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Abstract. We examine order statistics from a two-sided Pareto distribution.
It turns out that the smallest two order statistics and the largest two order
statistics have very unusual limits. We obtain strong and weak exact laws
for the smallest and the largest order statistics. For such statistics we also
study the generalized law of the iterated logarithm. For the second smallest
and second largest order statistics we prove the central limit theorem even
though their second moment is infinite.
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1. INTRODUCTION

This paper extends the work done in [1]. Since then there have been other papers,
[5]–[7], on the same set of random variables, but in different directions. In [1]
we obtained unusual strong laws where the random variables have right and left
tails with the same thickness. In most other Exact Strong Laws, we only looked
at random variables that had a thicker right tail or no left tail at all. But here we
consider random variables X with two-sided Pareto distribution for which both
EX+ = ∞ and EX− = ∞, where X+ = max(X, 0) and X− = max(−X, 0).
The underlying distribution is

f(x) =


q
x2

if x ¬ −1,
0 if −1 < x < 1,
p
x2

if x ­ −1,

where p+ q = 1. In this paper we shall study arrays of random variables
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X11, X12, . . . , X1m

X21, X22, . . . , X2m

...
Xi1, Xi2, . . . , Xim

...

which will be denoted by {Xi1, Xi2, . . . , Xim} . We shall assume that these ran-
dom variables are all independent, i.e., independent in each row and the rows are
independent of each other. We look at all kinds of order statistics from a fixed
sample of size m. The kth order statistic in row i is denoted by Xi(k) or by X(k) if
there is no doubt, and has the density

(1.1) fX(k)
(x) =


m!

(k−1)!(m−k)!
(
− q
x

)k−1 q
x2

(
1 + q

x

)m−k if x ¬ −1,
0 if −1 < x < 1,

m!
(k−1)!(m−k)!

(
1− p

x

)k−1 p
x2

( p
x

)m−k if x ­ −1.

The interesting cases are when k is 1, 2, m− 1 or m.
We mention that the constant C used in the proofs denotes a generic real

number that is not necessarily the same in each appearance. It is usually used
as an upper bound in order to establish the convergence of various series. And
it will also be used as a generic lower bound for divergent series. Also, we define
lg x = ln(max{e, x}) and lg2 x = lg(lg x), which is not logarithm to base 2.

2. STRONG LAWS

We first look at the smallest order statistic, and then at the largest one. Since for
the smallest order statistic the left tail is bigger than the right one, the limit will
be negative. But the result also depends on the parameters m, q and α. What is
fascinating is that we can obtain Exact Strong Laws for these random variables. In
Section 4 we show that these strong laws are quite special, in that it is quite difficult
to balance partial sums of random variables that possess infinite expectations with
constants and achieve an almost sure result.

THEOREM 2.1. Let {Xi1, . . . , Xim} be i.i.d. random variables from our two-
sided Pareto distribution. Then for α > −2 we have

lim
n→∞

∑n
i=1

(lg i)α

i Xi(1)

(lg n)α+2
=
−mq
α+ 2

almost surely .

Proof. Let an = (lg n)α/n, bn = (lg n)α+2 and cn = bn/an = n(lg n)2. We
use the decomposition
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1

bn

n∑
i=1

aiXi(1) =
1

bn

n∑
i=1

ai[Xi(1)I(|Xi(1)| ¬ ci)− E(X(1)I(|X(1)| ¬ ci))](2.1)

+
1

bn

n∑
i=1

aiXi(1)I(|Xi(1)| > ci)

+
1

bn

n∑
i=1

aiE(X(1)I(|X(1)| ¬ ci)).

The first term on the right hand side of (2.1) vanishes almost surely by the Khinchin
–Kolmogorov Convergence Theorem (see [3, p. 113]) and Kronecker’s lemma. We
focus on the left tail since in this situation it dominates the right tail. We have

∞∑
n=1

1

c2n
E(X2

(1)I(|X(1)| ¬ cn)) =
∞∑
n=1

1

c2n

[ −1∫
−cn

x2fX(1)
(x) dx+

cn∫
1

x2fX(1)
(x) dx

]
< C

∞∑
n=1

1

c2n

−1∫
−cn

x2
(
q

x2

)
dx < C

∞∑
n=1

1

cn
= C

∞∑
n=1

1

n(lg n)2
<∞.

The second term on the RHS in (2.1) vanishes, with probability 1, by the Borel–
Cantelli lemma since
∞∑
n=1

P(|X(1)| > cn) =
∞∑
n=1

[−cn∫
−∞

fX(1)
(x) dx+

∞∫
cn

fX(1)
(x) dx

]
< C

∞∑
n=1

−cn∫
−∞

q

x2
dx < C

∞∑
n=1

1

cn
= C

∞∑
n=1

1

n(lg n)2
<∞.

Thus, our almost sure limit follows from the last term in (2.1):

b−1n
n∑
i=1

aiE(X(1)I(|X(1)| ¬ ci)) = b−1n
n∑
i=1

ai

[−1∫
−ci

xfX(1)
(x) dx+

ci∫
1

xfX(1)
(x) dx

]
∼ b−1n

n∑
i=1

ai
−1∫
−ci

xfX(1)
(x) dx ∼ mqb−1n

n∑
i=1

ai
−1∫
−ci

dx

x
= mqb−1n

n∑
i=1

ai(− lg ci)

∼ −mq
(lg n)α+2

n∑
i=1

(lg i)α

i
(lg i) =

−mq
(lg n)α+2

n∑
i=1

(lg i)α+1

i

∼ −mq
(lg n)α+2

· (lg n)
α+2

α+ 2
=
−mq
α+ 2

,

which concludes this proof. �

The next result can be found in [1], so we skip the proof.

THEOREM 2.2. Let {Xi1, . . . , Xim} be i.i.d. random variables from our two-
sided Pareto distribution. Then for α > −2 we have

lim
n→∞

∑n
i=1

(lg i)α

i Xi(m)

(lg n)α+2
=

mp

α+ 2
almost surely .
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Here we have used the weights an = (lg n)α/n, but we can replace (lg n)α

with any slowly varying function. That will naturally affect the bn in obtaining an
Exact Strong Law. However, if we increase an any more than that, say take a higher
power than negative one, then we can only obtain a weak law. That is the point of
the next two sections.

3. WEAK LAWS

Next we will establish weak laws where strong laws will not hold. What is interest-
ing is that the distribution of our random variables does not change, we just slightly
increase the weights an. And we do obtain an appropriate norming sequence bn, in
order to obtain a Fair Game and not an Exact Strong Law. We will use these weak
laws to establish the almost sure behavior of these partial sums in the next section,
which shows why we must select weights as in Section 2.

THEOREM 3.1. Let {Xi1, . . . , Xim} be i.i.d. random variables from our two-
sided Pareto distribution. Then for α > −1 and any slowly varying function L(x),∑n

i=1 L(i)i
αXi(1)

L(n)(lg n)nα+1

P→ −mq
α+ 1

as n→∞.

Proof. Let ai = L(i)iα and bn = L(n)(lg n)nα+1. We will use the Weak Law
from [3, p. 356]. Let ε > 0. Once again, since the left tail dominates the right tail,
we obtain

n∑
i=1

P(ai|X(1)|/bn > ε)

= m
n∑
i=1

[−εbn/ai∫
−∞

q

x2

(
1 +

q

x

)
m−1 dx+

∞∫
εbn/ai

p

x2

(
p

x

)
m−1 dx

]

< C
n∑
i=1

−εbn/ai∫
−∞

dx

x2
<
C
∑n

i=1 ai

bn
=

C
∑n

i=1 L(i)i
α

L(n)(lg n)nα+1

<
CL(n)nα+1

L(n)(lg n)nα+1
=

C

lg n
→ 0.

As for the variance term, we have

n∑
i=1

Var

[
aiX(1)

bn
I
(
aiX(1)

bn
< 1

)]
< b−2n

n∑
i=1

a2i

−1∫
−bn/ai

mq

(
1 +

q

x

)
m−1 dx+

bn/ai∫
1

mp

(
p

x

)
m−1 dx
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< Cb−2n
n∑
i=1

a2i

−1∫
−bn/ai

mq

(
1 +

q

x

)
m−1 dx

< Cb−2n
n∑
i=1

a2i

0∫
−bn/ai

dx =
C
∑n

i=1 ai

bn
→ 0.

Next, we must compute the expectation from the Weak Law Theorem of [3, p. 356].
Using

∑n
i=1 ai = o(bn) we see the right tail does not affect our limit at all. We

have
n∑
i=1

E
[
aiX(1)

bn
I
(
aiX(1)

bn
< 1

)]
=
m

bn

n∑
i=1

ai

[ −1∫
−bn/ai

q

x

(
1 +

q

x

)
m−1 dx+

bn/ai∫
1

p

x

(
p

x

)
m−1 dx

]

∼ m

bn

n∑
i=1

ai
−1∫
−bn/ai

q

x

(
1 +

q

x

)m−1
dx ∼ mq

bn

n∑
i=1

ai
−1∫
−bn/ai

dx

x

=
−mq
bn

n∑
i=1

ai[lg(bn)− lg(ai)].

It is interesting that both of these terms are equally important. We have

b−1n
n∑
i=1

ai lg(bn) =

∑n
i=1 L(i)i

α[lg(L(n)) + lg2 n+ (α+ 1) lg n]

L(n)(lg n)nα+1

∼
(α+ 1)

∑n
i=1 L(i)i

α lg n

L(n)(lg n)nα+1
∼

(α+ 1)L(n)n
α+1

α+1 lg n

L(n)(lg n)nα+1
= 1,

while

b−1n
n∑
i=1

ai lg(ai) =

∑n
i=1 L(i)i

α[lg(L(i)) + α lg i]

L(n)(lg n)nα+1

∼
α
∑n

i=1 L(i)(lg i)i
α

L(n)(lg n)nα+1
∼
αL(n)(lg n)n

α+1

α+1

L(n)(lg n)nα+1
=

α

α+ 1
.

Combining these two terms, we see that our limit is indeed−mq
(
1− α

α+1

)
= −mq

α+1 ,
which concludes this proof. �

This next weak law can also be found in [1].

THEOREM 3.2. Let {Xi1, . . . , Xim} be i.i.d. random variables from our two-
sided Pareto distribution. Then for α > −1 and any slowly varying function L(x),∑n

i=1 L(i)i
αXi(m)

L(n)(lg n)nα+1

P→ mp

α+ 1
as n→∞.

We will use these two theorems in the next section, to show the odd fluctuations
of these partial sums.
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4. GENERALIZED LAWS OF THE ITERATED LOGARITHM

This section nicely compares what we accomplished in the previous two sections.
It shows us how precise our strong laws from Section 2 are. And it also shows
that even when we can obtain a weak law, the almost sure counterpart does not
necessarily hold. Furthermore, the decomposition here is very delicate and since
these random variables have support on all of the reals, we need to be extra care-
ful in showing which terms are negligible and which are not. The idea of how to
decompose our partial sums comes from [4].

THEOREM 4.1. Let {Xi1, . . . , Xim} be i.i.d. random variables from our two-
sided Pareto distribution. Then for α > −1 and any slowly varying function L(x),

lim inf
n→∞

∑n
i=1 L(i)i

αXi(1)

L(n)(lg n)nα+1
= −∞ almost surely

and

lim sup
n→∞

∑n
i=1 L(i)i

αXi(1)

L(n)(lg n)nα+1
=
−mq
α+ 1

almost surely .

Proof. Here we set an = L(n)nα, bn = L(n)(lg n)nα+1, cn = bn/an =
n lg n, but we also need a fourth sequence dn = n.

To find the lower limit, let M > 0; then

∞∑
n=1

P(anX−(1) > Mbn) =
∞∑
n=1

−Mcn∫
−∞

mq

x2

(
1 +

q

x

)m−1
dx

> C
∞∑
n=1

−Mcn∫
−∞

dx

x2
> C

∞∑
n=1

1

cn
= C

∞∑
n=1

1

n lg n
=∞.

Thus

lim sup
n→∞

anX
−
n(1)

bn
=∞ almost surely,

and since
anX

−
n(1)

bn
¬

∑n
i=1 aiX

−
i(1)

bn
,

we have

lim sup
n→∞

∑n
i=1 aiX

−
i(1)

bn
=∞ almost surely.

On the other hand, E(X+
(1)) <∞ and using

∑n
i=1 ai = o(bn) we see that

lim
n→∞

∑n
i=1 aiX

+
i(1)

bn
= 0 almost surely.
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Putting all this together we obtain

lim inf
n→∞

∑n
i=1 aiXi(1)

bn
= lim inf

n→∞

(∑n
i=1 aiX

+
i(1)

bn
−

∑n
i= aiX

−
i(1)

bn

)
= 0− lim sup

n→∞

∑n
i=1 aiX

−
i(1)

bn
= −∞

almost surely, of course.
Now the other result is quite difficult. From Theorem 3.1, we can claim that

lim sup
n→∞

∑n
i=1 aiXi(1)

bn
­ −mq
α+ 1

almost surely.

Hence we need to prove that

lim sup
n→∞

∑n
i=1 aiXi(1)

bn
¬ −mq
α+ 1

almost surely.

This is where the sequence dn = n comes into play. We break our partial sum into
five pieces, toss one away and then examine the other four. We have

(4.1) b−1n
n∑
i=1

aiXi(1)

= b−1n
n∑
i=1

ai[Xi(1)I(|Xi(1)| ¬ di)− E(X(1)I(|X(1)| ¬ di))]

+ b−1n
n∑
i=1

ai[Xi(1)I(di < Xi(1) ¬ ci)− E(X(1)I(di < X(1) ¬ ci))]

+ b−1n
n∑
i=1

aiXi(1)I(Xi(1) > ci) + b−1n
n∑
i=1

aiXi(1)I(Xi(1) < −di)

+ b−1n
n∑
i=1

aiE(X(1)I(−di ¬ X(1) ¬ ci)).

Since the fourth term on the right hand side in (4.1) is strictly negative, we have

(4.2) b−1n
n∑
i=1

aiXi(1)

¬ b−1n
n∑
i=1

ai[Xi(1)I(|Xi(1)| ¬ di)− E(X(1)I(|X(1)| ¬ di))]

+ b−1n
n∑
i=1

ai[Xi(1)I(di < Xi(1) ¬ ci)− E(X(1)I(di < X(1) ¬ ci))]

+ b−1n
n∑
i=1

aiXi(1)I(Xi(1) > ci) + b−1n
n∑
i=1

aiE(X(1)I(−di ¬ X(1) ¬ ci)).
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The first term on the RHS in (4.2) vanishes almost surely by the Khinchin–Kol-
mogorov Convergence Theorem and Kronecker’s lemma since

∞∑
n=1

1

c2n

n∫
−n
x2fX(1)

(x) dx < C
∞∑
n=1

1

c2n

−1∫
−n
x2
mq

x2

(
1 +

q

x

)m−1
dx

< C
∞∑
n=1

1

c2n

−1∫
−n

dx < C
∞∑
n=1

n

c2n
= C

∞∑
n=1

1

n(lg n)2
<∞.

One can use the same technique for the second term in (4.2) or just notice that the
right tail has a finite expectation, so in view of

∑n
i=1 ai = o(bn) that term also

vanishes. But to be rigorous,

∞∑
n=1

1

c2n

n lgn∫
n

x2
mp

x2

(
p

x

)m−1
dx < C

∞∑
n=1

1

c2n

n lgn∫
n

x−m+1 dx <∞

for any m ­ 2. When m = 2, we have

∞∑
n=1

1

c2n

n lgn∫
n

dx

x
=
∞∑
n=1

lg2 n

(n lg n)2
<∞

and when m > 2 we have

∞∑
n=1

1

c2n

n lgn∫
n

x−m+1 dx <
∞∑
n=1

1

c2n

∞∫
1

x−m+1 dx < C
∞∑
n=1

1

c2n
<∞.

Similarly, the third term is on the smaller side, so

∞∑
n=1

P(X(1) > cn) =
∞∑
n=1

∞∫
cn

mp

x2

(
p

x

)m−1
dx

< C
∞∑
n=1

∞∫
cn

x−m−1 dx < C
∞∑
n=1

1

cmn
<∞

since m ­ 2. The final term in (4.2) produces our limit. The right tail is not neces-
sary since it has a finite expectation. Thus

b−1n
n∑
i=1

ai
ci∫
−di

xfX(1)
(x) dx ∼ b−1n

n∑
i=1

ai
−1∫
−i
x
mq

x2

(
1 +

q

x

)m−1
dx

∼ mq

bn

n∑
i=1

ai
−1∫
−i

dx

x
=

mq

L(n)(lg n)nα+1

n∑
i=1

L(i)iα(− lg i)

=
−mq

∑n
i=1 L(i)(lg i)i

α

L(n)(lg n)nα+1
→ −mq

α+ 1
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as n → ∞. This show that the almost sure upper limit is indeed −mq/(α + 1),
which concludes this proof. �

Next we turn to the largest order statistic.

THEOREM 4.2. Let {Xi1, . . . , Xim} be i.i.d. random variables from our two-
sided Pareto distribution. Then for α > −1 and any slowly varying function L(x),

lim inf
n→∞

∑n
i=1 L(i)i

αXi(m)

L(n)(lg n)nα+1
=

mp

α+ 1
almost surely

and

lim sup
n→∞

∑n
i=1 L(i)i

αXi(m)

L(n)(lg n)nα+1
=∞ almost surely .

Proof. As in the previous proof, let an = L(n)nα, bn = L(n)(lg n)nα+1,
cn = bn/an = n lg n and dn = n. From Theorem 3.2 we have

lim inf
n→∞

∑n
i=1 L(i)i

αXi(m)

L(n)(lg n)nα+1
¬ mp

α+ 1
almost surely,

so in this proof we need to obtain

lim inf
n→∞

∑n
i=1 L(i)i

αXi(m)

L(n)(lg n)nα+1
­ mp

α+ 1
almost surely.

The decomposition we use is similar, but naturally it is flipped over:

(4.3) b−1n
n∑
i=1

aiXi(m)

= b−1n
n∑
i=1

ai[Xi(m)I(|Xi(m)| ¬ di)− E(X(m)I(|X(m)| ¬ di))]

+ b−1n
n∑
i=1

ai[Xi(m)I(−ci ¬ Xi(m) < −di)− E(X(m)I(−ci ¬ X(m) < −di))]

+ b−1n
n∑
i=1

aiXi(m)I(Xi(m) < −ci) + b−1n
n∑
i=1

aiXi(m)I(Xi(m) > di)

+ b−1n
n∑
i=1

aiE(X(m)I(−ci ¬ X(m) ¬ di)).
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Since the fourth term on the RHS in (4.3) is strictly positive, we have

(4.4) b−1n
n∑
i=1

aiXi(m)

­ b−1n
n∑
i=1

ai[Xi(m)I(|Xi(m)| ¬ di)− E(X(m)I(|X(m)| ¬ di))]

+ b−1n
n∑
i=1

ai[Xi(m)I(−ci ¬ Xi(m) < −di)− E(X(m)I(−ci ¬ X(m) < −di))]

+ b−1n
n∑
i=1

aiXi(m)I(Xi(m) < −ci) + b−1n
n∑
i=1

aiE(X(m)I(−ci ¬ X(m) ¬ di)).

By the usual arguments the first term on the RHS in (4.4) vanishes. Note that the
right tail is now the thicker one:

∞∑
n=1

1

c2n

n∫
−n
x2fX(m)

(x) dx < C
∞∑
n=1

1

c2n

n∫
1

x2
mp

x2

(
1− p

x

)m−1
dx

< C
∞∑
n=1

1

c2n

n∫
1

dx < C
∞∑
n=1

n

c2n
= C

∞∑
n=1

1

n(lg n)2
<∞.

The next term in (4.4) easily converges to zero, since it is on the smaller tail:

∞∑
n=1

1

c2n

−dn∫
−cn

x2fX(m)
(x) dx =

∞∑
n=1

1

c2n

−dn∫
−cn

x2
mq

x2

(
−q
x

)m−1
dx

< C
∞∑
n=1

1

c2n

−dn∫
−cn

x−m+1 dx <∞

for any m ­ 2; just let u = −x and the proof is the same as in the previous
theorem. Likewise for all m ­ 2,

∞∑
n=1

P(X(m) < −cn) =
∞∑
n=1

−cn∫
−∞

mq

x2

(
−q
x

)m−1
dx

< C
∞∑
n=1

−cn∫
−∞

x−m−1 dx < C
∞∑
n=1

1

cmn
<∞.

So, our limit is

b−1n
n∑
i=1

ai
di∫
−ci

xfX(m)
(x) dx ∼ b−1n

n∑
i=1

ai
i∫
1

x
mp

x2

(
1− p

x

)m−1
dx

∼ mp

bn

n∑
i=1

ai
i∫
1

dx

x
=

mp

L(n)(lg n)nα+1

n∑
i=1

L(i)iα(lg i)→ mp

α+ 1
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as n → ∞, where we threw out the left integral, since
∑n

i=1 ai = o(bn). Putting
all this together we have

lim inf
n→∞

∑n
i=1 L(i)i

αXi(m)

L(n)(lg n)nα+1
=

mp

α+ 1
almost surely.

Turning to the almost sure upper limit, let M > 0. Then

∞∑
n=1

P(anX+
(m) > Mbn) =

∞∑
n=1

∞∫
Mcn

mp

x2

(
1− p

x

)m−1
dx

> C
∞∑
n=1

∞∫
Mcn

dx

x2
> C

∞∑
n=1

1

cn
= C

∞∑
n=1

1

n lg n
=∞.

Hence

lim sup
n→∞

anX
+
n(m)

bn
=∞ almost surely,

and since
anX

+
n(m)

bn
¬

∑n
i=1 aiX

+
i(m)

bn
,

we have

lim sup
n→∞

∑n
i=1 aiX

+
i(m)

bn
=∞ almost surely.

Since E(X−(m)) <∞ and
∑n

i=1 ai = o(bn), we have

lim
n→∞

∑n
i=1 aiX

−
i(m)

bn
= 0 almost surely.

Thus

lim sup
n→∞

∑n
i=1 L(i)i

αXi(m)

L(n)(lg n)nα+1
=∞ almost surely,

which concludes this proof. �

5. CENTRAL LIMIT THEOREMS

Here we look at the second smallest and second largest order statistics. They both
have a finite mean, but an infinite variance. We will apply Theorem 4 from [2]. We
will start with the smaller once again. By using (1.1) with k = 2 we get the density
of the second smallest order statistic:

fX(2)
(x) =


m(m− 1)

(
− q
x

) q
x2

(
1 + q

x

)m−2 if x ¬ −1,
0 if −1 < x < 1,

m(m− 1)
(
1− p

x

) p
x2

( p
x

)m−2 if x ­ −1.
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There are three conditions that we need to meet in order to apply that theorem.
The first one is that

(5.1) G(x) = E(X2
(2)I(|X(2)| ¬ x))

is slowly varying. The other two are

(5.2) G

(
Bn

min1¬i¬n ai

)
∼ G

(
Bn

max1¬i¬n ai

)
and for all ε > 0,

(5.3)
n∑
i=1

P(|X(2)| > εBn/ai) = o(1)

where once again ai are our weights and now Bn is our norming sequence. Since
m ­ 3,

G(x) = E(X2
(2)I(|X(2)| ¬ x))

= m(m− 1)
−1∫
−x
t2
(
−q
t

)
q

t2

(
1 +

q

t

)m−2
dt

+m(m− 1)
x∫
1

t2
(
1− p

t

)
p

t2

(
p

t

)m−2
dt

∼ m(m− 1)
−1∫
−x
t2
(
−q
t

)
q

t2

(
1 +

q

t

)m−2
dt

∼ m(m− 1)
−1∫
−x
t2
(
−q
t

)
q

t2
dt

= m(m− 1)(−q2)
−1∫
−x

dt

t
= m(m− 1)q2 lg x.

Thus the classic slowly varying function, logarithm, appears once again, yielding
(5.1). The formula for Bn is quite restrictive. It is B2

n ∼ nG(Bn), which for us is

B2
n ∼ m(m− 1)q2n lg(Bn),

which allows us to choose as our norming sequence

Bn = q

√(
m

2

)
n lg n.

For simplicity we will let ai = (lg i)α, which makes (5.2) trivial. But in order
to satisfy (5.3) we will have to set α to be less than one-half. The real pain in
these theorems is the computation of the mean, which is not really necessary but is
included. Sadly, they do not simplify into a nice expression, like our sequence Bn.
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THEOREM 5.1. Let {Xi1, . . . , Xim} be i.i.d. random variables from our two-
sided Pareto distribution. If α < 1/2, then∑n

i=1(lg i)
α
[
Xi(2) − E(X(2))

]
q
√(

m
2

)
n lg n

d→ N(0, 1) as n→∞.

Proof. With (5.1) and (5.2) satisfied, we turn our attention to (5.3). Let ε > 0.
Then

n∑
i=1

P(|X(2)| > εBn/ai) < C
n∑
i=1

(−εBn/ai∫
−∞

dx

x3
+

∞∫
εBn/ai

dx

xm

)

<
C
∑n

i=1 a
2
i

B2
n

<
C
∑n

i=1(lg i)
2α

n lg n
→ 0

since α < 1/2. In order to compute the mean, we can no longer ignore the smaller
tails, nor can we approximate integrands with bounds. The mean is

E(X(2)) = m(m− 1)
−1∫
−∞

x

(
−q
x

)
q

x2

(
1 +

q

x

)m−2
dx

+m(m− 1)
∞∫
1

x

(
1− p

x

)
p

x2

(
p

x

)m−2
dx

= m(m− 1)q2
−1∫
−∞

(
−1
x2

)(
1 +

q

x

)m−2
dx

+m(m− 1)pm−1
∞∫
1

(
1− p

x

)
x−m+1 dx.

In the first of the two integrals, we let u = 1 + q/x, so

m(m− 1)q2
−1∫
−∞

(
−1
x2

)(
1 +

q

x

)m−2
dx

= m(m− 1)q
p∫
1

um−2 du = mq(pm−1 − 1),

which is negative, of course. The second integral is

m(m− 1)pm−1
∞∫
1

(x−m+1 − px−m) dx = m(m− 1)pm−1
(

1

m− 2
− p

m− 1

)
=
mpm−1

m− 2
(q(m− 1) + p).
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Combining these two we have

E(X(2)) = mq(pm−1 − 1) +
mpm−1

m− 2
(q(m− 1) + p),

concluding this proof. �

We finish with a central limit theorem for the second largest order statistic.
According to (1.1) its density is

fX(m−1)
(x) =


m(m− 1)

(
− q
x

)m−2 q
x2

(
1 + q

x

)
if x ¬ −1,

0 if −1 < x < 1,

m(m− 1)
(
1− p

x

)m−2 p
x2

( p
x

)
if x ­ −1.

THEOREM 5.2. Let {Xi1, . . . , Xim} be i.i.d. random variables from our two-
sided Pareto distribution. If α < 1/2, then∑n

i=1(lg i)
α[Xi(m−1) − E(X(m−1))]

p
√(

m
2

)
n lg n

d→ N(0, 1) as n→∞.

Proof. The proof is similar to the proof of Theorem 5.1. In this setting

G(x) = E(X2
(m−1)I(|X(m−1)| ¬ x)) ∼ m(m− 1)p2

x∫
1

dt

t
= m(m− 1)p2 lg x.

Our norming sequence is

Bn = p

√(
m

2

)
n lg n.

And for all ε > 0,

n∑
i=1

P(|X(m−1)| > εBn/ai) < C
n∑
i=1

(−εBn/ai∫
−∞

dx

xm
+

∞∫
εBn/ai

dx

x3

)

<
C
∑n

i=1 a
2
i

B2
n

<
C
∑n

i=1(lg i)
2α

n lg n
→ 0

since α < 1/2. Finally, by straightforward computations we get

E(X(m−1)) = mp(1− qm−1)− mqm−1

m− 2
(p(m− 1) + q),

concluding this proof. �

We could have selected many other coefficients, but ai = (lg i)α was simple
and it works quite well with this theorem. And notice that when α = 0 we have
the unweighted case, which is nice. We also have the unweighted case in our weak
laws and one-sided strong laws, but not in our Exact Strong Laws.
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