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EXTREMES OF ORDER STATISTICS
OF STATIONARY GAUSSIAN PROCESSES∗
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Abstract. Let {Xi(t), t > 0}, 1 6 i 6 n, be mutually independent
and identically distributed centered stationary Gaussian processes. Under
some mild assumptions on the covariance function, we derive an asymp-
totic expansion of

P
(

sup
t∈[0,xmr(u)]

X(r)(t) 6 u
)

as u→∞,

where
mr(u) =

(
P( sup

t∈[0,1]
X(r)(t) > u)

)−1(
1 + o(1)

)
,

and {X(r)(t), t > 0} is the rth order statistic process of {Xi(t), t > 0},
1 6 i, r 6 n. As an application of the derived result, we analyze the asymp-
totics of supremum of the order statistic process of stationary Gaussian pro-
cesses over random intervals.
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1. INTRODUCTION

Let {X(t) : t > 0} be a centered stationary Gaussian process with continuous
sample paths. One of the classical results in extreme value theory states that, under
some mild conditions on the covariance function of X ,

(1.1) lim
u→∞

P
(

sup
t∈[0,xm(u)]

X(t) 6 u
)
= e−x

for x > 0 and m(u) = P
(
supt∈[0,1]X(t) > u

)−1; see, e.g., Leadbetter et al. [11],
Theorem 12.3.4; Arendarczyk and Dębicki [4], Lemma 4.3; Tan and Hashorva [13],
Lemma 3.3.

∗ This work was supported by the FP7 project RARE-318984.
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Consider a vector-valued Gaussian stochastic process {X(t) : t > 0}, where
X(t) =

(
X1(t), . . . , Xn(t)

)
with {Xi(t) : t > 0}, i = 1, . . . , n, being mutually

independent copies of {X(t) : t > 0}. Denote by {X(r)(t), t > 0}, r = 1, 2, . . . , n,
the rth smallest order statistic process, i.e., for each t > 0,

(1.2) X(1)(t) = min
16i6n

Xi(t) 6 X(2)(t) 6 . . . 6 max
16i6n

Xi(t) = X(n)(t).

In this contribution we derive a counterpart of (1.1) for {X(r)(t), t > 0}.
One of important motivations to analyze asymptotic properties of extremes of

order statistic processes is their relation with the conjunction problem. Following
[14], the set of conjunctions CT,u is defined as

CT,u := {t ∈ [0, T ] : min
16i6n

Xi(t) > u},

so
P (CT,u = ∅) = P

(
sup

t∈[0,T ]
min
16i6n

Xi(t) 6 u
)
.

We refer to [2], [3], [6], [9], [14] for recent results on asymptotic properties of
P (CT,u ̸= ∅).

As an application of the obtained result we provide the exact asymptotics of

P
(

sup
t∈[0,T ]

X(r)(t) > u
)

as u→∞

for T being a nonnegative random variable independent of X(t). The obtained
asymptotics extends the recent results of Arendarczyk and Dębicki [4].

2. PRELIMINARIES

Suppose that X(t) =
(
X1(t), . . . , Xn(t)

)
and {Xi(t) : t > 0}, i = 1, . . . , n,

are mutually independent centered stationary Gaussian processes with covariance
function r(t) satisfying the following conditions:

(A1) r(t) = 1− tα + o(tα) as t→ 0;

(A2) r(t) < 1 if t > 0;

(A3) r(t) log t→ 0 as t→∞.

Following Dębicki et al. [9], let us introduce the generalized Pickands con-
stant as

Hα,k = lim
S→∞

S−1Hα,k(S) ∈ (0,∞),

where

Hα,k(S)

=
∫
Rn

exp
( k∑
i=1

wj

)
P
(

sup
t∈[0,S]

min
16i6k

(√
2B(i)

α (t)− tα−wi

)
> 0

)
dw ∈ (0,∞),
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and B
(i)
α , i = 1, . . . , n, are mutually independent standard fractional Brownian mo-

tions with Hurst index α/2 ∈ (0, 1], i.e., centered Gaussian processes with station-
ary increments and variance function tα.

Let

(2.1) mr(u) :=
(2π)(n+1−r)/2

cn,r−1Hα,n+1−r
un+1−r−2/α exp

(
n+ 1− r

2
u2

)
,

where
cn,r−1 =

n!

(r − 1)!(n+ 1− r)!
.

It follows from Theorem 2.2 in [8] that, for each T > 0 and 1 6 r 6 n,

P
(

sup
t∈[0,T ]

X(r)(t) > u
)
= cn,r−1Hα,n+1−rTu

2/α
(
Ψ(u)

)n+1−r(
1 + o(1)

)
(2.2)

=
T

mr(u)

(
1 + o(1)

)
as u→∞,

where Ψ(u) = 1√
2π

∫∞
u

exp(−x2/2)dx.

3. MAIN RESULTS

The following theorem constitutes the main result of this contribution.

THEOREM 3.1. Let {Xj(t), t > 0} be independent and identically distributed
centered stationary Gaussian processes with convariance function r(t) satisfying
the conditions (A1)–(A3) and assume that 0 < A < B <∞ and x > 0. Then

(3.1) P
(

sup
t∈[0,xmr(u)]

X(r)(t) 6 u
)
→ e−x as u→∞,

uniformly for x ∈ [A,B].

Let T be a nonnegative random variable which is independent of X. In the fol-
lowing theorem we discuss the asymptotic behavior of P

(
supt∈[0,T ]X(r)(t) > u

)
as u→∞. It appears that the qualitative form of the asymptotics strongly depends
on heaviness of the tail of T .

THEOREM 3.2. Let {Xj(t), t > 0} be independent and identically distributed
centered stationary Gaussian processes with convariance function r(t) satisfying
the conditions (A1)–(A3), and let T be a nonnegative random variable indepen-
dent of X .

(i) If ET <∞, then, as u→∞,
(3.2)

P
(

sup
t∈[0,T ]

X(r)(t) > u
)
= ET cn,r−1Hα,n+1−ru

2/α
(
Ψ(u)

)n+1−r(
1 + o(1)

)
.
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(ii) If T has a regularly varying tail distribution at infinity with index λ ∈
(0, 1), then, as u→∞,

(3.3) P
(

sup
t∈[0,T ]

X(r)(t) > u
)
= Γ(1− λ)P

(
T > mr(u)

)(
1 + o(1)

)
.

(iii) If T has a slowly varying tail distribution at infinity, then, as u→∞,

(3.4) P
(

sup
t∈[0,T ]

X(r)(t) > u
)
= P

(
T > mr(u)

)(
1 + o(1)

)
.

The proofs of Theorems 3.1 and 3.2 are given in Section 4.

4. PROOFS

Before proceeding to the proofs of Theorems 3.1 and 3.2, we give some pre-
liminary lemmas. Let us put Tr = xmr(u) and nr = ⌊Tr⌋. For any ε ∈ (0, 1) and
1 6 l 6 nr, we write Il = [l − 1 + ε, l] and I∗l = [l − 1, l − 1 + ε].

LEMMA 4.1. For each B > A > 0,

(4.1) lim
u→∞

∣∣P( sup
t∈[0,nr]

X(r)(t) 6 u
)
− P

(
sup

t∈
∪nr

l=1 Il

X(r)(t) 6 u
)∣∣ 6 ρ1(ε),

uniformly for x ∈ [A,B], where ρ1(ε)→ 0 as ε→ 0.

P r o o f. Suppose that x ∈ [A,B]. By stationarity, Bonferroni’s inequality (see,
e.g., [10]) and (2.2), we have

0 6 P
(

sup
t∈
∪nr

l=1 Il

X(r)(t) 6 u
)
− P

(
sup

t∈[0,nr]
X(r)(t) 6 u

)
= P

(
sup

t∈[0,nr]
X(r)(t) > u

)
− P

(
sup

t∈
∪nr

l=1 Il

X(r)(t) > u
)

6 P
(

sup
t∈
∪nr

l=1 I
∗
l

X(r)(t) > u
)
6 nrP

(
sup
t∈[0,ε]

X(r)(t) > u
)

= xmr(u)
ε

mr(u)

(
1 + o(1)

)
6 Bε =: ρ1(ε) as u→∞.

This completes the proof. �

LEMMA 4.2. Let q = q(u) = au−2/α for some a > 0. Then

lim sup
u→∞

∣∣P( sup
t∈
∪nr

l=1 Il

X(r)(t) 6 u
)
− P

(
max

iq∈
∪nr

l=1 Il
X(r)(iq) 6 u

)∣∣ 6 ρ2(a),

uniformly for x ∈ [A,B], where ρ2(a)→ 0 as a→ 0.
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P r o o f. Since Xi(t) are independent and identically distributed, we obtain
P
(
max
iq∈I1

X(r)(iq) > u
)

= P
( ∪
iq∈I1

n∪
j=n−r+1

{∃k1, . . . , kj , Xk1(iq) > u, . . . ,Xkj (iq) > u}
)

= P
( ∪
iq∈I1

n∪
j=n−r+1

{∃k1, . . . , kj , Xk1(iq) > u, . . . ,Xkj (iq) > u,

Xk(iq) 6 u, k ̸= k1, . . . , kj}
)

=
n∑

j=n−r+1

cn,jP
(
∃iq∈I1 , X1(iq) > u, . . . ,Xj(iq) > u,Xk(iq) 6 u, k > j

)
=

n∑
j=n−r+1

cn,jP
(
max
iq∈I1

min
16i6j

Xi(iq) > u
)(
1 + o(1)

)
.

Following Dębicki et al. [8] we define

(4.2) H′α,j(a) =
1

a
P
(
max
k>1

min
16m6j

(√
2B(m)

α (ak)− (ak)α + ηm
)
6 0

)
,

where j = 1, 2, . . . , n, and {B(m)
α , t > 0}, m > 1, are independent and identically

distributed standard fractional Brownian motions which are further independent of
independent unit exponential random variables ηm. Using analogous arguments to
those in the proof of Theorem 1.1 in Dębicki et al. [8] or Lemma 1 in Albin and
Choi [1], we have

P
(
max
iq∈I1

X(r)(iq) > u
)
=

n∑
j=n−r+1

H′α,j(a)
Hα,j

1− ε

mn+1−j(u)

=
H′α,n+1−r(a)

Hα,n+1−r

1− ε

mr(u)

(
1 + o(1)

)
as u→∞,

whereH′α,k(a)→ Hα,k as a→ 0. Therefore, by stationarity, we obtain

0 6 P
(

max
iq∈

∪nr
l=1 Il

X(r)(iq) 6 u
)
− P

(
sup

t∈
∪nr

l=1 Il

X(r)(t) 6 u
)

6 nr max
16l6nr

(
P
(
max
iq∈Il

X(r)(iq) 6 u
)
− P

(
sup
t∈Il

X(r)(t) 6 u
))

6 nrP
(
X(r)(0) > u

)
+ nrP

(
sup

t∈[0,1−ε]
X(r)(t) > u

)
− nrP

(
max

iq∈[0,1−ε]
X(r)(iq) > u

)
= xmr(u)

(
o

(
1

mr(u)

)
+

1− ε

mr(u)
− H

′
α,n+1−r(a)

Hα,n+1−r

1− ε

mr(u)

)(
1 + o(1)

)
6 B

(
1− H

′
α,n+1−r(a)

Hα,n+1−r

)
=: ρ2(a),
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where the penultimate expression is due to (2.2). Since ρ2(a)→ 0 as a→ 0, the
proof is completed. �

For each 1 6 j 6 n, let {X(k)
j (t), t > 0}∞k=1 be a sequence of independent

and identically distributed centered stationary Gaussian processes that satisfy the
conditions (A1)–(A3). Define

Yj(t) = X
(k)
j (t) if t ∈ [k − 1, k),

and, for t > 0,

Y(1)(t) = min
16j6n

Yj(t) 6 Y(2)(t) 6 . . . 6 max
16j6n

Yj(t) = Y(n)(t).

LEMMA 4.3. We have

lim
u→∞

∣∣P( sup
iq∈

∪nr
l=1 Il

X(r)(iq) 6 u
)
− P

(
sup

iq∈
∪nr

l=1 Il

Y(r)(iq) 6 u
)∣∣ = 0.

P r o o f. Define A = N∩
∪nr

l=1 Ilq
−1 = {i1, i2, . . . , id}, where 1 6 i1 < i2 <

. . . < id <∞, and observe that

∆(r) =
∣∣P( sup

iq∈
∪nr

l=1 Il

X(r)(iq) 6 u
)
− P

(
sup

iq∈
∪nr

l=1 Il

Y(r)(iq) 6 u
)∣∣

=
∣∣P( sup

i∈A
X(r)(iq) 6 u

)
− P

(
sup
i∈A

Y(r)(iq) 6 u
)∣∣.

For i ∈ A and 1 6 j 6 n, we put Xij = Xj(iq) and Yij = Yj(iq) = X
(⌊iq⌋+1)
j (iq).

Note that

σX
ij,lk = EXijXlk = EXj(iq)Xk(lq) = r

(
(i− l)q

)
I{j = k} := σX

il I{j = k},

σY
ij,lk = EYijYlk = EX(⌊iq⌋+1)

j (iq)X
(⌊lq⌋+1)
k (lq)

= r
(
(i− l)q

)
I{⌊iq⌋ = ⌊lq⌋}I{j = k} := σY

il I{j = k}.

It follows from Theorem 2.4 in [7] that

∆(r) 6
n(cn−1,r−1)

2

(2π)n+1−r u−2(n−r)
∑

i,l∈A,i ̸=l

|A(r)
il | exp

(
−(n+ 1− r)u2

1 + ρil

)
,

where
ρil = max{|σX

il |, |σY
il |} =

∣∣r((i− l)q
)∣∣,

A
(r)
il =

σX
il∫

σY
il

(1 + |h|)2(n−r)

(1− h2)(n+1−r)/2dh

=
r((i−l)q)∫

0

(1 + |h|)2(n−r)

(1− h2)(n+1−r)/2dhI{⌊iq⌋ ̸= ⌊lq⌋}.
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Since δ := sup{|r(t)|, t > ε} < 1, for i, l ∈ A satisfying ⌊iq⌋ ̸= ⌊lq⌋, one has
|(i− l)q| > ε, and

∣∣r((i− l)q
)∣∣ 6 δ < 1. Notice that the integrand in the definition

of A(r)
il is continuous and bounded on [0, δ], so there exists a constant K1 such that

|A(r)
il | 6 K1

∣∣r((i− l)q
)∣∣I{⌊iq⌋ ̸= ⌊lq⌋}.

Hence,

∆(r) 6
n(cn−1,r−1)

2K1

(2π)n+1−r u−2(n−r)
Tr
q

∑
ε6kq6Tr

|r(kq)| exp
(
−(n+ 1− r)u2

1 + |r(kq)|

)
=

n(cn−1,r−1)
2K1

(2π)n+1−r u−2(n−r)
Tr
q

∑
ε6kq6T β

r

|r(kq)| exp
(
−(n+ 1− r)u2

1 + |r(kq)|

)

+
n(cn−1,r−1)

2K1

(2π)n+1−r u−2(n−r)
Tr
q

∑
T β
r <kq6Tr

|r(kq)| exp
(
−(n+ 1− r)u2

1 + |r(kq)|

)
=: P1 + P2,

where 0 < β < (1− δ)/(1 + δ).
First, we prove that P1 → 0 as u→∞. Indeed,

P1 6
n(cn−1,r−1)

2K1

(2π)n+1−r u−2(n−r)
T β+1
r

q2
exp

(
−(n+ 1− r)u2

1 + δ

)
=

n(cn−1,r−1)
2K1

(2π)n+1−ra2
u4/α−2(n−r)T β+1

r exp

(
−(n+ 1− r)u2

2

)2/(1+δ)

6 K2u
4/α−2(n−r)+(β+1)(n+1−r−2/α) exp

(
(n+ 1− r)u2

2

)β−(1−δ)/(1+δ)

→ 0 as u→∞.

In order to show that P2 → 0, we put δ(t) = sup{|r(s) log s|, s > t}. By (A3),
we have |r(t)| 6 δ(t)/ log t and δ(t) ↓ 0 as t→∞. Moreover,

log Tr =
n+ 1− r

2
u2

(
1 + o(1)

)
for kq > T β

r .

Thus,

exp

(
−(n+ 1− r)u2

1 + |r(kq)|

)
6 exp

(
− (n+ 1− r)u2

(
1− δ(T β

r )

log T β
r

))
6 K3 exp

(
− (n+ 1− r)u2

)
.
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Hence,

P2 6
{
K4u

−2(n−r)T 2
r

q2
exp

(
−(n+ 1− r)u2

) 1

log T β
r

}
× q

Tr
∑

T β
r <kq6Tr

|r(kq)| log(kq)

6 K5u
−2(n−r)u

2(n+1−r−2/α) exp
(
(n+ 1− r)u2

)
u−4/α

exp
(
−(n+ 1− r)u2

) 1

u2

× q

Tr
∑

T β
r <kq6Tr

|r(kq)| log(kq)

6 K5
q

Tr
∑

T β
r <kq6Tr

|r(kq)| log(kq)→ 0 as u→∞.

This completes the proof. �

LEMMA 4.4. We have

lim sup
u→∞

∣∣P( sup
iq∈

∪nr
l=1 Il

Y(r)(iq) 6 u
)
− P

(
sup

t∈[0,nr]
Y(r)(t) 6 u

)∣∣ 6 x
(
ρ3(a) + ε

)
,

where ρ3(a)→ 0 as a→ 0.

P r o o f. Since Il, l = 1, 2, . . . , nr, are disjoint, {Y(r)(t), t ∈ Il} are indepen-
dent, and, by stationarity,

0 6 P
(

sup
iq∈

∪nr
l=1 Il

Y(r)(iq) 6 u
)
− P

(
sup

t∈
∪nr

l=1 Il

Y(r)(t) 6 u
)

= P
(

sup
iq∈[0,1−ε]

Y(r)(iq) 6 u
)nr − P

(
sup

t∈[0,1−ε]
Y(r)(t) 6 u

)nr

6 nr

(
P
(
sup
iq∈I1

Y(r)(iq) 6 u
)
− P

(
sup
t∈I1

Y(r)(t) 6 u
))

6 nr

(
P
(
Y(r)(0) > u

)
+ P

(
sup

iq∈[0,1−ε]
Y(r)(iq) 6 u

)
− P

(
sup

t∈[0,1−ε]
Y(r)(t) 6 u

))
= xmr(u)

(
o

(
1

mr(u)

)
+

(
1− H

′
α,n+1−r(a)

Hα,n+1−r

)
1− ε

mr(u)

)(
1 + o(1)

)
6 x

(
1− H

′
α,n+1−r(a)

Hα,n+1−r

)
=: xρ3(a),
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where ρ3(a)→ 0 as a→ 0. Moreover,

0 6 P
(

sup
t∈
∪nr

l=1 Il

Y(r)(t) 6 u
)
− P

(
sup

t∈[0,nr]
Y(r)(t) 6 u

)
6 P

(
sup

t∈[0,1−ε]
Y(r)(t) 6 u

)nr − P
(
sup
t∈[0,1]

Y(r)(t) 6 u
)nr

6 nrP
(
sup
t∈[0,ε]

Y(r)(t) > u
)

= xmr(u)
ε

mr(u)

(
1 + o(1)

)
= xε

(
1 + o(1)

)
.

The combination of the above displays completes the proof. �

LEMMA 4.5. We have

lim
u→∞

P
(

sup
t∈[0,nr]

Y(r)(t) 6 u
)
= e−x.

P r o o f. Since

P
(

sup
t∈[0,nr]

Y(r)(t) 6 u
)
= P

(
sup
t∈[0,1]

X(r)(t) 6 u
)nr

=
(
1− P

(
sup
t∈[0,1]

X(r)(t) > u
))nr

=
(
1−mr(u)

−1)xmr(u)(1 + o(1)
)
→ e−x,

the proof is completed. �

P r o o f o f T h e o r e m 3.1. The proof of the theorem follows directly from
Lemmas 4.1–4.5. �

LEMMA 4.6. For any S > 0, we have
(4.3)

P
(

sup
t∈[0,Su−2/α]

X(r)(t) > u
)
= cn,r−1Hα,n+1−r(S)

(
Ψ(u)

)n+1−r(
1 + o(1)

)
as u→∞.

The proof of Lemma 4.6 follows line-by-line the same reasoning as the proof
of Theorem 2.2 in [8], and thus we omit it.

P r o o f o f T h e o r e m 3.2. (i) For any t, u, S > 0, let us put

Nt=

⌊
t

Su−2/α

⌋
and ∆k=[kSu−2/α, (k+1)Su−2/α] with k=0, 1, . . . , Nt.



70 C. Zhao

U p p e r b o u n d. By stationarity of the process {X(r)(t), t > 0} and Lem-
ma 4.6, we obtain

P
(

sup
t∈[0,T ]

X(r)(t) > u
)
=
∞∫
0

P
(
sup
s∈[0,t]

X(r)(s) > u
)
dP(T 6 t)

6 P
(
sup
s∈∆0

X(r)(s) > u
)(u2/α

S

∞∫
0

tdP(T 6 t) + 1

)
=
Hα,n+1−r(S)

S
cn,r−1ET u2/α

(
Ψ(u)

)n+1−r(
1 + o(1)

)
as u→∞. Thus, letting S →∞, we get

P
(

sup
t∈[0,T ]

X(r)(t) > u
)
= cn,r−1sHα,n+1−ru

2/αET
(
Ψ(u)

)n+1−r(
1 + o(1)

)
.

L o w e r b o u n d. By Bonferroni’s inequality, we have

(4.4) P
(

sup
t∈[0,T ]

X(r)(t) > u
)
=
∞∫
0

P
(
sup
s∈[0,t]

X(r)(s) > u
)
dP(T 6 t)

>
u∫
0

P
(
sup
s∈[0,t]

X(r)(s) > u
)
dP(T 6 t)

> P
(
sup
s∈∆0

X(r)(s) > u
)(u2/α

S

u∫
0

tdP(T 6 t)− 1

)
−

u∫
0

∑
06i<j6Nt

P
(
sup
s∈∆i

X(r)(s) > u, sup
s∈∆j

X(r)(s) > u
)
dP(T 6 t)

=: I1 − I2.

Note that

I1 =
Hα,n+1−r(S)

S
cn,r−1ET u2/α

(
Ψ(u)

)n+1−r(
1 + o(1)

)
as u→∞. Thus, letting S →∞, we obtain

(4.5) I1 > cn,r−1Hα,n+1−ru
2/αET

(
Ψ(u)

)n+1−r
.

Hence, in order to complete the proof it suffices to show that I2 = o(I1) as u→∞.
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Indeed, we have

I2 =
u∫
0

Nt∑
k=1

(Nt − k)P
(
sup
s∈∆0

X(r)(s) > u, sup
s∈∆k

X(r)(s) > u
)
dP(T 6 t)

6 u2/α

S

u∫
0

tdP(T 6 t)
Nu∑
k=1

P
(
sup
s∈∆0

X(r)(s) > u, sup
s∈∆k

X(r)(s) > u
)

6 u2/α

S
ET

Nu∑
k=1

P
(
sup
s∈∆0

X(r)(s) > u, sup
s∈∆k

X(r)(s) > u
)

6 cn,r−1
u2/α

S
ET

Nu∑
k=1

P
(
sup
s∈∆0

min
16i6n+1−r

Xi(s) > u, sup
s∈∆k

X(r)(s) > u
)

6 cn,r−1
u2/α

S
ET

Nu∑
k=1

P
(
sup
s∈∆0

min
16i6n+1−r

Xi(s)>u, sup
s∈∆k

min
16i6n+1−r

Xi(s)>u
)

+ cn,r−1
u2/α

S
ET

Nu∑
k=1

P
(
sup
s∈∆0

min
16i6n+1−r

Xi(s) > u, sup
s∈∆k

X(r)(s) > u,

sup
s∈∆k

min
16i6n+1−r

Xi(s) 6 u
)

=: I21 + I22.

Since

Nu∑
k=1

P
(
sup
s∈∆0

min
16i6n+1−r

Xi(s) > u, sup
s∈∆k

min
16i6n+1−r

Xi(s) 6 u, sup
s∈∆k

X(r)(s) > u
)

6 NuP
(
sup
s∈∆0

X1(s) > u
)n+2−r

,

we get I22 = o(I1) as u→∞. Moreover, using the relations

I21 6 cn,r−1
u2/α

S
ET

Nu∑
k=1

P
(
sup
s∈∆0

X1(s) > u, sup
s∈∆k

X1(s) > u
)n+r−1

6 cn,r−1u
2/αET

(
1

S1/(n+r−1)

Nu∑
k=1

P
(
sup
s∈∆0

X1(s)>u, sup
s∈∆k

X1(s)>u
))n+r−1

,

we are left with finding a tight asymptotic bound for

1

S1/(n+r−1)

Nu∑
k=1

P
(
sup
s∈∆0

X1(s) > u, sup
s∈∆k

X1(s) > u
)
,

which follows by the same argument as that given in the proof of Theorem D.2 in
[12] (see also the proof of Theorem 3.1 in [4]), with the minor exception that the
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first term in the above summand is bounded by

P
(
sup
s∈∆0

X1(s) > u, sup
s∈∆1

X1(s) > u
)

6 P
(

sup
s∈[0,Su−2/α]

X1(s) > u, sup
[(S+S1/(2(n+r−1)))u−2/α,

(2S+S1/(2(n+r−1)))u−2/α]

X1(s) > u
)

+ P
(

sup
s∈[0,S1/(2(n+r−1))u−2/α]

X1(s) > u
)
.

This completes the proof of Theorem 3.1(i).
(ii) For any 0 < A < B <∞ and sufficiently large u, we make the following

decomposition:

P
(

sup
t∈[0,T ]

X(r)(t) > u
)

=
(Amr(u)∫

0

+
Bmr(u)∫
Amr(u)

+
∞∫

Bmr(u)

)
P
(
sup
s∈[0,t]

X(r)(s) > u
)
dP(T 6 t)

=: I1 + I2 + I3.

We analyze I1, I2, I3 separately.
I n t e g r a l I1. Since the process {X(r)(t), t > 0} is stationary, by Bonfer-

roni’s inequality, we have

I1 6 P
(

sup
s∈[0,1]

X(r)(s) > u
)(Amr(u)∫

0

tdP(T 6 t) + 1
)

(4.6)

= P
(

sup
s∈[0,1]

X(r)(s) > u
)

×
(Amr(u)∫

0

P(T > t)dt−Amr(u)P
(
T > Amr(u)

)
+ 1

)
.

Using Karamata’s theorem, we get

Amr(u)∫
0

P(T > t)dt =
1

λ
Amr(u)P

(
T > Amr(u)

)(
1 + o(1)

)
as u→∞,

which, combined with (4.6) and Theorem 2.2 in [8], implies that

I1 6
λ

1− λ
AP

(
T > Amr(u)

)(
1 + o(1)

)
=

λ

1− λ
A1−λP

(
T > mr(u)

)(
1 + o(1)

)
as u→∞.
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I n t e g r a l I3. It is straightforward that

I3 6 P
(
T > Bmr(u)

)(
1+ o(1)

)
=B−λP

(
T > mr(u)

)(
1+ o(1)

)
as u→∞.

I n t e g r a l I2. For any ε > 0 and sufficiently large u, applying Theorem 3.1,
we get the upper bound

I2 =
B∫
A

P
(

sup
s∈[0,xmr(u)]

X(r)(s) > u
)
dP

(
T 6 xmr(u)

)
6 (1 + ε)

B∫
A

(1− e−x)dP
(
T 6 xmr(u)

)
= (1 + ε)

B∫
A

e−xP
(
T > xmr(u)

)
dx− (1 + ε)(1− e−B)P

(
T > Bmr(u)

)
+ (1 + ε)(1− e−A)P

(
T > Amr(u)

)
,

and similarly we obtain the lower bound

I2 > (1− ε)
B∫
A

e−xP
(
T > xmr(u)

)
dx− (1− ε)(1− e−B)P

(
T > Bmr(u)

)
+ (1− ε)(1− e−A)P

(
T > Amr(u)

)
.

Since T has a regularly varying tail distribution at infinity, by Theorem 1.5.2 in [5],
we get

B∫
A

e−xP
(
T >xmr(u)

)
dx = P

(
T >mr(u)

) B∫
A

e−xx−λdx
(
1+o(1)

)
as u→∞.

Thus, for any ε > 0 and 0 < A < B <∞, we obtain

lim sup
u→∞

I2

P
(
T > mr(u)

)
6 (1 + ε)

( B∫
0

x−λe−xdx− (1− e−B)B−λ + (1− e−A)A−λ
)

and

lim inf
u→∞

I2

P
(
T > mr(u)

)
6 (1− ε)

( B∫
0

x−λe−xdx− (1− e−B)B−λ + (1− e−A)A−λ
)
.
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Therefore, letting A→ 0, B →∞, and ε→ 0, we find that I1 and I3 are negligi-
ble, and

I2 = Γ(1− λ)P
(
T > mr(u)

)(
1 + o(1)

)
as u→∞,

which completes the proof of Theorem 3.2(ii).
(iii) L o w e r b o u n d. From Theorem 3.1, for any given B > 0, it follows

that

P
(

sup
t∈[0,T ]

X(r)(t) > u
)
> P

(
sup

s∈[0,Bmr(u)]
X(r)(s) > u

)
P
(
T > Bmr(u)

)
= (1− e−B)P

(
T > mr(u)

)(
1 + o(1)

)
as u→∞. Thus, letting B →∞, we obtain the asymptotic lower bound

P
(

sup
t∈[0,T ]

X(r)(t) > u
)
> P

(
T > mr(u)

)(
1 + o(1)

)
as u→∞.

U p p e r b o u n d. For given A > 0, we get

P
(

sup
t∈[0,T ]

X(r)(t) > u
)

6
Amr(u)∫

0

P
(
sup
s∈[0,t]

X(r)(s) > u
)
dP(T 6 t) + P

(
T > Amr(u)

)
=

Amr(u)∫
0

P
(
sup
s∈[0,t]

X(r)(s) > u
)
dP(T 6 t) + P

(
T > mr(u)

)(
1 + o(1)

)
as u→∞. Due to the stationarity of the process {X(r)(t), t > 0} and Bonferroni’s
inequality, we have

(4.7)
Amr(u)∫

0

P
(
sup
s∈[0,t]

X(r)(s) > u
)
dP(T 6 t)

6 P
(

sup
s∈[0,1]

X(r)(s) > u
)(Amr(u)∫

0

tdP(T 6 t) + 1
)

6 P
(

sup
s∈[0,1]

X(r)(s) > u
)(Amr(u)∫

0

P(T > t)dt+ 1
)
.

From Karamata’s theorem (see, e.g., Proposition 1.5.8 in [5]), we get

Amr(u)∫
0

P(T > t)dt = Amr(u)P
(
T > Amr(u)

)(
1 + o(1)

)
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as u→∞, which, combined with (4.7) and Theorem 2.2 in [8], implies that

P
(

sup
t∈[0,T ]

X(r)(t) > u
)
6 (1 +A)P

(
T > mr(u)

)(
1 + o(1)

)
as u → ∞. Letting A → 0, we obtain (3.4). This completes the proof of Theo-
rem 3.2. �
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