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1. INTRODUCTION

A Lévy process is a stochastic process with stationary independent increments,
stochastically continuous, starting at the origin, and having càdlàg paths. If the sta-
tionarity of increments is not assumed, it is called an additive process. Our notation
and definition follow [15]. Let {Xt : t ­ 0} be a Lévy process on R. The distribu-
tion of X1 has the Lévy–Khintchine representation of the form

EeiξX1 = exp[C(ξ)],

C(ξ) = −2−1Aξ2 + iγξ +
∫
R

(
eiξx − 1− i

ξx

1 + x2

)
ν(dx),

where A ­ 0, γ ∈ R, ν({0}) = 0 and
∫
Rmin{1, |x|2}ν(dx) < ∞. Here C(ξ)

is the cumulant function of the distribution of X1. Stochastic integrals of non-
random functions with repect to additive processes on R were studied by [4], [12]
and [24]. Ken-iti Sato developed this theory in [16] and [17]. He has carried out
various studies in [18]–[22]. These days, the connections between stochastic in-
tegral mappings and subclasses of infinitely divisible distributions are found. See
[1], [2], [5], [7], [8] and [23]. Our aim is to study stochastic complex integrals
based on the theory developed by Sato. Let z = s + it ∈ C, where s and t are
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the real and the imaginary part of z, respectively. A usual complex integral is
an integral with respect to dz = ds + idt. Our complex integral is an integral
with respect to dzX = ds+ idXt. Here we consider a process X = {Xt : t ∈ R}
on R defined along the construction in [13] as follows. Let {X(1)

t : t ­ 0} and

{X(2)
t : t ­ 0} be independent Lévy processes such that EeiξX

(1)
t = exp[tC(ξ)]

and EeiξX
(2)
t = exp[tC(−ξ)]. The process X is defined by

Xt =

{
X

(1)
t for t ­ 0,

X
(2)
(−t)− for t < 0.

Throughout this paper, let X = {Xt : t ∈ R} be the above process over an infinite
time parameter set R. We call (A, ν, γ) the generating triplet of X.

Here we mention some notation and definitions: λ stands for the Lebesgue
measure on R. Let J be an interval in R, for example, J = R, (−∞, 0) or [0,∞).
B0J is the class of bounded Borel sets in J ; p-lim stands for limit in probability;
∂B stands for the boundary of B and we set B = B ∪ ∂B for any set B in R2. By
a curve Γ we mean a function Γ : [0, 1]→ R2 which is of class C1. We call Γ(0)
and Γ(1) the beginning point and the end point of Γ, respectively. By a path Γ we
mean a sequence of curves, Γ = {Γ1,Γ2, . . . ,Γn} such that the end point of Γj is
the beginning point of Γj+1 for j = 1, 2, . . . , n − 1. A path Γ is called a closed
path if the end point of Γn is the beginning point of Γ1. If a closed path Γ does not
intersect itself, we call it a simple closed path. A path Γ is called regular if Γ′j 6= 0
for each j.

In this paper, let D be a bounded, connected and open set in R2, and suppose
that ∂D =

⋃q
j=0 Γ

j , where 0 ¬ q < ∞ and each Γj is a regular, simple closed
path. In the case q ­ 1, we suppose that the region surrounded by Γ0 includes⋃q

j=1 Γ
j , and that Γ0 is parameterized counterclockwise and Γj , j = 1, 2, . . . , q,

are parameterized clockwise. Let D ⊂ D̃ ⊂ [a, b]× [c, d] for some open set D̃ and
some a, b, c, d ∈ R. Let f(s, t) be an R-valued measurable function on [a, b] ×
[c, d] and of class C1 on D̃. We identify z = s + it ∈ C with (s, t) ∈ R2. Then
f(z) is regarded as a function of (s, t) and sometimes denoted by f(s, t). Likewise,
[a, b] × [c, d] is identified with {s + it : (s, t) ∈ [a, b] × [c, d]}. Now we define
stochastic line integrals along a simple closed path Γ. Let

∆n
s = {[sni−1, sni ] : i = 1, 2, . . . ,mn} and n

t ∆ = {[tnj−1, tnj ] : j = 1, 2, . . . , ln}

be partitions of [a, b] and [c, d], respectively. Here sn0 = a, snmn
= b, tn0 = c, and

tnln = d. The set of rectangles

∆n = {Ini,j := [sni−1, s
n
i ]× [tnj−1, t

n
j ] : i = 1, 2, . . . ,mn, j = 1, 2, . . . , ln}

is called a partition of [a, b] × [c, d]. Denote by |Ini,j | the length of the diagonal
of Ini,j . Then the size of ∆n is defined by

|∆n| = max{|Ini,j | : i = 1, 2, . . . ,mn, j = 1, 2, . . . , ln}.



Stochastic complex integrals 221

Let Ini,j ⊂ D̃. If ∂Ini,j is parameterized counterclockwise, we define the line integral
along ∂Ini,j as follows:

∫
∂Ini,j

f(s, t)dXt =

tnj∫
tnj−1

f(sni , t)dXt −
tnj∫

tnj−1

f(sni−1, t)dXt(1.1)

=

tnj∫
tnj−1

( sni∫
sni−1

∂f

∂s
(s, t)ds

)
dXt.

Here we interpret the values of the line integrals along [sni−1, s
n
i ] × {tj} and

[sni−1, s
n
i ]×{tj−1} as zero. Hence we are able to introduce the following definition

of the line integral along ∂D. The way of the definition is the first key to our
analysis.

DEFINITION 1.1. Let Dn =
⋃

Ini,j⊂D
Ini,j and Dn =

⋃
Ini,j∩D 6=∅

Ini,j , where

Dn ⊂ D̃. Then Dn and Dn are called the inner partition and the outer partition of
D with respect to ∆n, respectively. For each j, we set

Dn,j = {s : (s, t) ∈ Dn, t ∈ (tnj−1, t
n
j )},

Dn,j = {s : (s, t) ∈ Dn, t ∈ (tnj−1, t
n
j )}.

Let f(s, t) be of class C1 on D̃. If

∫
∂Dn

f(s, t)dXt =
∑

Ini,j⊂D

∫
∂Ini,j

f(s, t)dXt =
ln∑
j=1

tnj∫
tnj−1

( ∫
Dn,j

∂f

∂s
(s, t)ds

)
dXt

and∫
∂Dn

f(s, t)dXt =
∑

Ini,j∩D 6=∅

∫
∂Ini,j

f(s, t)dXt =
ln∑
j=1

tnj∫
tnj−1

( ∫
Dn,j

∂f

∂s
(s, t)ds

)
dXt

converge in probability and these limits are equal almost surely as |∆n| → 0 for
any sequence of partitions ∆n and if the limit does not depend on the choice of the
sequence {∆n}, then we call this limit the stochastic line integral of f along ∂D,
and denote it by ∫

∂D

f(s, t)dXt.

REMARK 1.1. (i) We note that Dn ⊂ D ⊂ Dn ⊂ D̃. We appropriate the path
∂D by the boundaries ∂Dn and ∂Dn.

(ii) If Dn,j = ∅, then we interpret the value of
∫
Dn,j

∂f
∂s (s, t)ds as zero. Like-

wise,
∫
Dn,j

∂f
∂s (s, t)ds = 0 if Dn,j = ∅.
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In Section 2, stochastic integrals with respect to X are introduced and useful
propositions are given without proofs. Section 3 begins with Green’s theorem and
Cauchy’s theorem and the residue theorem are given. Furthermore, the converse of
Cauchy’s theorem is investigated. Proofs of the assertions in Section 3 are given in
Section 4.

2. STOCHASTIC INTEGRALS

We show first the relationship of the process X = {Xt : t ∈ R} to an inde-
pendently scattered random measure (i.s.r.m.) on R, and define stochastic integrals
with respect to X. Following [20], we define a homogeneous i.s.r.m. over R. Also
refer to [6], [12], [14], [16] and [24]. Here we note that A. Prékopa studied inde-
pendently scattered random measures (not necessarily homogeneous) in the series
of papers [9]–[11]. In this section, propositions are given without proofs.

DEFINITION 2.1. A family of R-valued random variables {X(B) : B ∈ B0R}
is called an independently scattered random measure (i.s.r.m.) if it satisfies the
following conditions:

(i)
∑∞

n=1X(Bn) converges a.s. and equals X
(∑∞

n=1Bn

)
a.s. for any se-

quence B1, B2, . . . of disjoint sets in B0R with
∑∞

n=1Bn ∈ B0R;
(ii) X(B1), . . . , X(Bn) are independent for any finite sequence B1, B2, . . . ,

Bn of disjoint sets in B0R;
(iii) X({a}) = 0 a.s. for every a ∈ R.

In addition, {X(B)} is called a homogeneous i.s.r.m. if it satisfies

(iv) X(B)
d
= X(B + a) for every B ∈ B0R and a ∈ R.

Here, “ d
=” means to be identically distributed.

We give a proposition corresponding to Theorem 3.2 (ii) of [16]. The proof is
similar to that of Theorem 3.2 of [16].

PROPOSITION 2.1. There is a unique homogeneous i.s.r.m. {X(B) : B∈B0R}
such that

(2.1) Xt −Xs = X((s, t]) for s and t with s < t.

Further, we have

(2.2) EeiξX(B) = exp[λ(B)C(ξ)].

In particular, we have

(2.3) X(B) =

{
X(1)(B) a.s. for B ∈ B0[0,∞),

−X(2)(−B) a.s. for B ∈ B0(−∞,0).
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Here, independently scattered random measures X(1) and X(2) correspond to
X

(1)
t and X

(2)
t , respectively.

REMARK 2.1. The symbol “−B” means the set {−x : x ∈ B}. Uniqueness
means that if both {X(B)} and {X ′(B)} satisfy (2.1), then X(B) = X ′(B) a.s.
for every B ∈ B0R.

Although Rocha-Arteaga and Sato [13] directly define stochastic integrals
based on {Xt : t ∈ R}, we define those integrals based on independently scattered
random measures.

DEFINITION 2.2. An R-valued function F(t)on R is called a simple function if

F (t) =
n∑

j=1

1Bj (t)Rj

for some n, where B1, . . . , Bn are disjoint Borel sets in R and R1, . . . , Rn ∈ R. If
F is a simple function of this form, then we define the integral of F over B ∈ B0R
with respect to X as ∫

B

F (t)dXt =
n∑

j=1

RjX(B ∩Bj).

DEFINITION 2.3. An R-valued function F (t) on R is said to be locally X-
integrable or locally {Xt}-integrable if it is measurable and there is a sequence of
simple functions Fn(t), n = 1, 2, . . . , such that

(1) Fn(t)→ F (t) a.e. as n→∞, and
(2) for every B ∈ B0R,

∫
B
Fn(t)dXt is convergent in probability as n→∞.

We denote by L(X) the class of locally X-integrable functions.

Proposition 2.15 of [17] remains true even if we replace B0[0,∞) with B0R:

PROPOSITION 2.2. Let F ∈ L(X). If F 1
n(t) and F 2

n(t) are sequences satisfy-
ing (1) and (2) of Definition 2.3, then

p- lim
n→∞

∫
B

F 1
n(t)dXt = p- lim

n→∞

∫
B

F 2
n(t)dXt a.s. for each B ∈ B0R.

Proposition 2.2 enables us to define stochastic integrals of locally X-integrable
functions:

DEFINITION 2.4. Let F ∈ L(X) and let simple functions Fn, n = 1, 2, . . . ,
satisfy (1) and (2) of Definition 2.3. Then we define∫

B

F (t)dXt = p- lim
n→∞

∫
B

Fn(t)dXt for B ∈ B0R.
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Prékopa’s study gives us useful propositions, see Theorems 2.1, 2.4 and 2.5
of [10].

PROPOSITION 2.3. If F1, F2 ∈ L(X), then, for any a1, a2 ∈ R, a1F1+a2F2∈
L(X) and

(2.4)
∫
B

(
a1F1(t) + a2F2(t)

)
dXt = a1

∫
B

F1(t)dXt + a2
∫
B

F2(t)dXt a.s.

for B ∈ B0R.

PROPOSITION 2.4. Let F ∈ L(X) and let B1, B2 ∈ B0R. If the intersection of
B1 and B2 is empty, or if it consists of a finite number of points, then

(2.5)
∫

B1∪B2

F (t)dXt =
∫
B1

F (t)dXt +
∫
B2

F (t)dXt a.s.

Local integrability is characterized in terms of the generating triplet (A, ν, γ)
of X, see Theorem 2.7 of [12]. Now we define

φ(u) = Au2 +
∫
R
min{1, |ux|2}ν(dx)

+

∣∣∣∣uγ +
∫
R

(
ux

1 + |ux|2
− ux

1 + |x|2

)
ν(dx)

∣∣∣∣
for u ∈ R.

PROPOSITION 2.5. Let F (t) be an R-valued measurable function on R. Then
F ∈ L(X) if and only if

(2.6)
t1∫
t0

φ
(
F (t)

)
dt <∞ for −∞ < t0 < t1 <∞.

COROLLARY 2.1. Let F (t) be an R-valued measurable function on R. If F (t)
is locally bounded, then F ∈ L(X).

Lastly, we give an expression of the characteristic function of
∫
B
F (t)dXt.

See Proposition 2.6 of [12].

PROPOSITION 2.6. If F ∈ L(X), then

E exp
[
iξ
∫
B

F (t)dXt

]
= exp

[ ∫
B

C
(
F (t)ξ

)
dt
]

for B ∈ B0R.
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3. STOCHASTIC COMPLEX INTEGRALS

First, we define double integrals with repect to dsdXt.

DEFINITION 3.1. Let c ¬ t ¬ d and set Bt = {s : (s, t) ∈ B ∩ D̃} for every
Borel set B ⊂ [a, b] × [c, d]. Suppose f(s, t) is an R-valued function of class C1

on D̃. Then we define∫∫
B

f(s, t)dsdXt =
d∫
c

( ∫
Bt

∂f

∂s
(s, t)ds

)
dXt.

Here, if Bt = ∅, then we interpret the value of
∫
Bt

∂f
∂s
(s, t)ds as zero.

As the second key of our analysis, we will show a theorem corresponding to
Green’s theorem. Recall that ∂D =

⋃q
j=0 Γ

j , where Γ0 is parameterized counter-
clockwise and Γj , j = 1, 2, . . . , q, are parameterized clockwise.

THEOREM 3.1. Suppose f(s, t) is an R-valued function of class C1 on D̃.
Then

(3.1)
∫
∂D

f(s, t)dXt =
∫∫
D

∂f

∂s
(s, t)dsdXt a.s.

REMARK 3.1. The function
∫
(D)t

∂f
∂s
(s, t)ds is locally X-integrable because

it is bounded and we can use Corollary 2.1. Hence the right-hand side of (3.1) is
definable.

Let f(z) be a complex-valued function for z = s+ it ∈ D̃. Then f(z) can be
expressed as f(z) = u(z) + iv(z), where u(z) and v(z) are R-valued functions.

DEFINITION 3.2. Suppose
∫
∂D

u(s, t)dXt and
∫
∂D

v(s, t)dXt are definable.
Then we define stochastic complex integrals along a closed path ∂D as follows:∫
∂D

f(z)dzX =
∫
∂D

(
u(s, t) + iv(s, t)

)
(ds+ idXt)

=
∫
∂D

u(s, t)ds−
∫
∂D

v(s, t)dXt + i
( ∫
∂D

v(s, t)ds+
∫
∂D

u(s, t)dXt

)
.

From Theorem 3.1 we obtain a theorem corresponding to Cauchy’s theorem:

THEOREM 3.2. Suppose f(z) is holomorphic on D̃. Then

(3.2)
∫
∂D

f(z)dzX = i
∫∫
D

∂f

∂s
(s, t)dsd(Xt − t) a.s.

REMARK 3.2. (i) The process {Xt − t : t ∈ R} corresponds to a homoge-
neous i.s.r.m. {X(B)− λ(B) : B ∈ B0R}. See Lemma 4.2 in Section 4 below.
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(ii) If f(z) is holomorphic, then u(s, t) and v(s, t) are of class C1.
(iii) In the case Xt = t, the stochastic complex integral is understood as the

usual complex integral. Then the right-hand side of (3.2) is equal to zero, and the
assertion coincides with Cauchy’s theorem.

Let f(s, t) be of class C1 on D̃ excluding a finite number of points. In partic-
ular, we suppose D is simply connected. As

∫
∂D

f(s, t)dXt is not definable in the
sense of Definition 1.1, we define stochastic line integrals as follows:

DEFINITION 3.3. Let D be a bounded, simply connected, open set and let
f(s, t) be an R-valued function of class C1 on D̃\{a1, a2, . . . , an}, where aj =
(a1j , a

2
j ) ∈ D for j = 1, 2, . . . , n. Let

Iϵ,δ(aj) = [a1j − ϵ, a1j + ϵ]× [a2j − δ, a2j + δ],

where ∂Iϵ,δ(aj) is parameterized counterclockwise, and let

Dϵ,δ = D\
n⋃

j=1

Iϵ,δ(aj).

Here we take ϵ and δ such that Iϵ,δ(aj) ⊂ D and that Iϵ,δ(aj), j = 1, 2, . . . , n, are
disjoint. Then we define∫

∂D

f(z)dzX = p-lim
δ↓0

( ∫
∂Dϵ,δ

f(z)dzX +
n∑

j=1

∫
∂Iϵ,δ(aj)

f(z)dzX
)

and ∫
∂D

f(s, t)dXt = p-lim
δ↓0

( ∫
∂Dϵ,δ

f(s, t)dXt +
n∑

j=1

∫
∂Iϵ,δ(aj)

f(s, t)dXt

)
,

if each convergence on the right-hand sides does not depend on ϵ. Here the integral∫
∂Iϵ,δ(aj)

f(s, t)dXt is defined in the same way as in (1.1).

REMARK 3.3. If we regard ∂Iϵ,δ(aj) as a part of ∂Dϵ,δ, then ∂Iϵ,δ(aj) is
parameterized clockwise.

In Theorem 3.3 and Corollary 3.1 below, we suppose D is simply connected.

THEOREM 3.3. Let D be a bounded, simply connected, open set. Suppose
f(z) is holomorphic on D̃ except at a finite number of isolated singular points
a1, a2, . . . , an ∈ D. Then we have the following representation:

(3.3)
∫
∂D

f(s, t)d(Xt − t) = p-lim
δ↓0

∫
∂Dϵ,δ

f(s, t)d(Xt − t)
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and

(3.4)
∫
∂D

f(z)dzX = 2πi
n∑

j=1

Res(f, aj) + i
∫
∂D

f(s, t)d(Xt − t) a.s.

Here, Res(f, aj) stands for the residue of f(z) at aj for j = 1, 2, . . . , n.

REMARK 3.4. We note that the limit p-limδ↓0
∫
Dϵ,δ

f(s, t)d(Xt − t) of (3.3)
does not depend on ϵ.

Here we mention the case where the number of isolated singular points is
equal to one without proof. It is immediately derived from Theorem 3.3.

COROLLARY 3.1. Suppose f(z) is holomorphic on D̃. For η ∈ D, we have

(3.5)
∫
∂D

f(z)

z − η
dzX = 2πif(η) + i

∫
∂D

f(z)

z − η
d(Xt − t) a.s.

REMARK 3.5. We do not state particularly that f(η) has a similar represen-
tation to Cauchy’s integral formula because f(η) is non-random and the integrals
are random, excluding the case Xt = t.

At the end of this section, we investigate the converse of Cauchy’s theorem.
We obtain the following fact:

THEOREM 3.4. Suppose that E|X1| < ∞ and EX1 = 1. Then, for any R-
valued function f(s, t) of class C1 on D̃,

(3.6) E
∣∣ ∫
∂D

f(z)dzX
∣∣ <∞ and E

[ ∫
∂D

f(z)dzX
]
=

∫
∂D

f(z)dz.

COROLLARY 3.2. Suppose that E|X1| <∞ and E[X1] = 1. Let u(s, t) and
v(s, t) be R-valued functions of class C1 on D̃. Then f(z) is holomorphic on D̃ if
and only if E

[ ∫
∂4 f(z)dzX

]
= 0 for every closed triangle4 ⊂ D̃.

REMARK 3.6. (i) The symbol 4 is used instead of D because the paths of
stochastic integrals are triangular paths.

(ii) If Xt = t, then the corollary states the assertion of Morera’s theorem.

4. PROOFS

LEMMA 4.1. Let F (t) be an R-valued function on R. There are constants K1,
K2 and K3 such that

(4.1)
∣∣C(

ξF (t)
)∣∣ ¬ K1ξ

2F (t)2 +K2|ξ||F (t)|+K3

for any ξ ∈ R.
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P r o o f. We have∣∣C(
ξF (t)

)∣∣ ¬ 2−1ξ2
(
A+

∫
|x|<1

x2ν(dx)
)
F (t)2

+ |ξ||F (t)|
(
|γ|+ 2−1

∫
R
min{1, x2}ν(dx)

)
+ 2ν({|x| ­ 1}).

Hence the lemma is true. �

LEMMA 4.2. (i) {Xt − t : t ∈ R} corresponds to a homogeneous i.s.r.m.
{X(B)− λ(B) : B ∈ B0R}.

(ii) Let F (t) be an R-valued function on R. Suppose
∫ t1
t0
|F (t)|dt <∞ for any

t0, t1 ∈ R with t0 < t1. If F ∈ L(X), then F (t) is locally {Xt − t}-integrable and

(4.2)
∫
B

F (t)dXt −
∫
B

F (t)dt =
∫
B

F (t)d(Xt − t) a.s.

for any B ∈ B0R.

P r o o f. (i) Let M be a homogeneous i.s.r.m. corresponding to {Xt − t}.
Then we have

M
(
(s, t]

)
= (Xt − t)− (Xs − s) = X

(
(s, t]

)
− λ

(
(s, t]

)
for s and t with s < t. Notice that {X(B) − λ(B)} is a homogeneous i.s.r.m.
Hence it follows from Proposition 2.1 that

M(B) = X(B)− λ(B) a.s. for every B ∈ B0R.

(ii) It is obvious from Proposition 2.5 that F (t) is locally {Xt − t}-integrable.
If F (t) is a simple function, then (4.2) holds. Hence (4.2) is true. �

LEMMA 4.3. Let f(s, t) be an R-valued function of class C1 on D̃. For Dn

and Dn of Definition 1.1, we have∫
∂Dn

f(s, t)dXt =
d∫
c

( ∫
(Dn)t

∂f

∂s
(s, t)ds

)
dXt a.s.,(4.3)

∫
∂Dn

f(s, t)dXt =
d∫
c

( ∫
(Dn)t

∂f

∂s
(s, t)ds

)
dXt a.s.(4.4)

P r o o f. Recall that Dn,j = {s : (s, t) ∈ Dn, t
n
j−1 < t < tnj }. From the def-

inition we see that∫
∂Dn

f(s, t)dXt =
ln∑
j=1

tnj∫
tnj−1

( ∫
Dn,j

∂f

∂s
(s, t)ds

)
dXt

=
ln∑
j=1

tnj∫
tnj−1

( ∫
(Dn)t

∂f

∂s
(s, t)ds

)
dXt =

d∫
c

( ∫
(Dn)t

∂f

∂s
(s, t)ds

)
dXt a.s.
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Here we used Proposition 2.4 in the last equality. In the same way as above, we
can prove that (4.4) is true. The lemma has been proved. �

We are now ready to prove Theorem 3.1.

P r o o f o f T h e o r e m 3.1. As
∫
Dt

∂f
∂s
(s, t)ds is locally bounded, it fol-

lows from Corollary 2.1 that it is X-integrable. Denote by Dn and Dn the inner
partition and the outer partition of D with respect to ∆n (see Definition 1.1). We
infer from Propositions 2.3 and 2.6 that

(4.5) E exp

[
iξ

( ∫∫
D

∂f

∂s
(s, t)dsdXt −

∫
∂Dn

f(s, t)dXt

)]

= E exp

[
iξ

d∫
c

( ∫
Dt\(Dn)t

∂f

∂s
(s, t)ds

)
dXt

]

= exp

[ d∫
c

C

(
ξ

∫
Dt\(Dn)t

∂f

∂s
(s, t)ds

)
dt

]
.

Let ϵ > 0 and set En :=
{
t ∈ [c, d] : λ

(
Dt\(Dn)t

)
> ϵ

}
. Now we split the above

integral in two:

d∫
c

C

(
ξ

∫
Dt\(Dn)t

∂f

∂s
(s, t)ds

)
dt =

∫
En

C

(
ξ

∫
Dt\(Dn)t

∂f

∂s
(s, t)ds

)
dt

+
∫

[c,d]\En

C

(
ξ

∫
Dt\(Dn)t

∂f

∂s
(s, t)ds

)
dt

≡ I1 + I2.

Let

M := sup
(s,t)∈D

∣∣∣∣∂f∂s (s, t)
∣∣∣∣.

Here it follows from Lemma 4.1 that∣∣∣∣C(
ξ

∫
Dt\(Dn)t

∂f

∂s
(s, t)ds

)∣∣∣∣ ¬ K1ξ
2

( ∫
Dt\(Dn)t

∂f

∂s
(s, t)ds

)2

+K2|ξ|
∣∣∣∣ ∫
Dt\(Dn)t

∂f

∂s
(s, t)ds

∣∣∣∣+K3

¬ K1ξ
2
(
M(b− a)

)2
+K2|ξ|M(b− a) +K3.
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Notice that limn→∞ λ(En) = 0 because

lim
n→∞

d∫
c

λ
(
Dt\(Dn)t

)
dt = 0.

This implies that

lim
n→∞
|I1| ¬

(
K1ξ

2
(
M(b− a)

)2
+K2|ξ|M(b− a) +K3

)
lim
n→∞

λ(En) = 0.

Furthermore, we see that∣∣∣∣ ∫
Dt\(Dn)t

∂f

∂s
(s, t)ds

∣∣∣∣ ¬Mλ
(
Dt\(Dn)t

)
¬Mϵ

on [c, d]\En. Let δ > 0. As C(ξ) is continuous, it follows that

|I2| ¬
∫

[c,d]\En

∣∣∣∣C(
ξ

∫
Dt\(Dn)t

∂f

∂s
(s, t)ds

)∣∣∣∣dt < δλ([c, d]\En) ¬ δ(d− c)

for sufficiently small ϵ > 0 and sufficiently large n. This implies limn→∞ I2 = 0.
Hence we obtain∫∫

D

∂f

∂s
(s, t)dsdXt −

∫
∂Dn

f(s, t)dXt → 0 in probability

because (4.5) goes to one as n→∞. Furthermore, we have

E exp

[
iξ

( ∫
∂Dn

f(s, t)dXt −
∫∫
D

∂f

∂s
(s, t)dsdXt

)]

= exp

[ d∫
c

C

(
ξ

∫
(Dn)t\Dt

∂f

∂s
(s, t)ds

)
dt

]
.

In the same way as above, we arrive at the conclusion that∫
∂Dn

f(s, t)dXt −
∫∫
D

∂f

∂s
(s, t)dsdXt → 0 in probability.

Hence the theorem has been proved. �

We are now ready to prove Theorem 3.2. In the proofs of Theorems 3.2 and
3.3 and Corollary 3.2, we use the representation f(z) = u(z) + iv(z). Here u(z)
and v(z) are the real part and the imaginary part of f(z), respectively.
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P r o o f o f T h e o r e m 3.2. From Theorem 3.1 it follows that almost surely∫
∂D

f(z)dzX =
∫
∂D

u(s, t)ds−
∫
∂D

v(s, t)dXt

+ i
( ∫
∂D

v(s, t)ds+
∫
∂D

u(s, t)dXt

)
= −

∫∫
D

∂u

∂t
(s, t)dtds−

∫∫
D

∂v

∂s
(s, t)dsdXt

+ i

(
−
∫∫
D

∂v

∂t
(s, t)dtds+

∫∫
D

∂u

∂s
(s, t)dsdXt

)
≡ I.

Here we also used the usual Green’s theorem. The Cauchy–Riemann equations tell
us that

∂u

∂s
(s, t) =

∂v

∂t
(s, t) and

∂u

∂t
(s, t) = −∂v

∂s
(s, t).

These mean that

I = −
∫∫
D

∂u

∂t
(s, t)dsdt− i

∫∫
D

∂v

∂t
(s, t)dsdt

+ i

(
i
∫∫
D

∂v

∂s
(s, t)dsdXt +

∫∫
D

∂u

∂s
(s, t)dsdXt

)
= −i

∫∫
D

∂f

∂s
(s, t)dsdt+ i

∫∫
D

∂f

∂s
(s, t)dsdXt

= i
∫∫
D

∂f

∂s
(s, t)dsd(Xt − t) a.s.

The last equality is due to Lemma 4.2. The theorem has been proved. �

We are now ready to prove Theorem 3.3.

P r o o f o f T h e o r e m 3.3. Let aj = (a1j , a
2
j ) ∈ R2 for 1 ¬ j ¬ n. Ar-

range {a2j : j = 1, 2, . . . , n} in ascending order. They are denoted by

β1 < β2 < . . . < βl (l ¬ n).

Furthermore, for each βk, we arrange {a1j : a2j = βk, 1 ¬ j ¬ n} in ascending
order. They are denoted by

αk
1 < αk

2 < . . . < αk
mk

.
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Here
∑l

k=1mk = n. We take a sequence {δn} satisfying δn ↓ 0 as n → ∞. Let
X̃t=Xt−t and denote by C̃(z) the cumulant function of the distribution of X1−1.
From Lemma 4.2 and Cauchy’s theorem we see that∫

∂Dϵ,δn

f(z)dzX =
∫

∂Dϵ,δn

f(z)dz + i
∫

∂Dϵ,δn

f(s, t)dX̃t

= i
∫

∂Dϵ,δn

f(s, t)dX̃t a.s.

We examine the convergence of
∫
∂Dϵ,δn

f(s, t)dX̃t. Let n > m. From Theorem 3.1
and Proposition 2.3 we infer that almost surely∫

∂Dϵ,δn

u(s, t)dX̃t −
∫

∂Dϵ,δm

u(s, t)dX̃t

=
d∫
c

( ∫
(Dϵ,δn )t

∂u

∂s
(s, t)ds

)
dX̃t −

d∫
c

( ∫
(Dϵ,δm )t

∂u

∂s
(s, t)ds

)
dX̃t

=
l∑

k=1

mk∑
j=1

d∫
c

( ∫
Jk,j(t)

∂u

∂s
(s, t)ds

)
dX̃t ≡ I,

where

Jk,j(t) =

{
[αk

j − ϵ, αk
j + ϵ] if t ∈ [βk − δm, βk − δn] ∪ [βk + δn, βk + δm],

∅ otherwise.

Furthermore, we have

E exp

[
iξ

d∫
c

( ∫
Jk,j(t)

∂u

∂s
(s, t)ds

)
dX̃t

]

= exp

[( βk−δn∫
βk−δm

+
βk+δm∫
βk+δn

)
C̃
(
ξ{u(αk

j + ϵ, t)− u(αk
j − ϵ, t)}

)
dt

]
.

Notice that u(αk
j + ϵ, t) and u(αk

j − ϵ, t) are continuous in t and thereby bounded
on [βk − δm, βk − δn] ∪ [βk + δn, βk + δm]. By Lemma 4.1, this implies that

d∫
c

( ∫
Jk,j(t)

∂u

∂s
(s, t)ds

)
dX̃t → 0 in probability

as n,m→∞. Hence p-limn,m→∞I = 0. Even if we replace u(s, t) with v(s, t),
I goes to zero in probability. Hence

∫
∂Dϵ,δ

f(s, t)dX̃t converges in probability as
δ ↓ 0.
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Next, we show that this limit does not depend on ϵ. Let ϵ′ > ϵ > 0. Then we
have almost surely∫
∂Dϵ,δ

u(s, t)dX̃t −
∫

∂Dϵ′,δ

u(s, t)dX̃t =
∫∫
Dϵ,δ

∂u

∂s
(s, t)dsdX̃t −

∫∫
Dϵ′,δ

∂u

∂s
(s, t)dsdX̃t

=
l∑

k=1

mk∑
j=1

d∫
c

( ∫
Lk,j(t)

∂u

∂s
(s, t)ds

)
dX̃t,

where

Lk,j(t) =

{
[αk

j − ϵ′, αk
j − ϵ] ∪ [αk

j + ϵ, αk
j + ϵ′] if t ∈ [βk − δ, βk + δ],

∅ otherwise.

As we see that

E exp

[
iξ

d∫
c

( ∫
Lk,j(t)

∂u

∂s
(s, t)ds

)
dX̃t

]

= exp
[ βk+δ∫
βk−δ

C̃
(
ξ{u(αk

j + ϵ′, t)−u(αk
j+ϵ, t)+u(αk

j−ϵ, t)−u(αk
j−ϵ′, t)}

)
dt
]
,

it follows that

p-lim
δ↓0

d∫
c

( ∫
Lk,j(t)

∂u

∂s
(s, t)ds

)
dX̃t = 0.

This implies that∫
∂Dϵ,δ

u(s, t)dX̃t −
∫

∂Dϵ′,δ

u(s, t)dX̃t → 0 in probability

as δ ↓ 0. This convergence also holds for v in place of u. Hence we conclude that
p-limδ↓0

∫
∂Dϵ,δ

f(s, t)dX̃t does not depend on ϵ.

The rest is to examine
∫
∂Iϵ,δ(aj)

f(s, t)dX̃t:

E exp
[
iξ

∫
∂Iϵ,δ(aj)

u(s, t)dX̃t

]
= E exp

[
iξ

∫∫
Iϵ,δ(aj)

∂u

∂s
(s, t)dsdX̃t

]

= E exp
[
iξ

a2j+δ∫
a2j−δ
{u(a1j + ϵ, t)− u(a1j − ϵ, t)}dX̃t

]

= exp
[ a2j+δ∫
a2j−δ

C̃
(
ξ{u(a1j + ϵ, t)− u(a1j − ϵ, t)}

)
dt
]
.
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This converges to one as δ ↓ 0. Hence p-limδ↓0
∫
∂Iϵ,δ(aj)

u(s, t)dX̃t = 0. This limit
holds for v in place of u and thereby∫

∂D

f(s, t)dX̃t = p-lim
δ↓0

∫
∂Dϵ,δ

f(s, t)dX̃t a.s.

Hence we infer from Theorems 3.1 and 3.2 and the usual residue formula that
almost surely∫

∂D

f(z)dzX = p-lim
δ↓0

(
i

∫
∂Dϵ,δ

f(s, t)dX̃t +
n∑

j=1

∫
∂Iϵ,δ(aj)

f(z)dz
)

= i
∫
∂D

f(s, t)dX̃t + 2πi
n∑

j=1

Res(f, aj).

The theorem has been proved. �

We are now ready to prove Theorem 3.4.

P r o o f o f T h e o r e m 3.4. We have∣∣ ∫
∂D

f(z)dzX
∣∣ ¬ ∣∣ ∫

∂D

f(s, t)ds
∣∣+ ∣∣ ∫

∂D

f(s, t)dXt

∣∣.
Let

M := max

{
sup

(s,t)∈D

∣∣∣∣∂f∂s (s, t)
∣∣∣∣, sup

(s,t)∈D

∣∣∣∣∂f∂t (s, t)
∣∣∣∣}.

Firstly, we see that∣∣ ∫
∂D

f(s, t)ds
∣∣ ¬ ∫∫

D

∣∣∣∣∂f∂t (s, t)
∣∣∣∣dtds ¬M

∫∫
D

dtds <∞.

By Proposition 2.6 we have

(4.6) E exp
[
iξ

∫
∂D

f(s, t)dXt

]
= exp

[ d∫
c

C

(
ξ
∫
Dt

∂f

∂s
(s, t)ds

)
dt

]
and its Lévy measure is given by

ν0(B) =
d∫
c

dt
∫
R
1B

(
x
∫
Dt

∂f

∂s
(s, t)ds

)
ν(dx) for any Borel set B.

By Theorem 25.3 of [15], E|X1| < ∞ if and only if
∫
|x|>1
|x|ν(dx) < ∞. Now

we have∫
|x|>1

|x|ν0(dx) =
d∫
c

dt
∫

|A(x,t)|>1

∣∣∣∣x ∫
Dt

∂f

∂s
(s, t)ds

∣∣∣∣ν(dx)
¬M

∫∫
D

dsdt
∫

|x|>(M(b−a))−1

|x|ν(dx) <∞, where A(x, t) = x
∫
Dt

∂f

∂s
(s, t)ds.
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From Theorem 25.3 of [15] again it follows that E
∣∣∫

∂D
f(s, t)dXt

∣∣ < ∞, and
thereby E

∣∣∫
∂D

f(z)dzX
∣∣ <∞.

Differentiating both sides of (4.6) in ξ and letting ξ = 0, we obtain the follow-
ing mean:

E
[ ∫
∂D

f(s, t)dXt

]
=

d∫
c

∫
Dt

∂f

∂s
(s, t)dsdt · EX1 =

∫
∂D

f(s, t)dt.

This yields

E
[ ∫
∂D

f(z)dzX
]
=

∫
∂D

f(s, t)ds+ iE
[ ∫
∂D

f(s, t)dXt

]
=

∫
∂D

f(s, t)ds+ i
∫
∂D

f(s, t)dt =
∫
∂D

f(z)dz.

The theorem has been proved. �

We immediately obtain the corollary of Theorem 3.4.

P r o o f o f C o r o l l a r y 3.2. From Theorem 3.4 we see that

E
[ ∫
∂4

f(z)dzX
]
= E

[ ∫
∂4

u(z)dzX
]
+ iE

[ ∫
∂4

v(z)dzX
]

=
∫
∂4

u(z)dz + i
∫
∂4

v(z)dz =
∫
∂4

f(z)dz.

The usual Cauchy theorem and Morera’s theorem tell us that the assertion is true. �
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