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Abstract. In this paper, a class of piecewise deterministic Markov
processes with underlying fast dynamic is studied. By using a “penalty
method”, an averaging result is obtained when the underlying dynamic is
infinitely accelerated. The features of the averaged process, which is still a
piecewise deterministic Markov process, are fully described.
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1. INTRODUCTION

This paper studies some simple constrained Markov processes through av-
eraging. Their trajectories consist of a piecewise linear motion whose slopes are
positive and given by the values of a continuous time Markov chain with countable
state space. The piecewise linear process is constrained to stay above some bound-
ary by instantaneous downward jumps when hitting the boundary. This describes
a very particular class of piecewise deterministic Markov processes in the sense of
Davis [4]. We are interested in the limit behavior of the process when the dynamic
of the underlying celerity process, that is, the dynamic of the underlying continu-
ous time Markov chain, is infinitely accelerated. We are thus in the framework of
averaging for Markov processes.

Averaging for unconstrained Markov process, that is, without the presence of
a boundary, has been studied by several authors since decades and is well under-
stood for a rich variety of Markov processes, see, e.g., [8]–[10] and the references
therein. As far as we know, averaging for constrained Markov processes, that is
with the presence of a boundary, is not so well understood, in particular in the
description of the averaging measure at the boundary. However, in [6], the author
proposes a general method for the study of general constrained Markov processes,
a so-called “patchwork martingale problem”. For example, this method has been
applied recently in [3] to reflected diffusions. In this paper, we adopt a more stan-
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dard approach, at least in our point of view, which is the “penalty method”, exposed
in [6], Section 6.4. This method consists in considering a penalized process jump-
ing at fast rate when beyond the boundary rather than a process jumping instan-
taneously at the boundary. Then, a time change is performed to sufficiently slow
down the dynamic of the penalized process when beyond the boundary, allowing
the application of classical limit theorems for Markov processes.

In Section 2.1, piecewise linear Markov processes are presented. Our main
averaging result is stated in Section 2.2. In our case, the averaged process can
be fully described. In particular, the expression for the averaging measure at the
boundary, describing the behavior of the limit process at the boundary, is explicitly
given in terms of the features of the process. By an appropriate change of variable,
this allows us, in Section 2.3, to apply this averaging result to a more general class
of piecewise deterministic processes than the piecewise linear processes. As an
example, a hybrid version of a classical model for the neural dynamic is considered
in Section 2.3.2. Proofs are delayed to Section 3.

2. MODEL AND MAIN RESULTS

2.1. A piecewise linear Markov process. All our random variables and pro-
cesses are defined on the same probability space (Ω,F ,P) with associated expec-
tation denoted by E. Convergence in law for processes is intended to take place
in the Skorokhod space of càdlàg processes D([0, T ],R), with some finite horizon
time T , endowed with its usual topology, see [1], Section 12, Chapter 3. The ‖ · ‖∞-
norm of a continuous function f on [0, T ] is defined by ‖f‖∞ = supt∈[0,T ] |f(t)|.

Let c be a real representing some threshold or boundary. We are going to
describe, at first in an algorithmic fashion, the dynamic of a stochastic process(
X(t), t ∈ [0, T ]

)
with values in (−∞, c) and endowed with the Borel algebra

B(−∞, c):
1. Initial state: At time T ∗0 = 0, the process starts at X(T ∗0 ) = ξ0, a random

variable with law with support included in (−∞, c).
2. First jumping time: Let Y be a continuous time Markov chain with values

in a countable space Y⊂(0,∞). This chain starts at Y (0)=ζ, a Y-valued random
variable. The first hitting time of the boundary occurs at time T ∗1 defined as

T ∗1 = inf
{
t > 0 ; ξ0 +

t∫
T ∗0

Y (s)ds = c
}
.

As usual, we set inf ∅ = +∞.
3. Piecewise linear motion: For t ∈ [T ∗0 , T

∗
1 ), we set

X(t) = ξ0 +
t∫
T ∗0

Y (s)ds.

The dynamic of X is thus piecewise linear here, with velocity given by Y .
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4. Jumping measure: At time T ∗−1 (the time just before T ∗1 ), the process
is constrained to stay inside (−∞, c) by jumping according to the Y -dependent
measure νY

T∗−
1

whose support is included in (−∞, c):

∀A ∈ B(−∞, c), P
(
X(T ∗1 ) ∈ A

)
= νY

T∗−
1

(A).

5. And so on: Go back to step 1 in replacing T ∗0 by T ∗1 and ξ0 by ξ1 = X(T ∗1 ).
An example of a trajectory of such a process is displayed in Figure 1. The

process X is piecewise linear and the couple (X,Y ) is in fact a piecewise deter-
ministic Markov process in the sense of [4], Section 24, p. 57. We denote by p∗(t)
the number of jumps of X until time t:

p∗(t) =
∞∑
i=1

1T ∗i ¬t.

ASSUMPTION 2.1. As in [4] (Assumption 24.4, p. 60), to make the process
well-defined, we assume that

E
(
p∗(T )

)
<∞.

As stated in [4], Theorem 31.3, p. 83, the process X satisfies the following
property related to the martingale problem for the piecewise deterministic Markov
process (X,Y ). This gives another insight into the dynamic of X and will be useful
in the sequel. Let f : (−∞, c)→ R be such that

(G1) f is measurable and absolutely continuous with respect to the Lebesgue
measure;

(G2) f is locally integrable at the boundary: for any t ∈ [0, T ],

E
( ∑

T ∗i ¬t

∣∣f(X(T ∗i )
)
− f

(
X(T ∗−i )

)∣∣) <∞.

Then the process
(
Mf (t)

)
t∈[0,T ]

defined for t ∈ [0, T ] by

Mf (t) = f
(
X(t)

)
− f(X(0))−

t∫
0

f ′
(
X(s)

)
Y (s)ds

−
t∫
0

c∫
−∞

[
f(u)− f

(
X(s−)

)]
νY (s−)(du)p

∗(ds)

is a martingale with respect to the natural filtration associated with (X,Y ). Notice
that it is quite easy to read the piecewise linear and jump behaviors of X in such a
writing.
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Figure 1. A trajectory of X with Y switching between 1/2 and 1.

2.2. Acceleration and averaging result. From now on, we assume that the pro-
cess of celerities, which is a continuous time Markov chain Y , has a fast dynamic,
by introducing a (small) timescale parameter ε such that

∀t ­ 0, Yε(t) = Y (t/ε).

Moreover, to insure a limiting behavior, we assume that Y is positive recurrent
with intensity matrix Q = (qzy)z,y∈Y and invariant probability measure π. For con-
venience, let us also denote by V the diagonal matrix such that diag(V ) = {y ;
y ∈ Y}.

As ε goes to zero, the process Yε converges toward the stationary state associ-
ated with Y in the sense that, by the ergodic theorem,

∀t ­ 0,∀y ∈ Y, lim
ε→0

P
(
Yε(t) = y

)
= π({y}).

Therefore, as ε goes to zero, the process Xε, defined as X by replacing Y with Yε,
should have its dynamic averaged with respect to the measure π. The behavior of
the limiting process away from the boundary is indeed not hard to describe.

PROPOSITION 2.1. Let us assume that maxY is finite and ξ0 is deterministic.
Then, for any η > 0, the process Xε converges in law toward a process X̄ on
D
(
[0, (c− ξ0)/(maxY)− η],R

)
defined as

X̄(t) = ξ0 +
t∫
0

∫
Y
yπ(dy)ds = ξ0 +

∑
y∈Y

yπ({y})t.

P r o o f. On the interval [0, (c − ξ0)/(maxY) − η] the process Xε does not
reach the boundary. Then, classical averaging results apply (and apply to much
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more general situations, but still without boundary), see, e.g., [8] and references
therein. �

Proposition 2.1 describes the behavior of the limiting process away from the
boundary: celerities are averaged against the measure π. But what happens at
boundary? This is what is characterized by our main result. Our main assumption
is the following.

ASSUMPTION 2.2. The setY is bounded from above and E
(
supε∈(0,1] p

∗
ε(T )

)
is finite.

Note that this ensures that the process is well-defined for all ε ∈ (0, 1] since
this assumption implies Assumption 2.1 for each such ε. Under the assumption that
Y is bounded from above, an easy way to ensure that supε∈(0,1] E

(
p∗ε(T )

)
is finite

is to suppose that there is some ρ > 0 such that⋃
y∈Y

supp νy ⊂ (−∞, c− ρ).

In such a case, supε∈(0,1] p
∗
ε(T ) is even bounded by a deterministic constant (which

is T max{Y}/ρ). For convenience, let us write

Y−1 = {y−1 ; y ∈ Y}.

THEOREM 2.1. Under Assumption 2.2, the process Xε converges in law in
D([0, T ],R) toward a process X̄ such that for any measurable function f : (−∞, c)
→ R satisfying (G1) and (G2) the process M̄f defined by

M̄f (t) = f
(
X̄(t)

)
− f(ξ0)−

∑
y∈Y

yπ({y})
t∫
0

f ′
(
X̄(s)

)
ds

−
t∫
0

c∫
−∞

[
f(u)− f

(
X̄(s−)

)]
ν̄(du)p̄∗(ds),

for t ∈ [0, T ], defines a martingale, with p̄∗ the counting measure at the boundary
for X̄ . The averaging measure at the boundary ν̄ is defined by

ν̄(du) =
∑
y∈Y

νy(du)π
∗({1/y}),

where π∗ is the invariant measure associated with the intensity matrix V −1Q
thought as the generator of a Y−1-valued continuous time Markov chain.

The measure π∗ exists since V −1Q is still an irreducible transition rate matrix.
Let us remark that the limiting process X̄ is still a piecewise linear Markov process.
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Indeed, the process X̄ begins at ξ0 and then follows the linear motion with speed∑
y∈Y yπ({y}) until it reaches c at time

T ∗1 =
c− ξ0∑

y∈Y
yπ({y})

.

Then, for k ­ 2, the next hitting times of the boundary are given recursively by

T ∗k = T ∗k−1 +
c− ξk−1∑

y∈Y
yπ({y})

, k ­ 1,

where the ξk’s are the post-jump value locations, which are independent and dis-
tributed according to the averaging measure ν̄.

Let us remark that it is not surprising that the value of Y actually appears
through V in the averaging measure at the boundary since X will more likely hit
the boundary when its derivative is large. Of course, this fact is compensated by the
probability to be in such a high speed for Y ; this is emphasized by the presence of
the intensity matrix Q in the definition of π∗. This indicates that in a more general
setting (in greater dimension for example), the scalar product between the normal
and the tangent of the flow at the boundary should be involved in the expression
of π∗. Let us also notice that, obviously by symmetry, processes with only negative
slopes may be considered in this framework. The case of piecewise linear process
with positive and negative slopes seems more difficult to treat.

2.3. Extension and application to a slow-fast hybrid quadratic integrate-and-
fire models.

2.3.1. Extension and reduction to piecewise linear motions. In our setting, we
can handle slightly more general motions than piecewise linear. We now consider
a process

(
X(t), t ∈ [0, T ]

)
which obeys the following dynamic:

1. Initial state: As before, at time T ∗0 = 0, the process starts at X(T ∗0 ) = ξ0,
a random variable with support included in (m, c), where {c} is considered as a
boundary and m < c is some real number.

2. First jumping time: The first hitting time of the boundary occurs at time
T ∗1 defined as

T ∗1 = inf
{
t > 0 ; ξ0 +

t∫
T ∗0

α
(
Y (s)

)
F
(
X(s)

)
ds = c

}
,

where α is a positive measurable function such that α(Y) is bounded from above
and F is a positive continuous function.
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3. Piecewise deterministic motion: For t ∈ [T ∗0 , T
∗
1 ), we set

X(t) = ξ0 +
t∫
T ∗0

α
(
Y (s)

)
F
(
X(s)

)
ds.

The dynamic of X is thus continuous here and given by the differential equation

dX(t)

dt
= α

(
Y (t)

)
F
(
X(t)

)
, X(0) = ξ0.

4. Jumping measure: Then, at time T ∗−1 , the process is constrained to stay
inside (m, c) by jumping according to the Y -dependent measure µY

T∗−
1

whose

support is included in (m, c):

∀A ∈ B(m, c), P
(
X(T ∗1 ) ∈ A

)
= µY

T∗−
1

(A).

5. And so on: Go back to step 1 in replacing T ∗0 by T ∗1 and ξ0 by ξ1 = X(T ∗1 ).
With y ∈ Y , the simple form of the differential equation x′ = α(y)F (x) al-

lows for the following reduction. Assume that 1/F is integrable over (m, c) and
consider the function defined, for x ∈ (m, c), by

G(x) =
x∫
m

du

F (u)
.

Remark that G is a homeomorphism from (m, c) to
(
0, G(c)

)
. The process Z =

G(X) is such that for any f :
(
0, G(c)

)
→ R satisfying conditions (G1) and (G2),

the process

f
(
Z(t)

)
− f

(
G(ξ0)

)
−

t∫
0

f ′
(
Z(s)

)
α
(
Y (s)

)
ds

−
t∫
0

c∫
m

[
f
(
G(u)

)
− f

(
Z(s−)

)]
µY (s−)(du)p

∗(ds)

is a martingale with respect to the natural filtration associated with (Z, Y ). It is
clear from this formulation that Z is a piecewise linear Markov process as in Sec-
tion 2.1: the process α(Y ) is still a continuous time Markov chain with intensity
matrix Q with values in α(Y) = {α(y) ; y ∈ Y} and for y ∈ Y , the jumping
measure at boundary is a measure on

(
0, G(c)

)
given by

νy(du) = µy

(
dG−1(u)

)
.

Note also that by construction the times at which X and Z hit there respective
boundaries {c} and {G(c)} are equal. The function G being a homeomorphism
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from (m, c) to
(
0, G(c)

)
, by the Portmanteau theorem we can deduce some prop-

erties in law of X from the corresponding properties in law of Z. In particular,
considering the process Xε with the same law as X but with Y replaced by Yε,
we can deduce its limiting behavior from the associated linear process Zε and the
regularity of G. Let us gather our assumptions.

ASSUMPTION 2.3. We assume that
• 1/F is integrable over (m, c);
• α(Y) is bounded from above;
• E

(
supε∈(0,1] p

∗
ε(T )

)
is finite, where p∗ε(T ) is the counting measure at the

boundary for the process Xε.

The following theorem is a direct consequence of Theorem 2.1.

THEOREM 2.2. Under Assumption 2.3, the process Xε converges in law in
D([0, T ],R) toward a process X̄ such that for any measurable function f : (m, c)
→ R satisfying (G1) and (G2) the process M̄f defined by

M̄f (t) =f
(
X̄(t)

)
− f(ξ0)−

∑
y∈Y

α(y)π({y})
t∫
0

f ′
(
X̄(s)

)
F
(
X̄(s)

)
ds

−
t∫
0

c∫
m

[
f(u)− f

(
X̄(s−)

)]
µ̄(du)p̄∗(ds),

for t ∈ [0, T ], defines a martingale, with p̄∗ the counting measure at the boundary
for X̄ . The averaging measure at the boundary µ̄ is defined by

µ̄(du) =
∑
y∈Y

µy(du)π
∗({1/y}),

where π∗ is the invariant measure associated with the intensity matrix α(V )−1Q
thought as the generator of an α(Y)−1-valued continuous time Markov chain.

Here, α(V )−1 denotes the diagonal matrix such that

diag
(
α(V )−1

)
= {1/α(y) ; y ∈ Y}.

Note that because of the separation of variables in the form of the flow, its value
at the boundary does not appear in the expression of π∗, as it could be expected in
more general situations.

2.3.2. Application to a slow-fast hybrid version of a quadratic integrate-and-fire
model. Theorem 2.2 allows us to consider other natural motions studied in the lit-
erature. For example, let us examine the following slow-fast hybrid version of a
quadratic integrate-and-fire model [2], used in mathematical neuroscience. In such
a setting, X represents the membrane potential of a neural cell which is increas-
ing until it reaches some threshold c, corresponding to the time at which a nerve
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impulse is triggered, and then the potential is reset to some slower value. For the
quadratic integrate-and-fire model, between two jumps at the boundary c, the pro-
cess X follows the quadratic motion

dX(t)

dt
= [Y (t)X(t)]2.

To fix the ideas, let Y be a continuous time Markov chain with values in {1, 2},
with intensity matrix given by

Q =

(
−1 1
2 −2

)
such that the invariant probability measure reads

π =
(
2
3

1
3

)
.

For y ∈ {1, 2}, assume that the jumping measure at the boundary µy has support
(m, c − ρ) for some positive constants ρ and m with m + ρ < c. The function G
is here given, for x ∈ (m, c), by

G(x) =
1

m
− 1

x
.

Thus, we consider, for t ∈ [0, T ], the process

Z(t) =
1

m
− 1

X(t)
.

The process Z is thus a piecewise linear Markov process jumping according to Y 2

and is constrained to the set (0, 1/m − 1/c). The process Y 2 jumps at the same
rate as Y but with state space {1, 4} instead of {1, 2}. Moreover, the jump number
i of Z is distributed according to the cumulative distribution function given, for
x ∈

(
0, 1/m− 1/(c− ρ)

)
, by

νY
T∗−
i

(
(−∞, x]

)
= P

(
Z(T ∗1 ) ¬ x

)
= µY

T∗−
i

(
(−∞, G−1(x)]

)
.

Let us denote by Xε and Zε the corresponding processes coupled to the process
with fast dynamic Y 2

ε jumping according to the intensity matrix Q/ε between 1
and 4. The measure π∗ is the invariant measure on the state space {1/4, 1} associ-
ated with the intensity matrix

V −1Q =

(
1 0
0 1

4

)(
−1 1
2 −2

)
=

(
−1 1
1
2 −1

2

)
.

That is,
π∗ =

(
1
3

2
3

)
.
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Note that the values of π and π∗ differ. According to Theorem 2.2, the process Zε

converges in law in D([0, T ],R) toward Z̄ such that for any measurable function
f : (0, 1/m− 1/c)→ R satisfying (G1) and (G2) the process

f
(
Z̄(t)

)
− f(−1/ξ0)−

4

3

t∫
0

f ′
(
X̄(s)

)
ds

−
t∫
0

1/m−1/(c−ρ)∫
0

[
f(u)− f

(
Z̄(s−)

)] [1
3
µ1(du) +

2

3
µ2(du)

]
p̄∗(ds),

for t ∈ [0, T ], defines a martingale. As a byproduct, the process Xε converges in
law in D([0, T ],R) toward X̄ such that for any measurable function g : (m, c)→ R
satisfying (G1) and (G2) the process

g
(
X̄(t)

)
− g(ξ0)−

4

3

t∫
0

g′
(
X̄(s)

)
X̄2(s)ds

−
t∫
0

c−ρ∫
m

[
g(u)− g

(
X̄(s−)

)] [1
3
ν1(du) +

2

3
ν2(du)

]
p̄∗(ds),

for t ∈ [0, T ], defines a martingale.

3. PROOF OF THEOREM 2.1

3.1. A penalty method. A common practice in showing tightness for con-
strained Markov process is to allow the process to evolve outside of the domain
for a very short time instead of having an instantaneous jump. Thus, we define a
penalized process XP to be a piecewise deterministic Markov process which is
the solution of the following martingale problem. Let k ­ 1 be an integer; for any
measurable function f : R→ R satisfying (G1) and (G2), the process defined for
t ∈ [0, T ] by

f
(
XP

ε (t)
)
− f(ξ0)−

t∫
0

f ′
(
XP

ε (s)
)
Yε(s)ds

−
t∫
0

c∫
−∞

[
f(u)− f

(
XP

ε (s)
)]
νYε(s)(du)

1

εk
1[c,∞)

(
XP

ε (s)
)
ds

is a martingale. In concrete terms, the dynamic is the same as for Xε except that
when beyond c, the process waits an exponential time of parameter 1/εk before
jumping. The existence of such a process is inferred from its construction as a
piecewise deterministic Markov process in the sense of [4], Section 24, p. 57. Due
to the high intensity of jumps beyond the boundary, it is still not very comfortable
to work directly on XP

ε to show its tightness. As explained in [6], Section 6.4,
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p. 165, we can slow down the process beyond the boundary to overcome this diffi-
culty. For this purpose, we define the following random time-change for t ∈ [0, T ]:

λε(t) =
t∫
0

ds

1 + 1
εk
1[c,∞)

(
XP

ε (s)
) , µε(t) = t− λε(t).

Being continuous and strictly increasing, the process λε defines a well-defined
time-change. Notice that µε + λε = Id, where Id is the identity function, and since
µε and λε are increasing, for any 0 ¬ t ¬ t+ h ¬ T ,

λε(t+ h)− λε(t) ¬ h and µε(t+ h)− µε(t) ¬ h.

The increases of λε and µε are thus bounded by the increases of the identity, uni-
formly in ε. The following lemma characterizes the limit behavior of λε.

LEMMA 3.1. We have, in law,

lim
ε→0
‖µε‖∞ = lim

ε→0
‖λε − Id‖∞ = 0.

P r o o f. For any t ∈ [0, T ], we have, using the fact that 1 = 1(−∞,c)

(
XP

ε (s)
)
+

1[c,+∞)

(
XP

ε (s)
)

almost surely,

t− λε(t) = t−
t∫
0

1[c,∞)

(
XP

ε (s)
)
ds

1 + 1
εk
1[c,∞)

(
XP

ε (s)
) − t∫

0

1(−∞,c)

(
XP

ε (s)
)
ds

1 + 1
εk
1[c,∞)

(
XP

ε (s)
)

= −
t∫
0

1[c,∞)

(
XP

ε (s)
) ds

1 + 1
εk

+
t∫
0

(
1− 1(−∞,c)

(
XP

ε (s)
))

ds

= −
t∫
0

1[c,∞)

(
XP

ε (s)
) ds

1 + 1
εk

+
t∫
0

1[c,∞)

(
XP

ε (s)
)
ds

=
1

1 + εk

t∫
0

1[c,∞)

(
XP

ε (s)
)
ds.

Thus, for any t ∈ [0, T ],

t− λε(t) =
1

1 + εk

t∫
0

1[c,∞)

(
XP

ε (s)
)
ds ¬ 1

1 + εk

T∫
0

1[c,∞)

(
XP

ε (s)
)
ds.

Since supε∈(0,1] p
∗
ε(T ) is finite P-almost surely, the time spent beyond c for XP

ε has
the same law as the sum of a finite number of exponential variables of parameters
of order 1/εk almost surely, yielding the result. �

This does not mean that µε(dt) goes to zero. Intuitively, it should rather con-
verge toward p∗(dt).
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Now, we define the time-change processes, for t ∈ [0, λ−1ε (T )], by

Uε(t) = XP
ε ◦ λε(t) and Vε(t) = Yε ◦ λε(t).

Notice that λ−1ε (T ) ­ T . Then, for any measurable function f : R→ R satisfying
(G1) and (G2), the process defined by

f
(
Uε(·)

)
− f

(
Uε(0)

)
−
·∫
0

f ′
(
Uε(s)

)
Vε(s)λε(ds)

−
·∫
0

c∫
−∞

[
f(u)− f

(
Uε(s)

)]
νVε(s)(du)µε(ds)

is a martingale. The process is now in an enough standard form to apply classical
tightness theorems of the literature.

PROPOSITION 3.1. For any time horizon T̃ , the process (Uε, λε) is tight for
the Skorokhod topology on real càdlàg functions on [0, T̃ ].

P r o o f. Since the increases of λε and µε are dominated, uniformly in ε, by
the increases of the identity, and since Y is bounded, this is a direct application of
[5], Theorem 9.4, p. 145. �

Lemma 3.1 identifies the limit of λε as being the identity, thus a strictly in-
creasing function. From this fact we deduce from [7], Theorem 1.1, the tightness
of the penalized process as stated below.

PROPOSITION 3.2. For any time horizon T, the family {XP
ε , ε ∈ (0, 1]} is

tight for the Skorokhod topology on real càdlàg functions on [0, T ].

3.2. Coupling and tightness for the initial process. The aim of this part is to
show that the family {Xε, ε ∈ (0, 1]} is tight. To this end, we show that Xε and XP

ε

are close enough such that the existence of a converging subsequence for the first
one infers the existence of such a subsequence for the second one. Let us describe
the coupling procedure, in emphasizing the role of k by denoting XP

ε by XPk
ε .

Coupling procedure:
• Glue the two processes until the first hitting time of the boundary: The

two starting points are the same: Xε(0) = XPk
ε (0) = ξ0. Then, for t ∈ [0, T ∗ε,1),

Xε(t) = XPk
ε (t). Let us denote by T ∗,Pk

ε,1 the first jumping time for XPk
ε .

• The two processes jump to the same place: As the jumping measure de-
pends only on Yε, we can set Xε(T

∗
ε,1) = XPk

ε (T ∗,Pk
ε,1 ).

• The two processes evolve but with the same post-jump value location:
Always set Xε(T

∗
ε,i) = XPk

ε (T ∗,Pk
ε,i ) for 1 ¬ i ¬ p∗ε(T ).
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Figure 2. The coupling between Xε (solid line) and X
Pk
ε (dotted line). The random variables E(k)

1

and E
(k)
2 have the same law as independent and exponentially distributed random variables with

parameter 1/εk: they represent the time spent beyond c for the process XPk
ε .

This coupling, illustrated in Figure 2, has good properties, such as the fact that
XPk

ε always jumps after Xε. Another one is emphasized in the following proposi-
tion.

LEMMA 3.2. The probability that Yε jumps between T ∗ε,1 and T ∗,Pk
ε,1 goes to

zero when k goes to infinity.

P r o o f. Remark that T ∗,Pk
ε,1 − T ∗ε,1 is dominated by an exponential variable of

parameter 1/εk which is also independent of Yε. Therefore, the probability that Yε
jumps between T ∗ε,1 and T ∗,Pk

ε,1 is asymptotically (in k) dominated by the probability
that Yε jumps exactly at time T ∗ε,1, which is zero. �

This implies that for k big enough, with high probability (depending on k),
after its first jump, XPk

ε has the same direction as Xε and, Y being bounded, their
distance is of order an exponential variable of parameter 1/εk, see Figure 2. Then,
the distance between the two processes remains the same until Xε reaches again
the boundary {c}.

Let us recall that the Wasserstein distance between Xε and XPk
ε is defined as

W (Xε, X
Pk
ε ) = inf

A∼Xε

B∼XPk
ε

E
(
dS(A,B)

)
,

where dS is the Skorokhod distance defined, for Λ the set of continuous one-to-one
mappings of [0, T ], by

dS(A,B) = inf
λ∈Λ

max(‖λ− Id‖∞, ‖A−B ◦ λ‖∞).
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Thus, for the Wasserstein distance to go to zero, it is enough to find a coupling
of Xε and XPk

ε such that their Skorokhod distance goes to zero in expectation. In
view of Lemma 3.2 and the fact that the number of jumps of Xε is bounded almost
surely, this is what is achieved by our coupling procedure.

PROPOSITION 3.3. For any ε0 ∈ (0, 1),

lim
k→∞

sup
ε∈(0,ε0)

W (Xε, X
Pk
ε ) = 0.

P r o o f. Let us use the flexibility of the Wasserstein and Skorokhod distances
in considering the defined coupling together with the one-to-one mapping

γ(k)ε (t) =
T ∗,Pk

p
∗,Pk
ε (t)+1,ε

+ E
(k)

p
∗,Pk
ε (t)+1

T ∗p∗ε(t)+1,ε

t,

defined for t ∈ [0, T ], where (E
(k)
i )i­1 are the successive times spent beyond c

for the process XPk
ε and thus have the same law as independent exponential ran-

dom variables with parameter 1/εk. This can be seen as a homothety with random
piecewise constant ratio. Remark that the map γ

(k)
ε is defined so that the two pro-

cesses Xε and XPk
ε ◦ γ

(k)
ε jump at the same time and are glued to the same value

after jumps, as illustrated in Figure 3. As for Lemma 3.1, we can show that the
piecewise constant ratio of the homothety γ

(k)
ε goes to one when k goes to infinity,

uniformly in t ∈ [0, T ] and ε ∈ (0, 1). This implies that, in expectation, the uni-
form distance between Xε and XPk

ε ◦ γ
(k)
ε goes to zero when k goes to infinity. �

Since convergence in Wasserstein distance implies convergence in law, we can
state the following proposition.

PROPOSITION 3.4. For any time horizon T, the family {Xε, ε ∈ (0, 1]} is
tight for the Skorokhod topology on real càdlàg functions on [0, T ].

P r o o f. Let us write dL for a distance metrizing convergence in law. Ac-
cording to Proposition 3.3, for any η > 0 we can find some k such that for any
ε ∈ (0, 1],

dL
(
L(Xε),L(XPk

ε )
)
¬ η

2
.

Then, writing X̄ for an accumulation point of the family {XPk
ε , ε ∈ (0, 1]}, we see

that there is some ε ∈ (0, 1) such that

dL
(
L(XPk

ε ),L(X̄)
)
¬ η

2
.

Hence the result is proved. �
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Figure 3. Illustration of the proof of Proposition 3.3. Top: trajectories of Xε

(solid lines) and X
Pk
ε (dotted lines). Bottom: trajectories of Xε (solid lines)

and X
Pk
ε ◦ γ(k)

ε (dotted lines), T ∗ϵ,1 = γ
(k)
ϵ (T

∗,Pk
ϵ,1 ), T ∗ϵ,2 = γ

(k)
ϵ (T

∗,Pk
ϵ,2 ).

3.3. Finite-dimensional laws for the limit. Let us denote by Λε the occupation
measure on [0, T ]× P(Y) defined by

Λε([0, t]× {y}) =
t∫
0

1y
(
Yε(s)

)
ds.

According to the ergodic theorem (recall that Yε = Y (·/ε) with Y a positive recur-
rent continuous time Markov chain), when ε goes to zero, this measure converges
in law to the measure Λ̄ defined on [0, T ]× P(Y) by

Λ̄([0, t]× {y}) = t
∑
y∈Y

yπ({y}).

In the following, we will denote by (X̄, Λ̄) an accumulation point of the family
{Xε,Λε; ε ∈ (0, 1)}. Let us recall that for any measurable function f satisfying
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(G1) and (G2) the process defined, for t ∈ [0, T ], by

Mε,f (t) = f
(
Xε(t)

)
− f(ξ0)−

t∫
0

f ′
(
Xε(s)

)
Yε(s)ds

−
t∫
0

c∫
−∞

[
f(u)− f

(
Xε(s

−)
)]
νYε(s−)(du)p

∗
ε(ds)

is a martingale. By [8], Theorem 2.1, as in the context of averaging without con-
straints, it follows that the term

t∫
0

f ′
(
Xε(s)

)
Yε(s)ds =

∫
[0,t]×Y

f ′
(
Xε(s)

)
yΛε(ds,dy)

converges in law toward

(3.1)
∫

[0,t]×Y
f ′
(
X̄(s)

)
yΛ(ds,dy) =

∑
y∈Y

yπ({y})
t∫
0

f ′
(
X̄(s)

)
ds.

The integral with respect to the singular measure p∗ε requires a special attention.
We expand it as

t∫
0

c∫
−∞

[
f(u)− f

(
Xε(s

−)
)]
νYε(s−)(du)p

∗
ε(ds)

=
∑
y∈Y

∑
i­1

c∫
−∞

[f(u)− f(c)]νy(du)1Yε(T
∗,−
i,ε )=y; i¬p∗ε(t)

.

Notice that Xε is strictly increasing in between two jumps, thus invertible in such
a time window. The reciprocal process is defined until the first jumps of Xε as

1

ξ0
+

t∫
0

Wε(s)ds,

where Wε = W (·/ε) with W a {1/y ; y ∈ Y}-valued continuous time Markov
chain with intensity matrix V −1Q. We thus consider a “mirror” process Mε, as
illustrated in Figure 4, starting at time zero and evolving according to a continuous
piecewise linear motion with speed given by Wε:

∀x ­ 0, Mε(x) =
x∫
0

Wε(u)du.

Recall that we write π∗ for the invariant measure associated with W .
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Figure 4. Illustration of the proof of Lemma 3.3. Top: a trajectory of Xε. Bottom: a trajectory
of the “mirror” process Mε. The process Xε hits the boundary at time corresponding to c − ξ0,
2c− (ξ0 + ξ1)... for the mirror process Mε. This shows that Xε hits the boundary for the first time
with a given speed y if and only if the mirror process evolves at speed 1/y at time c− ξ0, and so on

and so forth for the other hitting times of the boundary.

LEMMA 3.3. Let us denote by νξ0 the law of the initial condition ξ0 and by
Eπ∗ the first moment of π∗. The sequence

(
T ∗ε,i, Yε(T

∗,−
ε,i )

)
1¬i¬p∗ε(T )

converges in
law when ε goes to zero toward (T̄ ∗i , Zi)1¬i¬p∗(T ), with law given, for any k ­ 1,
any sequence of times t1, . . . , tk and any sequence of values x0, . . . , xk, by

P
( k⋂
i=1

{T̄ ∗i ¬ ti} ∩ {Zi = xi} ∩ {p∗(T ) = k}
)

=
∫

(−∞,c)k+1

νξ0(du0) . . . νxk
(duk)

k∏
i=1

π∗({1/xi}) 1Dj ,

where

Dj =
{(

ic−
i−1∑
j=0

uj
)
Eπ∗ ¬ ti;

(
kc−

k−1∑
j=0

uj
)
Eπ∗¬T <

(
(k+1)c−

k∑
j=0

uj
)
Eπ∗

}
.
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P r o o f. At first we consider the case k = 1. As illustrated in Figure 4 we
have

P
(
{T ∗ε,1 ¬ t1} ∩ {Yε(T ∗,−ε,1 ) = x1} ∩ {p∗ε(T ) = 1}

)
= P

({ c−ξ0∫
0

W (s/ε)ds ¬ t1
}
∩
{
W

(
(c− ξ0)/ε

)
=

1

x1

}

∩
{ c−ξ0∫

0

W (s/ε)ds ¬ T
}
∩
{ 2c−(ξ0+ξ1)∫

0

W (s/ε)ds > T
})

,

where ξ0 and ξ1 are independent, with laws νξ0 and νx1 in the event of {Yε(T ∗,−ε,1 )
= x1}. Thus,

P
(
{T ∗ε,1 ¬ t1} ∩ {Yε(T ∗,−ε,1 ) = x1} ∩ {p∗ε(T ) = 1}

)
=

∫
(−∞,c)2

νξ0(du0)νx1(du1)P
({ c−u0∫

0

W (s/ε)ds¬ t1
}
∩
{
W

(
(c−u0)/ε

)
=

1

x1

}

∩
{ c−u0∫

0

W (s/ε)ds ¬ T
}
∩
{ 2c−(u0+u1)∫

0

W (s/ε)ds > T
})

.

By the ergodic theorem and dominated convergence, the latter term goes to∫
(−∞,c)2

νξ0(du0)νx1(du1)π
∗ ({1/x1}) 1(c−u0)Eπ∗¬T<(2c−(u0+u1))Eπ∗ ,

as required. Similarly, for any k ­ 1, for any sequence of times t1, . . . , tk and any
sequence of values x0, . . . , xk, considering all possible post-jump value locations,
we have

P
( k⋂
i=1

{T ∗ε,i ¬ ti} ∩ {Yε(T ∗,−ε,i ) = xi} ∩ {p∗ε(T ) = k}
)

= P
( k⋂
i=1

{T ∗ε,i ¬ ti} ∩ {Yε(T ∗,−ε,i ) = xi} ∩ {T ∗ε,k ¬ T} ∩ {T ∗ε,k+1 > T}
)

=
∫

(−∞,c)k+1

νξ0(du0) . . . νxk
(duk)

× P
(

k⋂
i=1

{
ic−∑i−1

j=0 uj∫
0

W (s/ε)ds ¬ ti} ∩
{
W

((
ic−

i−1∑
j=0

uj
)
/ε
)
=

1

xi

}

∩
{ kc−∑k−1

j=0 uj∫
0

W (s/ε)ds ¬ T
}
∩
{ (k+1)c−∑k

j=0 uj∫
0

W (s/ε)ds ¬ T
})

.
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By the ergodic theorem and dominated convergence, when ε goes to zero, the latter
term goes to ∫

(−∞,c)k+1

νx0(du0) . . . νxk
(duk)

k∏
i=1

π∗ ({1/xi}) 1D′j

where

D′j =
{(

ic−
i−1∑
j=0

uj
)
Eπ∗ ¬ ti;

(
kc−

k−1∑
j=0

uj
)
Eπ∗ ¬ T ;

(
kc−

k−1∑
j=0

uj
)
Eπ∗ > T

}
,

as required. �

Now, it is just routine (see the proof of Theorem 2.1 in [8]) to show that
Lemma 3.3 and equation (3.1) imply that if the function f : (−∞, c) → R is
such that

(G1) f is measurable and absolutely continuous with respect to the Lebesgue
measure;

(G2) f is locally integrable at the boundary: for any t ∈ [0, T ],

E
( ∑

T ∗i ¬t

∣∣f(X(T̄ ∗i )
)
− f

(
X(T̄ ∗−i )

)∣∣) <∞,

then the process M̄f defined by

M̄f (t) = f
(
X̄(t)

)
− f(ξ0)− Eπ∗

t∫
0

f ′
(
X̄(s)

)
ds

−
t∫
0

∑
y∈Y

c∫
−∞

[
f(u)− f

(
X̄(s−)

)]
νy(du)π

∗ ({1/y}) p∗(ds)

is a martingale, which is precisely Theorem 2.1.
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