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Abstract. In this paper, we introduce a technique to produce a new
family of tempered stable distributions. We call this family asymmetri-
cally tempered stable distributions. We provide two examples of this family
named asymmetrically classical modified tempered stable (ACMTS) and
asymmetrically modified classical tempered stable (AMCTS) distributions.
Since the tempered stable distributions are infinitely divisible, Lévy pro-
cesses can be induced by the ACMTS and AMCTS distributions. The prop-
erties of these distributions will be discussed along with the advantages in
applying them to financial modeling. Furthermore, we develop exponential
Lévy models for them. To demonstrate the advantages of the exponential
Lévy ACMTS and AMCTS models, we estimate parameters for the S&P
500 Index.
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1. INTRODUCTION

Black and Scholes [3] used the normal distribution for the pricing and hedg-
ing theory for the option market. This model cannot describe the skewed and fat-
tailed properties of the empirical distribution of asset returns. Hurst et al. [9] ap-
plied the α-stable distribution in modeling financial asset returns because it allows
for skewness and fat tails. Empirical studies showed that asset returns time series
present heavier tails than the normal distribution and thinner tails than the α-stable
distribution. To overcome the drawbacks of the α-stable distribution, the class of
tempered stable distributions has been introduced by Koponen [16], Boyarchenko
and Levendorskiǐ [4] and Carr et al. [5]. These distributions, sometimes called the
classical tempered stable (CTS) distributions, have not only heavier tails than the
normal distribution and thinner than the α-stable distribution but also have finite
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moments of all orders. Barndorff-Nielsen and Levendorskiǐ [1] originally obtained
a time-changed Brownian motion using a tempered stable subordinator. The mod-
ified tempered stable (MTS) distribution was introduced by Kim et al. [15]. Also,
Kim et al. [14] defined the normal tempered stable (NTS) distribution by the ex-
ponential tilting for the symmetric MTS distribution. The rapidly decreasing tem-
pered stable (RDTS) distribution was introduced by Bianchi et al. [2] and Kim et
al. [12]. Rosiński [19] characterized the tempered stable process by the spectral
measure. Rosiński and Sinclair [20] introduced generalized tempered stable (GTS)
distributions. Kim et al. [10] presented market models based on the tempered sta-
ble distributions and provided empirical tests of these distributions. Küchlera and
Tappe [17] reviewed tempered stable distributions and provided some of their basic
properties.

The tempered stable distributions are constructed by taking an α-stable distri-
bution with α ∈ (0, 2) and multiplying the Lévy measure by a function onto each
half of the real axis. For example, this function for the CTS distribution is decreas-
ing exponentially and for the MTS distribution is a modified Bessel function of
the second kind. However, the tempered stable distributions explain the observed
market returns better than the α-stable distribution, which still does not fit to these
data sufficiently well.

More specifically, in stock markets, the returns are usually moved by news.
A piece of good news increases stock prices, yet some of this increase gets damp-
ened by the increase in risk premium requested for the higher volatility. On the
other hand, a piece of bad news lowers stock prices. This drop gets further ampli-
fied by the increase in the risk premium. Because of the clustering of news, the left
tail of returns’ distribution of stocks could therefore be different from the right tail.
In this paper, we introduce a new family of distributions which allows us to use a
tempering function for each side of the real axis to capture the different behavior
tails. They have a TS distribution feature and we call them asymmetrically tem-
pered stable (ATS) distributions. An asymmetrically tempered stable distribution
is a combination of two TS distributions. For example, if we use a decreasing ex-
ponential function for the negative real axis and a modified Bessel function of the
second kind for the positive real axis, the resulting distribution will be an asym-
metrically classical modified tempered stable (ACMTS) distribution. Also, we can
use a modified Bessel function of the second kind for the negative real axis and a
decreasing exponential function for the positive real axis. In this case the result-
ing distribution is an asymmetrically modified classical tempered stable (AMCTS)
distribution. The tempered stable distribution controls the skewness and kurtosis
using at least four parameters. Empirically, we show that the ATS distributions
are able to provide a good fit to data with fewer parameters than tempered stable
distributions.

In the Black–Scholes model [3], the stock price process is described by the
exponential of Brownian motion. Replacing the driving process by a Lévy pro-
cess, we obtain the class of exponential Lévy models. For example, the exponen-
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tial ACMTS and AMCTS models can be obtaind by using ACMTS and AMCTS
processes as the driving processes. The main problem with the exponential Lévy
models is that they generate an incomplete market, that is, the equivalent martin-
gale measure (EMM) of a given market measure is not unique in general. For this
reason, we need a method to select one reasonable EMM in the incomplete market
generated by an exponential Lévy model. We use the Esscher transform presented
by Gerber and Shiu [7], [8] to select an EMM.

The rest of this paper is organized as follows. In Section 2, we review the CTS,
MTS and GTS distributions. In Section 3, we introduce ACMTS and AMCTS dis-
tributions and present some of their basic properties. The exponential ACMTS and
AMCTS market models are discussed in Section 4. We will show the estimation
results for the market parameters for the historical distribution of the log-returns of
the S&P 500 Index in Section 5.

2. TEMPERED STABLE DISTRIBUTIONS

In this section, we review the definitions of the classes of the tempered stable
distributions introduced by Rosiński [19] and Rosiński and Sinclair [20]. The polar
coordinates representation of a measure λ = λ(dx) on Rd0 := Rd\{0} is the mea-
sure λ = λ(dr, du) on (0,∞) × Sd−1 obtained by the bijection x 7→

(
‖x‖, x

‖x‖
)
.

Let the Lévy measure ν of an α-stable distribution on Rd in polar coordinates be
of the form

ν(dr, du) = αr−α−1drσ(du),

where α ∈ (0, 2) and σ is a finite measure on Sd−1. A tempered α-stable distribu-
tion is defined by tempering the radial term of ν as follows:

DEFINITION 2.1 (Rosiński [19]). Let α ∈ (0, 2) and σ be a finite measure
on Sd−1. A probability measure µ is called tempered stable (TS) if it is infinitely
divisible without Gaussian part whose Lévy measure ν can be written in polar
coordinates as

ν(dr, du) = αr−α−1q(r, u)drσ(du),

where q(·, u) : (0,∞)× Sd−1 7→ (0,∞) is a completely monotone Borel function
with q(∞, u) = 0 for each u ∈ Sd−1. The complete monotonicity of q(·, u) means
that (−1)n dn

drn q(r, u) > 0 for all r > 0, u ∈ Sd−1 and n = 0, 1, 2, . . . In particu-
lar, q(·, u) is strictly decreasing and convex. The function q is called a tempering
function.

DEFINITION 2.2 (Rosiński and Sinclair [20]). An infinitely divisible distribu-
tion µ on Rd is said to be generalized tempered stable (GTS) if µ has no Gaussian
part and the Lévy measure ν of µ can be represented as

(2.1) ν(B) =
∫

Sd−1

∞∫
0

1B(ru)q(r, u)r
−α−1drσ(du), B ∈ B(Rd),
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where α ∈ (0, 2), σ is a finite measure on Sd−1, and q : (0,∞)× Sd−1 7→ R+ is
a measurable function such that for some nonnegative function g ∈ L1(Sd−1, σ)

(2.2) lim
r 7→0
‖q(r, ·)− g(·)‖L1(Sd−1,σ) = 0.

Moreover, Rosiński and Sinclair [20] present the characteristic function, the cu-
mulant function, short- and long-time behavior, absolute continuity, and shot-noise
type series representation for GTS distributions and Lévy processes induced by the
GTS distributions.

2.1. Classical tempered stable distribution. In this subsection, we review
classical tempered stable (CTS) distributions which were introduced under dif-
ferent names, including: the truncated Lévy flight (Koponen [16]), the KoBoL dis-
tribution (Boyarchenko and Levendorskiǐ [4]), and the CGMY (Carr et al. [5]).
Rosiński [19] and Kim et al. [14] define the CTS distribution as follows:

DEFINITION 2.3. Let C, λ+, λ− > 0, α ∈ (0, 2), and µ ∈ R. An infinitely
divisible distribution is a CTS distribution with parameters (α,C, λ+, λ−, µ) if its
Lévy triplet (A, ν, γ) is given by A = 0 and

ν(dx) =

(
Ce−λ+x

xα+1
1x>0 +

Ce−λ−|x|

|x|α+1
1x<0

)
dx,

and
γ = µ−

∫
|x|>1

xν(dx).

If a random variable X follows the CTS distribution, then we write X ∼
CTS(α,C, λ+, λ−, µ). A Lévy process induced from the CTS distribution is called
a CTS process with parameters (α,C, λ+, λ−, µ). The Lévy measure of the CTS
distribution in polar coordinates can be written as

ν(dr, du) = r−α−1q(r, u)drσ(du),

where q(r, 1) = e−λ+r, q(r,−1) = e−λ−r and σ(1) = σ(−1) = C. The function
q(·, u) is a completely monotone function on (0,∞) satisfying q(∞, u) = 0 and
q(0+, u) = 1. In particular, q(·, u) is strictly decreasing, convex, and bounded by
one. The condition (2.2) holds with g(u) = 1, so the CST distribution belongs to
the class of TS and GTS distributions. The characteristic function ϕCTS for a CTS
distribution is given by

ϕCTS(u) = exp
(
ium+GC(iu;α, λ+, C) +GC(−iu;α, λ−, C)

)
,

where

(2.3) GC(x;α, λ,C) = CΓ(−α)
(
(λ− x)α − λα

)
− xCΓ(1− α)λα−1

for some x ∈ R. The proof was given by Carr et al. [5] and Cont and Tankov [6].
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2.2. The MTS distribution. In this subsection, we review the MTS distribution
which was introduced by Kim et al. [11].

DEFINITION 2.4. An infinitely divisible distribution is called an MTS distri-
bution with parameters (α,C, λ+, λ−, µ) if its Lévy triplet (A, ν, γ) is given by
A = 0 and

ν(dx) = C

(
λ
(α+1)/2
+ K(α+1)/2(λ+x)

x(α+1)/2
1x>0 +

λ
(α+1)/2
− K(α+1)/2(λ−|x|)

|x|(α+1)/2
1x<0

)
,

and
γ = µ−

∫
|x|>1

xν(dx),

where C > 0, λ+, λ− > 0, µ ∈ R, α ∈ (0, 2)\{1}, Kp(x) is the modified Bessel
function of the second kind and σ(1) = σ(−1) = C.

The tempering function q is of the form

q(r, u) =

{
(λ+r)

(α+1)/2K(α+1)/2(λ+r), u = 1,

(λ−r)
(α+1)/2K(α+1)/2(λ−r), u = −1.

DEFINITION 2.5. The radial tempering function r → q(r, u) is decreasing
with

(2.4) q(r, u)→1 as r↓0 and q(r, u)→
(
π

2

)1/2

(λ±r)
α/2e−λ±r as r↑∞.

It can be shown that q(·, u) is not completely monotone. Thus the MTS distribu-
tions are not included in the class of TS distributions but belong to the class of GTS
distributions with g(u) = 1 in (2.2).

The characteristic function ϕMTS for a modified tempered stable distribution
is given by ϕMTS(u) = exp

(
iuµ + GM (iu;α, λ+, C) + GM (−iu;α, λ−, C)

)
,

where for x ∈ R

GM (x;α, λ,C) =

√
πCΓ(−α/2)
2(α+3)/2

(
(λ2 − x2)α/2 − λα

)
(2.5)

+
xCΓ

(
(1− α)/2

)
2(α+1)/2

λα−1
(
F

(
1,

1− α
2

;
3

2
;
x2

λ2

)
− 1

)
,

and F is the hypergeometric function. The proof can be found in Kim et al. [11]
or Kim et al. [14]. If a random variable X follows the MTS distribution, then we
write X ∼MTS(α,C, λ+, λ−, µ).
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3. ASYMMETRICALLY TEMPERED STABLE DISTRIBUTIONS

In this section, we present two new tempered stable distributions by combin-
ing CTS and MTS distributions. We refer to them as the ACMTS and AMCTS
distributions. In fact, we use a tempering function for each side of the real axis.
The definitions and properties of these distributions are presented in the following.

3.1. The ACMTS distribution.

DEFINITION 3.1. An infinitely divisible distribution is called an ACMTS dis-
tribution with parameters (α,C, λ, µ) if its Lévy triplet (A, ν, γ) is given byA = 0
and

ν(dx) =

(
C
e−λ|x|

|x|α+1
1x<0 + C

λ(α+1)/2K(α+1)/2(λx)

x(α+1)/2
1x>0

)
dx,

and

γ = µ−
∫
|x|>1

xν(dx),

where C, λ > 0, µ ∈ R and α ∈ (0, 2) \ {1}. If a random variable X follows the
ACMTS distribution, then we write X ∼ ACMTS(α,C, λ, µ).

The Lévy measure of the ACMTS distribution can be written in polar coordi-
nates as

ν(dr, du) = r−α−1q(r, u)drσ(du),

where q(r, 1) = (λr)(α+1)/2K(α+1)/2(λr), q(r,−1) = e−λr. We can show that
q(·, u) is decreasing and bounded by g(u) = 1. Thus the ACMTS distributions
are not included in the class of TS distributions but belong to the class of GTS
distributions with g(u) = 1 in (2.2). The characteristic function of the ACMTS
distribution is given in the following:

THEOREM 3.1. LetX ∼ ACMTS(α,C, λ, µ). Then the characteristic func-
tion of X is given by

(3.1) ϕX(u) = exp
(
iuµ+GM (iu;α, λ,C) +GC(−iu;α, λ,C)

)
,

where GC(u;α, λ,C) and GM (u;α, λ,C) are given by (2.3) and (2.5), respec-
tively.
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Figure 1. Probability density of the ACMTS distributions:
dependence on λ. Parameters: µ = 0, α = 0.5, C = 0.07.

P r o o f. We have

∞∫
−∞

(eiux − 1− iux1|x|¬1)ν(dx)

= iu
∫
|x|­1

xν(dx) + C
∞∫
0

(eiux − 1− iux)
λ(α+1)/2K(α+1)/2(λx)

x(α+1)/2
dx

+ C
0∫
−∞

(eiux − 1− iux) e
−λ|x|

|x|α+1
dx

= iu
∫
|x|­1

xν(dx) +GM (iu;α, λ,C) +GC(−iu;α, λ,C).

For more details see Kim et al. [13] and Carr et al. [5]. The Lévy–Khintchine
formula completes the proof. �

PROPOSITION 3.1. Let X ∼ ACMTS(α,C, λ, µ). Then the Laplace trans-
form E[eθX ] is finite for all θ ∈ [−λ, λ]. Moreover, the explicit formula of the
Laplace transform is given by

E[eθX ] = exp
(
θµ+GM (θ;α, λ,C) +GC(−θ;α, λ,C)

)
.
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Figure 2. Probability density of the ACMTS distributions:
dependence on C. Parameters: µ = 0, α = 0.5, λ = 55.

PROPOSITION 3.2. Let X ∼ ACMTS(α,C, λ, µ). The cumulants cn of X
are given by c1(X) = µ and

cn(X) =

2n−(α+3)/2
(
n−1
2

)
!CΓ

(
n−α
2

)
λα−n − CΓ(n− α)λα−n, n = 3, 5, . . . ,

2−(α+3)/2√π n!
(n/2)!CΓ

(
n−α
2

)
λα−n + CΓ(n− α)λα−n, n = 2, 4, . . .

Moreover, using the cumulants, we obtain the mean, variance, skewness, and
excess kurtosis:

E(X) = c1(X) = µ,

Var(X) = c2(X) = 2−(1+α)/2
√
πCΓ

(
2− α
2

)
λα−2 + CΓ(2− α)λα−2,

s(X) =
c3(X)

c2(X)3/2
=
λ−α/2√
C

2(3−α)/2Γ
(
3−α
2

)
− Γ(3− α)(

2−(1+α)/2
√
πΓ

(
2−α
2

)
+ Γ(2− α)

)3/2 ,
k(X) =

c4(X)

c2(X)2
=
λ−α−2

C

2(1−α)/2 · 3
√
πΓ

(
4−α
2

)
+ Γ(4− α)(

2−(1+α)/2
√
πΓ

(
2−α
2

)
+ Γ(2− α)

)2 .
It is easy to see that s(X) > 0, so the ACMTS distribution is always skewed to
the right. The parameter λ controls the rate of decay on tail. If λ increases, then
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Figure 3. Probability density of the ACMTS distributions:
dependence on α. Parameters: µ = 0, C = 0.05, λ = 55.

the skewness of the distribution decreases. Figure 1 shows the effect of λ. The
parameter C determines the arrival rate of jumps for a given size. Figure 2 shows
the effect of C. The ACMTS is infinitely divisible. The Lévy process generated
by this distribution is called the ACMTS process with parameters (α,C, λ, µ). This
process has finite variation if α ∈ (0, 1) and infinite variation if α ∈ (1, 2). Figure 3
shows the effect of α.

3.2. The AMCTS distribution.

DEFINITION 3.2. An infinitely divisible distribution is called an AMCTS dis-
tribution with parameters (α,C, λ, µ) if its Lévy triplet (A, ν, γ) is given byA = 0
and

ν(dx) =

(
C
λ(α+1)/2K(α+1)/2(λ|x|)

|x|(α+1)/2
1x<0 + C

e−λx

xα+1
1x>0

)
dx,

and
γ = µ−

∫
|x|>1

xν(dx),

where C, λ > 0, µ ∈ R and α ∈ (0, 2) \ {1}.
If a random variable X follows the AMCTS distribution, then we write X ∼

AMCTS(α,C, λ, µ). The Lévy measure of the AMCTS distribution is given by

ν(dr, du) = r−α−1q(r, u)drσ(du),
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Figure 4. Probability density of the CTS, MTS, ACMTS and AMCTS
distributions. Parameters: µ = 0, C = 0.2, α = 0.4 and λ− = λ+ = λ = 75.

where q(r,−1)= (λr)(α+1)/2K(α+1)/2(λr), q(r, 1)= e−λr, σ(1)= σ(−1)=C.
The AMCTS distributions are not included in the class of TS distributions but
belong to the class of GTS distributions. The AMCTS distribution is similar to the
ACMTS distribution with the difference that the right and left tails of the AMCTS
distribution are replaced with the left and right tails of the ACMTS distribution,
respectively; see Figure 4. Indeed, if X has the ACMTS distribution with param-
eters α, C, λ and µ, then Y = −X has the AMCTS distribution with parameters
α, C, λ and −µ. It is obvious that E(Y ) = −E(X),Var(Y ) = Var(X), s(Y ) =
−s(X), k(Y ) = k(X) and the characteristic function of Y is given by ϕY (u) =
exp

(
iuµ+GC(iu;α, λ,C) +GM (−iu;α, λ,C)

)
. The Laplace transformE[eθY ]

is finite for all θ ∈ [−λ, λ] and the explicit formula of the Laplace transform is
given by E[eθY ] = exp

(
θµ+GC(θ;α, λ,C) +GM (−θ;α, λ,C)

)
. The AMCTS

distribution is infinitely divisible. The Lévy process generated by this distribution
is called the AMCTS process with parameters (α,C, λ, µ). This process has finite
variation if α ∈ (0, 1) and infinite variation if α ∈ (1, 2).

4. ASYMMETRICALLY TEMPERED STABLE MARKET MODEL

Let Ω be the set of all càdlàg functions on [0, T ] and (Xt)t∈[0,T ] be a Lévy
process on a sample space (Ω,P). In the market, if the stock price is given by the
random variable St = S0e

Xt , t ∈ [0, T ], for some initial value of the stock price
S0 > 0, then we say that the stock price follows an exponential model. Let us de-
note the risk-free interest rate by r > 0. The discounted stock price S̃t of St is
given by S̃t = e−rtSt, t ∈ [0, T ]. The process (Xt)t∈[0,T ] is called the driving pro-
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cess of (St)t∈[0,T ]. The driving process (Xt)t∈[0,T ] is completely described by the
market measure P. If (Xt)t∈[0,T ] is a Lévy process under the measure P, we say
that the stock price process follows the exponential Lévy model. In particular, if
the driving process is the asymmetrically tempered stable process, the exponen-
tial Lévy model is referred to as the exponential asymmetrically tempered stable
model. A probability measure Q equivalent to P is called an equivalent martingale
measure (EMM) of P if the discounted stock price process is a Q-martingale (see
Lewis [18]), that is, EQ[St] = ertS0.

Now, we review a general result of equivalence measures presented by Sato
[21] and apply it to the asymmetrically tempered stable distribution. The following
theorem is a particular case of Theorem 33.1 in Sato [21]:

THEOREM 4.1. Let (X;P) and (X;Q) be two infinitely divisible random
variables on R with Lévy triplets (A, ν, γ) and (Ã, ν̃, γ̃), respectively. Then P and
Q are equivalent if and only if

A = Ã,(4.1)
∞∫
−∞

(eψ(x)/2 − 1)2ν(dx) <∞,(4.2)

where ψ(x) = ln
(
ν(x)/ν̃(x)

)
. If A = 0, then

(4.3) γ̃ − γ =
∫
|x|¬1

x(ν̃ − ν)(dx).

4.1. Exponential ACMTS model. Since ACMTS distributions are infinitely
divisible, we can apply Theorem 4.1 to obtain the change of measure.

PROPOSITION 4.1. Let (X;P) and (X;Q) be two ACMTS distributed random
variables on R with parameters (α,C, λ, µ) and (α̃, C̃, λ̃, µ̃), respectively. Then P
and Q are equivalent if and only if C = C̃, α = α̃ and µ = µ̃.

P r o o f. Let (0, ν, γ) and (0, ν̃, γ̃) be Lévy triplets of (Xt,P) and (Xt,Q),
respectively. Since the diffusion coefficients of ACMTS processes are zero, (4.1)
holds. From the definition of Lévy measures ν̃ and ν it follows that ψ(x) in (4.2)
is equal to ψ(x) = ψ−(x) + ψ+(x), where

ψ−(x) =

(
ln

(
C̃|x|−α̃

C|x|−α

)
+ x(γ − γ̃)

)
1x<0

and

ψ+(x) = ln

(
λ̃α̃/2+1/2Kα̃/2(λ̃x)x

α/2+1/2

λα/2+1/2K(α+1)/2(λx)xα̃/2+1/2

)
1x>0.

We can prove that
∫ 0

−∞(e
ψ−(x)/2 − 1)dx < ∞ if and only if α = α̃ and C = C̃

(see Kim et al. [11]), and
∫∞
0

(eψ+(x)/2 − 1)dx < ∞ if and only if α = α̃ and
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C = C̃. Thus, the condition (4.2) holds if and only if α = α̃ and C = C̃. It is clear
from Definitions 2.4 and 2.5 that (4.3) holds if and only if µ̃ = µ. �

The ACMTS model is defined under the continuous-time market as follows.
For convenience, let us put

ψ0
ACMTS(u, α,C, λ) = GM (u;α, λ,C) +GC(−u;α, λ,C).

DEFINITION 4.1. LetC > 0, λ > 1,α ∈ (0, 2)\{1} and µ ∈ R. In the contin-
uous-time market, if the driving process (Xt)t∈[0,T ] of (St)t∈[0,T ] is an ACMTS
process with parameters (α,C, λ,m) and m = µ − ψ0

ACMTS(1, α, C, λ), then
(St)t∈[0,T ] is called the ACMTS stock price process with parameters (α,C, λ, µ)
and we say that the stock price process follows the ACMTS model.

The function ψ0
ACMTS(1, α, C, λ) is well defined with the condition λ > 1,

and hence E[St] = S0e
µt. If we apply Proposition 4.1 to the ACMTS model, we

obtain the following theorem.

THEOREM 4.2 (EMM conditions for the ACMTS model). Assume that the
process (St)t∈[0,T ] is the ACMTS stock price process with parameters (α,C, λ, µ)
under the market measure P, and with parameters (α̃, C̃, λ̃, r) under a measure Q.
Then Q is an EMM of P if and only if C = C̃, α = α̃ and

r − ψ0
ACMTS(1, α̃, C̃, λ̃) = µ− ψ0

ACMTS(1, α, C, λ).

5. ESTIMATION OF MARKET PARAMETERS

In this section, we report the maximum likelihood estimation of the expo-
nential CST, MTS, ACMTS and AMCTS models. We use historical prices of the
Standard and Poor’s (S&P) 500 Index for our illustration. The time series of the
closing prices are from February 6, 1995 to February 6, 2015.

For the assessment of the goodness-of-fit, we use the Kolmogorov–Smirnov
(KS) test. The KS statistic is defined as follows:

KS = sup
xi
|F (xi)− F̂ (xi)|,

where F is the cumulative distribution function and F̂ is the empirical cumula-
tive distribution function for a given observation {xi}. Table 1 provides the results.
According to this table, since the number of parameters of the CTS and MTS distri-
butions is greater than that of the ACMTS and AMCTS distributions, the p-values
of the CTS and MTS models are larger than those of the ACMTS and AMCTS
models. On the other hand, the skewness log-returns data is −0.2435, the ACMTS
distribution is always skewed to the right and the AMCTS distribution is always
skewed to the left, thus we expect that p-values of the AMCTS model are larger
than those of the ACMTS model, which is confirmed by Table 1.
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Table 1. Market parameters for the S&P 500 Index.

Model Parameters

CTS µ α C λ+ λ− KS (p-value)
0.00027 0.3581 0.1044 78.7269 72.9162 0.0108 (0.8769)

MTS µ α C λ+ λ− KS (p-value)
0.00027 0.7442 0.0113 80.4786 64.8835 0.0106 (0.8979)

ACMTS µ α C λ KS (p-value)
0.0013 0.5577 0.03515 77.2954 0.0248 (0.0912)

AMCTS µ α C λ KS (p-value)
0.0001 0.5168 0.0462 84.8664 0.0125 (0.7835)

6. CONCLUSION

In this paper, we introduce two new tempered stable distributions named the
ACMTS and AMCTS distributions that are obtained by combining CTS and MTS
distributions. These distributions are not in the class of the tempered stable distri-
butions introduced by Rosiński [19] but they are in the class of the generalized tem-
pered stable distributions defined by Rosiński and Sinclair [20]. For the ACMTS
distribution the left tail is similar to that of the CTS distribution and the right tail is
similar to that of the MTS distribution. The AMCTS distribution is the opposite, in
which the left tail of distribution is similar to that of the MTS distribution and the
right tail is similar to that of the CTS distribution. Consequently, the ACMTS and
AMCTS models can be more realistic than the CTS and MTS models. We fit S&P
500 Index returns time series from February 6, 1995 to February 6, 2015. The KS
tests do not reject the CTS, MTS and AMCTS distributions. Although the AMCTS
distribution has one parameter less, the p-values of the KS statistic for the AMCTS
distribution are similar to those of the CTS and MTS distributions.

In this paper, we use the CTS and MTS distributions to construct the ATS
distribution. However, other tempered stable distributions can be used to obtain
some types of the ATS distributions which are suitable for different situations – for
example, asymmetrically CTS and RDTS distributions and asymmetrically RDTS
and MTS distributions.
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