φ)) = Z(j(φ)), that is, µ̃ = ν?

REMARK 2.2. The idea of inserting the same parameters a and m into two
different integral kernels (2.1) and (2.3) is due to Bercovici and Pata (1999, Sec-
tion 3). [In our notation, it is the mapping at the Z level.]

A different approach was proposed in Jurek (2006, 2007) and more recently
in Jurek (2016). The key in those papers was the technique of random integral
representation. Here, it is the mapping at the A level in the diagram.

2.3. Below we give straightforward connections between the formulas (2.1) and
(2.2) and we prove the equality in (2.7). As in Jurek (2006), we consider the trans-
forms Vν only on the imaginary line.

THEOREM 2.1. For each classical infinitely divisible µ ∈ (ID, ∗) with char-
acteristic function φµ there exists a unique free-infinitely divisible measure µ̃ ∈
(ID,�) whose Voiculescu transform Vµ̃ is given as

(A) Vµ̃(it) = it2
∞∫
0

log φµ(s) e−ts ds, t > 0.

Furthermore, if µ has a representation µ = [a,m] (in the Khinchin formula) then

(Z) Vµ̃(it) = a+
∫
R

1 + itx

it− x
m(dx), t > 0.
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For a symmetric µ = [0,m] (φµ real) we have

Vµ̃(it) = it
∞∫
0

∫
R

(cos(sx)− 1)
1 + x2

x2
m(dx) te−st ds = −it

∫
R

1 + x2

t2 + x2
m(dx).

Proof. The fact that the function given in (A) indeed defines the Voiculescu
transform of a free-infinitely divisible measure was already shown in Jurek (2007,
Corollary 6).

On the other hand, formula (Z) is obviously the Voiculescu transform of a free-
infinitely measure in view of the characterization (2.3) above.

In order to show that both give the same measure we will prove that

(2.8) it2
∞∫
0

log φ[a,m](s) e
−ts ds = a+

∫
R

1 + itx

it− x
m(dx), t > 0.

Taking the Lévy exponent (the logarithm of the characteristic function) as given in
the Khinchin formula (2.1), computing the Laplace transform of the shift part ita
and then interchanging the order of integration we obtain

LHS = it2
(
− ia
t2

+
∫
R

1 + x2

x2

[∞∫
0

(
e−isx − 1 +

isx

1 + x2

)
e−st ds

]
m(dx)

)
= it2

(
− ia
t2

+
∫
R

1 + x2

x2

[
1

ix+ t
− 1

t
+

ix

1 + x2
1

t2

]
m(dx)

)
= a+

∫
R

1 + x2

x2
it2
[
−ix

t(ix+ t)
+

ix

(1 + x2)t2

]
m(dx)

= a+
∫
R

1 + x2

x2

[
tx

ix+ t
− x

1 + x2

]
m(dx)

= a+
∫
R

tx− i
ix+ t

m(dx) = a+
∫
R

1 + itx

it− x
m(dx) = RHS,

which concludes the proof of (2.8) and of the first part of Theorem 2.1.
For the second part, we calculate as above, that is, we change the order of

integration, utilize the fact that m is a symmetric measure and use the Laplace
transform

∞∫
0

cos(as)e−st ds =
t

t2 + a2
.

This yields the second equality in Theorem 2.1. �

COROLLARY 2.1. Let Et, t > 0, denote the exponential random variable with
parameter t and probability density te−tx1(0,∞)(x). Then

E[log φµ(−Et)] =
∞∫
0

log φµ(s) (te−ts) ds = (it)−1Vµ̃(it) for t > 0.
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Furthermore, if µ = [0,m] is symmetric (i.e., φµ is real) and m is the probability
distribution of a random variable X that is stochastically independent of Et then

(2.9) E
[
(1− cos(EtX))

1 +X2

X2

]
= E

[
1 +X2

t2 +X2

]
, t > 0.

From the equality (A) in Theorem 2.1 we deduce

COROLLARY 2.2. For a ∈ R, t > 0 and µ, ν ∈ (ID, ∗) and their free ana-
logues µ̃, ν̃ ∈ (ID,�) we have

(a) Vµ̃∗ν(it) = Vµ̃(it) + Vν̃(it) = Vµ̃� ν̃(it), (b) V
T̃aµ

(it) = a Vµ̃(it/a),

where Taµ(·) := µ(a−1(·)), and for the characteristic functions we have φTaµ(t)
= φ(at).

REMARK 2.3. The equality (A) in Theorem 2.1 can be potentially retrieved
from Theorem 5.5 in Barndorff-Nielsen and Thorbjørnsen (2002). However, there
one needs facts about Υ transforms (certain random integral mappings) and cumu-
lants of �-infinitely divisible probability measures, while here we have straightfor-
ward, elementary calculations.

2.4. An application of Theorem 2.1. Let C stand for a hyperbolic-cosh variable or
its probability distribution. It is ∗-infinitely divisible and its characteristic function
is φC(t) = (cosh t)−1. From Theorem 2.1, at the level of characteristic functions
(the mapping A), the free-infinitely divisible analogue C̃ (of the hyperbolic-cosh)
has the following Voiculescu transform:

(2.10) VC̃(it) = −it2
∞∫
0

(log cosh(s))e−ts ds = i[1− tβ(t/2)], t > 0,

where β is a special function defined in (4.1)(vii) below. The equality (2.10) is
shown in Section 4.2.

On the other hand, at the level of the parameters [a,m] (the mapping Z), the
hyperbolic-cosh has a = 0 and m(dx) = 1

2
|x|

1+x2
1

sinh(π|x|/2) dx. Consequently, by

(2.8), its �-free infinitely divisible analogue C̃ has Voiculescu transform

(2.11) VC̃(it) = −it
∞∫
0

|x|
t2 + x2

1

sinh(π|x|/2)
dx = i[tβ(t/2 + 1)− 1];

for computational details see Section 4.2.
As a byproduct of (2.10) and (2.11) we get the following functional relation for

the special function β:

(2.12) β(s) + β(s+ 1) = 1/s, s > 0,

However, the formula (2.12) can also be obtained from another known representa-
tion of the special function β: see (4.1)(ix).
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REMARK 2.4. Our two ways (two levels, two mappings) of getting free-in-
finitely divisible analogues of classical infinitely divisible characteristic functions
may produce new explicit relations between special functions.

3. SELFDECOMPOSABILITY

3.1. An important proper subclass of the class (ID, ∗) of all infinitely divisible
measures is the class L, also known as the class of selfdecomposable probability
measures; see Jurek and Vervaat (1983). A free analogue of a selfdecomposable
distribution was given by Barndorff-Nielsen and Thorbjørnsen (2002).

Let us recall that the class L contains all stable probability measures, exponen-
tial distributions, t-Student distribution, chi-square, gamma, Laplace, hyperbolic-
sine and hyperbolic-cosine measures (characteristic functions), etc.; see Jurek and
Yor (2004).

For the purposes of this paper let us recall that for µ ∈ L (or equivalently for
a characteristic function φ ∈ L) there exists a unique ν ∈ IDlog, i.e., infinitely
divisible measure with finite logarithmic moment (or equivalently there exists a
unique ψ ∈ IDlog ) such that

(3.1) logψ(t) = t
φ′(t)

φ(t)
, equivalently, log φ(t) =

t∫
0

logψ(s)
ds

s
,

and hence

logψ(−t) = −t φ
′(−t)
φ(−t)

= t(log φ(−t))′.

The above relations follow from the random integral representation of a self-
decomposable distribution: for each µ ∈ L there exists a unique Lévy process
Yν(s), s ­ 0, such that

(3.2) µ = L
(∞∫

0

e−sdYν(s)
)
, L(Yν(1)) = ν ∈ IDlog;

see Jurek and Vervaat (1983).
The characteristic function ψ in (3.1) is referred to as the background driving

characteristic function (BDCF) of φ ∈ L, and Yν is the background driving Lévy
process (BDLP) of µ.

REMARK 3.1. A very nice argument, based on the random integral representa-
tion (3.2), for the existence of densities for all real-valued selfdecomposable vari-
ables is due to Jacod (1985).
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3.2. Here is a technical property of the Lévy exponent Φ of an infinitely divisible
characteristic function with a real parameter a and a finite measure m, that is,

Φ(t) := ita+
∫
R

(
eitx − 1− itx

1 + x2

)
1 + x2

x2
m(dx)(3.3)

= itb+
∫
R

(eitx − 1− itx 1|x|¬1(x))
1 + x2

x2
m(dx),

where b := a +
∫
R x[1{|x|¬1}(x) − 1/(1 + x2)]1+x

2

x2
m(dx) and the finiteness of

the measure m guarantees the existence of the integral.

LEMMA 3.1. For any constants c1, c2 > 0 and any Lévy exponent Φ we have

lim
t→∞

tc1e−c2t Φ(t) = lim
t→∞

tc1e−c2t
∫
R

(eitx − 1− itx1|x|¬1(x))
1 + x2

x2
m(dx) = 0.

Proof. For a pure degenerate Φ, i.e., when m = 0 in (3.3), the assertion is
obvious.

Assume that b = 0. Since

|eitx−1− itx| ¬ min(|tx|2/2, 2|tx|) and |eitx−1| ¬ min(|tx|, 2) ¬ 2

(see, for instance, Billingsley (1986, pp. 352–353)), from (3.3) we get

tc1e−c2t |Φ(t)| ¬ tc1e−c2t
∫
|x|¬1

t2

2
x2

1+x2

x2
m(dx)+ tc1e−c2t

∫
|x|>1

2
1+x2

x2
m(dx)

¬ 1

2
tc1+2e−c2t

∫
|x|¬1

(1+x2)m(dx)+2tc1e−c2t
∫
|x|>1

(1+x−2)m(dx)→ 0

as t→∞. �

Now we give a free-selfdecomposability analogue, for the background driving
transforms, of the differential relations (3.1) known for classical selfdecomposabil-
ity.

THEOREM 3.1. Let φ̃ and ψ̃ be free-probability analogues of a selfdecompos-
able characteristic function φ and its background driving characteristic function
ψ, respectively. Then their Voiculescu transforms Vφ̃ and Vψ̃ satisfy the differential
equation

(3.4) Vψ̃(it) = Vφ̃(it)− t d
dt

[Vφ̃(it)], t > 0.

Equivalently, in terms of Vψ̃,

(3.5) Vφ̃(it) − t Vφ̃(i) = −t
t∫
1

s−2Vψ̃(is) ds = t
t∫
1

Vψ̃(is) d(s−1), t > 0.
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Proof. Note that using (A) from Theorem 2.1, the relation (3.1) for classical
selfdecomposability and then Lemma 3.1 we have

Vψ̃(it) := it2
∞∫
0

(logψ(−v))e−tvdv = it2
∞∫
0

(log φ(−v))′ve−tvdv

= it2
[
(log φ(−v))ve−tv|v=∞v=0 −

∞∫
0

(log φ(−v))(1− tv)e−tv dv
]

= it2
[∞∫
0

−(log φ(−v))e−tv dv + t
∞∫
0

(log φ(−v))ve−tv dv
]

= −Vφ̃(it)− it3 d
dt

[∞∫
0

log φ(−v)e−tv dv
]

= −Vφ̃(it)− it3 d
dt

[(it2)−1Vφ̃(it)]

= −Vφ̃(it)− t3 d
dt

[t−2Vφ̃(it)] = −Vφ̃(it)− t3
[
−2t−3Vφ̃(it) + t−2

d

dt
Vφ̃(it)

]
= Vφ̃(it)− t d

dt
Vφ̃(it),

which proves (3.4).
For (3.5), note that (3.4) is a first-order linear differential equation that we can

solve by the integrating factor method. More explicitly, (3.4) can be rewritten as

t−1Vψ̃(it) = t−1Vφ̃(it)− d

dt
[Vφ̃(it)] = −t d

dt

[
Vφ̃(it)

t

]
.

Hence, dividing by t and then integrating both sides over [1, t] (or [t, 1]), we get

Vφ̃(it)

t
− Vφ̃(i) = −

t∫
1

s−2Vψ̃(is) ds,

which completes the proof of Theorem 3.1. �

3.3. An application of Theorem 3.1. The hyperbolic-cosh function φC(t) =
(cosh t)−1 is selfdecomposable; see Jurek (1996). From (2.10) and (3.4) we ob-
tain Vψ̃C

, a free-probability analogue of the background driving characteristic func-
tion ψC , as

(3.6)

Vψ̃C
(it) = i

[
1 +

1

2
t2β′

(
1

2
t

)]
= i

[
1 +

t2

2
ζ

(
2,
t

2

)
− t2

4
ζ

(
2,
t

4

)]
, t > 0.

For the first equality one puts (2.10) into (3.4) and then uses the formula that ex-
presses β′ in terms of the Riemann zeta function ζ(2, a); for details see Section 4.2.
[Two more ways of getting the above formula are discussed in Section 5.]
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4. FREE-PROBABILITY ANALOGUES OF HYPERBOLIC CHARACTERISTIC FUNCTIONS

4.1. For ease of reference we recall the definitions and basic properties of some
special functions. All boldface numbers refer to Gradshteyn and Ryzhik (1994).

(4.1)

(i) (a) Γ(z) :=
∞∫
0

xz−1e−xdx, <z > 0 (Euler function);

(b) ψ(z) :=
d

dz
log Γ(z), <z > 0 (digamma function);

(ii) ψn(z) ≡ ψ(n)(z) = (−1)n+1n!ζ(n+ 1, z) (8.363(8))

(nth derivative; also called polygamma function);

(iii) ψ(2z) = 1
2(ψ(z) + ψ(z + 1/2)) + log 2 (8.365(6));

(iv) ζ(s, a) :=
∞∑
k=0

1

(k + a)s
, <s > 1, −a /∈ N (Riemann zeta function);

(v) ζ(s, a+ 1) = ζ(s, a)− 1/as, ζ(s, a+ 1/2) = 2sζ(s, 2a)− ζ(s, a);

(vi) ζ(2, t)− 1

4
ζ

(
2,
t

2

)
=

1

4
ζ

(
2,
t+ 1

2

)
(from (v));

(vii) β(x) :=
1

2

[
ψ

(
x+ 1

2

)
− ψ

(
x

2

)]
, β(x) =

∞∑
k=0

(−1)k

x+ k
, −x /∈ N

(8.732(1));

(viii) β′(x) = −
∞∑
k=0

(−1)k

(x+ k)2
= ζ(2, x)− 1

2
ζ

(
2,
x

2

)
(8.374);

(ix) β(t) =
∞∫
0

1

1 + e−x
e−tx dx, <t > 0 (8.371(2));

(x) ci(x) ≡ Ci(x) := −
∞∫
x

cosu

u
du;

si(x) := −
∞∫
x

sinu

u
du = −π

2
+ Si(x), where Si(x) :=

x∫
0

sinu

u
du.

4.2. Hyperbolic-cosine random variable. Let C stand for the standard hyperbolic
cosine variable, that is, the random variable with characteristic function

φC(t) :=
1

cosh t
= exp

∫
R

(cos(tx)− 1)
1 + x2

x2

[
1

2

|x|
1 + x2

1

sinh(π|x|/2)

]
(dx)

(4.2)

= exp
∫
R

(cos(tx)− 1)

[
1

2

1

|x| sinh(π|x|/2)

]
(dx),
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where the first bracket [. . .] is the density of the Khinchin finite measuremC corre-
sponding to φC in the representation (2.1), and the second one is the density of the
σ-finite Lévy (spectral) measure M ; see (2.1′) in Remark 2.1 and Jurek and Yor
(2004).

COROLLARY 4.1. The free-probability analogue of the hyperbolic-cosine
characteristic function φC has the following Voiculescu transform:

(4.3) Vφ̃C (it) = i[1− tβ(t/2)], t > 0; Vφ̃C (i) = − i(π/2− 1) ≈ −0.5707.

As a consequence,
β(s) + β(s+ 1) = 1/s, s > 0.

Proof. First proof: We use the identity

(4.4)
∞∫
0

e−ξx log(coshx)dx =
1

ξ
[β(ξ/2)− 1/ξ], <ξ > 0 (4.342(2)).

Hence and by (A) of Theorem 2.1,

Vφ̃C (it) = it2
∞∫
0

(log φC(−v))e−tv dv = −it2
∞∫
0

(log cosh(v))e−tv dv

= −it2
(

1

t
(β(t/2)− 1/t)

)
= i[1− tβ(t/2)], t > 0,

proving (4.3).
Second proof: This time we use the integral identity

(4.5)
∞∫
0

x dx

(b2 + x2) sinh(πx)
=

1

2b
− β(b+ 1), b > 0 ( 3.522(2)).

From the first line in (4.2) we see that φC has finite Khinchin measure

mC(dx) =
1

2

|x|
1 + x2

1

sinh(π|x|/2)
dx.

Consequently, from Theorem 2.1 we get

Vφ̃C (it) = −it
∫
R

1 + x2

t2 + x2
1

2

|x|
1 + x2

1

sinh(π |x|/2)
dx

= −it
∞∫
0

x

t2 + x2
1

sinh(πx/2)
dx = −it

∞∫
0

y

(t/2)2 + y2
1

sinhπy
dy

= −it
[

1

t
− β

(
t

2
+ 1

)]
= i

[
tβ

(
t

2
+ 1

)
− 1

]
, t > 0.
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From those two proofs we see that

(4.6) tβ

(
t

2
+ 1

)
− 1 = 1− tβ

(
t

2

)
, or β(s) + β(s+ 1) = 1/s;

and this completes the proof of Corollary 4.1. �

REMARK 4.1. (a) The identity (4.6) also follows from the fact that β(t) =∫∞
0

(1 + e−x)−1e−tx dx, t > 0 (see (4.1)(ix)).

4.3. Hyperbolic-sine variable. Let S stand for the standard hyperbolic-sine vari-
able, that is, the random variable with characteristic function

φS(t) :=
t

sinh t
= exp

∫
R

(cos(tx)− 1)
1 + x2

x2

[
1

2

|x|
1 + x2

e−π|x|/2

sinh(π|x|/2)

]
dx

(4.7)

= exp
∫
R

(cos(tx)− 1)

[
e−π|x|/2

2|x| sinh(π|x|/2)

]
dx,

where the first bracket [. . .] is the density of the (Khinchin) finite measure mS

corresponding to φS in (2.1), and the second one is the density of the σ-finite Lévy
(spectral) measure MS in Remark 2.1, formula (2.1′).

COROLLARY 4.2. The free-probability analogue φ̃S of the hyperbolic-sine
characteristic function φS has the following Voiculescu transform:

(4.8)
Vφ̃S (it) = i[tψ(t/2)− t log(t/2) + 1], t > 0,

Vφ̃S (i) = i(1− γ − log 2) ≈ −i 0.2703

(γ is the Euler–Mascheroni constant, ≈ 0.577).

Proof. First proof: The key integral identity for (4.8) is
∞∫
0

e−ξx(log(sinhx)− log x)dx =
1

ξ
[log(ξ/2)− 1/ξ − ψ(ξ/2)], <ξ > 0

(see 4.342(3)). (Note the misprint there; comp. www.mathtable.com/errata/gr6
errata.pdf.)

Hence and from (A) of Theorem 2.1, we get

Vφ̃S (it) = it2
∞∫
0

(log φS(−v))e−tv dv = −it2
∞∫
0

[log(sinh v)− log v]e−tv dv

(4.9)

= −it2 1

t
[log(t/2)− 1/t− ψ(t/2)] = i[tψ(t/2)− t log(t/2) + 1],

which proves (4.8).

http://www.mathtable.com/errata/gr6_errata.pdf
http://www.mathtable.com/errata/gr6_errata.pdf
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Second proof: This time we need the formula
∞∫
0

x dx

(x2 + β2)(eµx − 1)
=

1

2

[
log

(
βµ

2π

)
− π

βµ
− ψ

(
βµ

2π

)]
, <β,<µ > 0

(see 3.415(1)). From the first line in (4.7) we find that the Khinchin (finite) measure
mS (for φS) is equal to

mS(dx) =
1

2

|x|
1 + x2

e−π|x|/2

sinh(π|x|/2)
dx =

|x|
1 + x2

1

eπ|x| − 1
dx

(see also Jurek and Yor (2004)). Thus the above identity and (Z) of Theorem 2.1
give

Vφ̃S (it) = −2it
∞∫
0

x

t2 + x2
1

eπx − 1
dx = −it[log(t/2)− 1/t− ψ(t/2)](4.10)

= i[tψ(t/2)− t log(t/2) + 1], t > 0,

which coincides with (4.8). This completes the proof of Corollary 4.2. �

4.4. The hyperbolic-tangent variable. Let T stand for the standard hyperbolic-
tangent variable, that is, the random variable with characteristic function φT (t) =
(tanh t)/t. Its Khinchin representation is

(4.11) φT (t) =
tanh t

t
= exp

∞∫
−∞

(cos tx− 1)

[
1

2

|x|
1 + x2

e−π|x|/4

cosh(π|x|/4)

]
dx;

where [. . .] is the density of the finite Khinchin measure mT from (2.1).

COROLLARY 4.3. The free-probability analogue φ̃T of the hyperbolic-tangent
characteristic function has the following Voiculescu transform:

(4.12)
Vφ̃T (it) = it[log(t/2)−β(t/2)−ψ(t/2)] = it[log(t/4)−ψ(t/4+1/2)], t > 0,

Vφ̃T (i) = γ−π/2+log 2 ≈ −i 0.30, γ is the Euler–Mascheroni constant.

Consequently, we get an identity for Euler’s digamma function:

(4.13) 2ψ(2s)− ψ(s)− ψ(s+ 1/2) = 2 log 2, s > 0.

Proof. First proof: From the equality φC(t) = φS(t) · φT (t), (A) of Theo-
rem 2.1, and Corollaries 4.1 and 4.2 we get

Vφ̃T (it) = it2
∞∫
0

[log φC(t)− log φS(t)]e−ts ds = Vφ̃C (it)− Vφ̃S (it)

= i[1− tβ(t/2)]− i[tψ(t/2)− t log(t/2) + 1] = it[log(t/2)−β(t/2)−ψ(t/2)],

which gives the first equality in (4.12).
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Second proof: This time we need 3.415(3), that is,

∞∫
0

x

(x2 + β2)(eµx + 1)
dx =

1

2

[
ψ

(
βµ

2π
+

1

2

)
− log

(
βµ

2π

)]
, <β,<µ > 0.

Since 1 − tanhx = e−x

coshx = 2
e2x+1

, using the above and (Z) of Theorem 2.1, we
obtain

(4.14) Vφ̃T (it) = −it
∫
R

1 + x2

t2 + x2
1

2

|x|
1 + x2

e−π|x|/4

cosh(π|x|/4)
dx

= −2it
∞∫
0

x

(t2 + x2)(eπx/2 + 1)
dx

= −2it
1

2

[
ψ

(
tπ/2

2π
+

1

2

)
− log

(
tπ/2

2π

)]
= it[log(t/4)− ψ(t/4 + 1/2)],

which is the second equality in (4.12). Consequently, by Theorem 2.1,

log(t/4)− ψ(t/4 + 1/2) = log(t/2)− β(t/2)− ψ(t/2), t > 0,

or equivalently

(4.15) ψ(2s)− 1
2ψ(s)− 1

2ψ(s+ 1/2) = log 2, s > 0,

which completes the proof. �

REMARK 4.2. (a) Note that (4.15) coincides with 8.365(6) for n = 2 (see also
(4.1)(iii)).

(b) By reasoning as in the second proofs of Corollaries 4.1 and 4.2, and using
(4.14), we get, for t > 0,

∞∫
0

x

t2 + x2
(1− tanh(πx))dx = ψ(2t) + β(2t)− log(2t) = ψ(t+ 1/2)− log t.

(c) In particular,
∫∞
0

x
1+x2

(1− tanh(πx)) dx = ψ(3/2).

5. FREE-PROBABILITY ANALOGUES OF BACKGROUND DRIVING FUNCTIONALS OF
HYPERBOLIC DISTRIBUTIONS

Since the three hyperbolic characteristic functions φC , φS and φT (of the random
variables C, S and T ) are selfdecomosable (in other words, in the Lévy class L),
they admit the infinitely divisible background driving characteristic functions (for
short, BDCF) ψC , ψS and ψT , respectively. Further, if NC , NS and NT are their
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Lévy spectral measures then, on R \ {0},

ψC(t) = exp[−t tanh t], NC(dx) =
π

4

cosh(πx/2)

sinh2(πx/2)
dx,(5.1)

ψS(t) = exp[1− t coth t], NS(dx) =
π

4

1

sinh2(πx/2)
dx,(5.2)

ψT (t) = exp

[
2t

sinh(2t)
− 1

]
, NT (dx) =

π

8

1

cosh2(πx/4)
dx(5.3)

(see Jurek and Yor (2004)).

REMARK 5.1. (a) Note that ψT is the characteristic function of a compound
Poisson distribution.

(b) Elementary calculations give ψC/ψS = ψT .

Let ψ̃C , ψ̃S and ψ̃T be the free-probability analogues of BDCF for ψC , ψS , ψT ,
respectively. We have three possible ways of finding them: two because of inequali-
ties (A) and (Z) from Theorem 2.1 and, if possible, the third one by the differential
equation (3.4).

COROLLARY 5.1. Let ψ̃C , ψ̃S and ψ̃T be the free-probability analogues of the
corresponding BDCF. Then their Voiculescu transforms are as follows:

(5.4)
Vψ̃C

(it) = i

[
t2

2
ζ(2, t/2)− t2

4
ζ(2, t/4) + 1

]
,

Vψ̃C
(i) = −i(2C − 1) ≈ −i 0.83

(C denotes the Catalan constant C :=
∑∞

k=0
(−1)k

(2k+1)2
≈ 0.9159);

Vψ̃S
(it) = i[1 + t− 1

2 t
2ζ(2, t/2],

Vψ̃S
(i) = −i(π2/4− 2) ≈ −i 0.4674;

(5.5)

Vψ̃T
(it) = it[tζ(2, t/2)− (t/4)ζ(2, t/4)− 1]

= it[(t/4)ζ(2, (t+ 2)/4)− 1],

Vψ̃T
(i) = −i(2C + 1− π2/4) ≈ −i 0.3645.

(5.6)

Proof. From Theorem 2.1, using Mathematica and (4.1)(v), (vi) we get

Vψ̃C
(it) = −it2

∞∫
0

(v tanh v)e−tv dv

= −it2
[
1
8ζ(2, t/4 + 1)− 1

8ζ(2, t/4 + 1/2) + 1/t2
]

= −it2
[
1
4ζ(2, t/4)− 1

2ζ(2, t/2)− 1/t2
]

= i[(t2/2)ζ(2, t/2)− (t2/4)ζ(2, t/4) + 1].

(Note that (5.4), in a different way, was already computed in (3.6).)
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From 3.551(3):
∞∫
0

xµ−1e−βx cothx dx = Γ(µ)[21−µζ(µ, β/2)− β−µ], <µ > 1, <β > 0,

putting µ = 2 and β = t we get

Vψ̃S
(it) = it2

∞∫
0

(1− v coth v)e−tvdv = it2
[
t−1 −

∞∫
0

v coth v e−vt dv
]

= it2
[
t−1− 1

2ζ(2, t/2)+1/t2
]

= i
[
t− 1

2 t
2ζ(2, t/2)+1

]
= i
[
1+t− 1

2 t
2ζ(2, t/2)

]
,

which gives (5.5).
By Remark 5.1(b), logψT = logψC − logψS . Thus using (5.4) and (5.5) we

get

Vψ̃T
(it) = −it2

∞∫
0

[logψC(v)− logψS(v)]ve−tv dv

=
[
(t2/2)ζ(2, t/2)− (t2/4)ζ(2, t/4) + 1

]
− i
[
1 + t− 1

2 t
2ζ(2, t/2)

]
= i[t2ζ(2, t/2)− (t2/4)ζ(2, t/4)− t] = it[tζ(2, t/2)− (t/4)ζ(2, t/4)− 1]

= it

[
t

4
ζ

(
2,
t+ 2

4

)
− 1

]
,

which gives (5.6). (An alternative proof is by using the differential equation from
Theorem 3.1 and the formulas in Corollary 4.3.) �

Comparing (5.4), (5.5) and (5.6) yields

COROLLARY 5.2. We have

ψ̃C(t) = ψ̃S(t)ψ̃T (t); Vψ̃C
(it) = Vψ̃S

(it)+Vψ̃T
(it); Vψ̃C

(i) = Vψ̃S
(i)+Vψ̃T

(i).

6. FREE LAPLACE (OR FREE DOUBLE EXPONENTIAL) MEASURE

All the hyperbolic characteristic functions φC , φS , φT are infinite products of the
Laplace (also called double exponential) distributions; see Jurek (1996). Therefore
we include the latter in this paper as well.

6.1. Recall that the double exponential (2e) (or Laplace) distribution has proba-
bility density f(x) := 2−1e−|x| (x ∈ R) and characteristic function

φ2e(t) =
1

1 + t2
= exp

∫
R

(cos tx− 1)
1 + x2

x2

[
e−|x||x|
1 + x2

]
dx(6.1)

= exp
∫

R\{0}
(cos tx− 1)

[
e−|x|

|x|

]
dx,
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where the first square bracket [. . .] is the finite Khinchin spectral measurem2e, and
the second one is the Lévy spectral measure M2e.

COROLLARY 6.1. The free-probability analogue φ̃2e of the double exponential
distribution has the following Voiculescu transform:

Vφ̃2e(it) = 2it[ci(t) cos t+ si(t) sin t]

(
= −2it

∞∫
0

cosw

w + t
dw

)
, t > 0.

Proof. First proof (via (A) of Theorem 2.1): For <β,<ξ > 0 we have
∞∫
0

e−ξx log(β2 + x2) dx =
2

ξ
[log β − ci(βξ) cos(βξ)− si(βξ) sin(βξ)]

by 4.388(1). Therefore

(6.2) Vφ̃2e(it) = it2
∞∫
0

log φ2e(v) e−tv dv = −it2
∞∫
0

log(1 + v2)e−tv dv

= −it2[2t−1(− ci(t) cos t− si(t) sin t)]

= −2it

(
cos t

∞∫
t

cosx

x
dx+ sin t

∞∫
t

sinx

x
dx

)
= −2it

∞∫
t

cos t cosx+ sin t sinx

x
dx = −2it

∞∫
t

cos(x− t)
x

dx (w := x− t)

= −2it
∞∫
0

cosw

w + t
dw, t > 0.

Second proof (via (Z) of Theorem 2.1): By the second part of Theorem 2.1
and 3.354(2) we get

Vφ̃2e(it) = −it
∫
R

1 + x2

t2 + x2

[
|x|

1 + x2
e−|x|

]
dx = −2it

∞∫
0

x

t2 + x2
e−x dx(6.3)

= 2it[ci(t) cos t+ si(t) sin t] = −2it
∞∫
0

cosw

w + t
dw.

6.2. The Laplace characteristic function φ2e = (1 + t2)−1 is selfdecomposable.
Therefore it has the background driving characteristic function ψ2e related to φ2e
via (3.4). Hence

(6.4) ψ2e(t) = exp

[
t
φ′2e(t)

φ2e(t)

]
= exp

(
− 2t2

1 + t2

)
= exp 2

(
1

1 + t2
− 1

)
(compound Poisson)

= exp 2
∫
R

(eitx − 1)
1

2
e−|x|dx = exp

∫
R

(
eitx − 1− itx

1 + x2

)
e−|x| dx,
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from which we infer that mψ2e(dx) := x2

1+x2
e−|x|dx is its finite Khinchin measure

in (2.1). Here is the Voiculescu transform of the free analogue of ψ2e.

COROLLARY 6.2. The free-probability analogue of the BDCF ψ2e has
Voiculescu transform

(6.5) Vψ̃2e
(it) = 2it[t(ci(t) sin t− si(t) cos t)− 1].

Proof. First proof: From Corollary 6.1, Vφ̃2e(it) = 2itα(t) where α(t) :=

ci(t) cos t+ si(t) sin t. Then Theorem 3.1 gives

Vψ̃2e
(it) = Vφ̃2e(it)− t

d

dt
[Vφ̃2e(it)]

= 2itα(t)− t(2iα(t) + 2itα′(t)) = −2it2α′(t)

= −2it2[t−1 − (ci(t) sin t− si(t) cos t)]

= 2it[t(ci(t) sin t− si(t) cos t)− 1].

Second proof: Here we use the equality
∞∫
0

e−ξx

β2 + x2
dx =

1

β
[ci(ξβ) sin(ξβ)− si(ξβ) cos(ξβ)], <ξ,<β > 0

(see 3.354(1)). Hence and from (A) of Theorem 2.1 and (6.4),

Vψ̃2e
(it) = it2

∞∫
0

(logψ2e(s))e
−ts ds = 2it2

∞∫
0

[
1

1 + s2
− 1

]
e−st ds

= 2it2
(
[ci(t) sin t− si(t) cos t]− t−1

)
= 2it[t(ci(t) sin t− si(t) cos t)− 1].

Third proof: Now we use (Z) of Theorem 2.1 and the finite Khinchin measures
mψ(dx) = x2

1+x2
e−|x|dx from (6.4) to get

Vψ̃2e
(it) = −it

∫
R

x2

t2 + x2
e−|x| dx = −it

∫
R

(
1− t2

t2 + x2

)
e−|x| dx

= 2it

(
t2
∞∫
0

1

t2 +x2
e−x dx− 1

)
= 2it

(
t2
[

1

t
(ci(t) sin t− si(t) cos t)

]
− 1

)
= 2it[t(ci(t) sin t− si(t) cos t)− 1].
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