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ESTIMATES OF THE TRANSITION DENSITIES FOR THE REFLECTED
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Abstract. We give sharp two-sided estimates for the functions
gM (t, x, y) and gM (t, x, y) − g(t, x, y), where gM (t, x, y) are the tran-
sition probability densities of the reflected Brownian motion on an M -
complex of order M ∈ Z of an unbounded planar simple nested fractal and
g(t, x, y) are the transition probability densities of the “free” Brownian mo-
tion on this fractal. This is done for a large class of planar simple nested
fractals with the good labeling property.
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1. INTRODUCTION

The analysis and probability theory (especially stochastic processes) on frac-
tals underwent rapid development over the last decades (see e.g. [1], [12], [23],
[24] and the references therein). The original motivation came from the investi-
gations on the properties of disordered media in mathematical physics. Fractals
also help us to understand the features of natural phenomena such as polymers,
and growth of molds and crystals. The rigorous definition of the Brownian motion
on the Sierpiński gasket has been given by Barlow and Perkins in [3] (see also
[7], [17]). Lindstrøm [19] used a nonstandard analysis to construct such a process
on general simple nested fractals (see also [6], [18], [22] for a Dirichlet form ap-
proach). The case of more general fractals was also addressed in [2], [14], [16]. The
estimates of the transition densities for the Brownian motion on simple nested frac-
tals were proved by Kumagai in [13]. The case of a more general class of finitely
ramified fractals (called affine nested fractals) was studied in [5].

∗ Research supported by the National Science Center, Poland, grant no. 2015/17/B/ST1/01233.
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The present article is a companion paper to [9], where the reflected Brownian
motion in an M -complex, M ∈ Z, of a simple nested fractal was constructed (see
also the paper [20] for the case of the Sierpiński triangle). Such a process was ob-
tained as a “folding” projection of the free Brownian motion from the unbounded
fractal and the whole construction was performed under the key geometric assump-
tion that the fractal has a good labeling property (see Section 2 for more details).
It was also proved in the cited paper that the one-dimensional distributions of this
process have the continuous and symmetric densities gM (t, x, y) (see (2.9) for a
definition), which provided us with further regularity properties of the reflected
process.

Our main goal in this paper is to find the sharp estimates of the densities
gM (t, x, y) and for differences gM (t, x, y) − g(t, x, y), where g(t, x, y) are the
transition probability densities of a “free” process. We give an argument which
allows us to deduce the two-sided sharp estimates for these functions from the in-
trinsic growth property of the graph metric on the planar nested fractal (for the
definition of the graph metric dM (x, y) see (2.4)). More precisely, we show that
there exist positive constants c1, . . . , c6 (uniform in t, x, y and M ) such that

c1
(
fc2(t, |x− y|) ∨ hc3(t,M)

)
¬ gM (t, x, y)

¬ c4
(
fc5(t, |x− y|) ∨ hc6(t,M)

)
,

where

fc(t, r) = t−df/dw exp

(
− c

(
rdw

t

)1/(dJ−1))
and

hc(t,M)= L−dfM
(

LM

t1/dw
∨ 1

)df−dw/(dJ−1)

exp

(
− c

(
LM

t1/dw
∨ 1

)dw/(dJ−1))
.

This result is given in Theorem 3.1. Here L is a scaling factor of the fractal and
df , dw and dJ are certain parameters determined by the geometry of the fractal.
One can see from the above estimates that for t ­ LMdw the density gM (t, x, y)
behaves like L−Mdf . If t < LMdw , then the reflected process less “feels” the re-
flection and resembles the free diffusion (see Corollary 3.1 for details). This effect
is explained by our second main result (Theorem 3.2), which gives the sharp two-
sided estimates for the difference gM (t, x, y) − g(t, x, y). Indeed, we prove that
there are positive constants c7, . . . , c12 (again uniform in t, x, y and M ) such that

c7

(
fc8

(
t, δM (x, y)

)
∨ hc9(t,M)

)
¬ gM (t, x, y)− g(t, x, y)

¬ c10

(
fc11

(
t, δM (x, y)

)
∨ hc12(t,M)

)
,

where δM (x, y) = infz∈V ∗M (|x − z| + |z − y|) and V ∗M is the set of all vertices
of a basic M -complex that connect it with other M -complexes. By Corollary 3.1
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mentioned above, this results describes how the dependence on the boundary of
the complex emerges in the distribution of the reflected process.

We would like to emphasize that we have direct applications for the estimates
obtained in the present paper. In the articles [10], [11], the reflected Brownian
motion was used to prove the existence and further asymptotic properties of the
integrated density of states for subordinate Brownian motions evolving in presence
of the Poissonian random field on the Sierpiński triangle. The estimates of the
densities were an essential tool there. The present results will allow us to continue
this research in the case when the configuration space is modeled by a general
simple nested fractal. In this context, it is crucial that our estimates describe the
behavior of gM (t, x, y) not only in x, y and t, but also in M . This is the subject of
our ongoing project.

At the end of the Introduction, let us say a few words about our methods.
First note that our upper bound for the tail of the series in Lemma 3.5 extends a
similar result in [10], Lemma 2.5, obtained for the reflected Brownian motion on
the Sierpiński gasket. The proof of that bound in an essential way uses the facts
that the M -complexes of any order M ∈ Z of the gasket agree with the Euclidean
balls B(0, 2M ) intersected with the fractal and that the geodesic (or the shortest
path) metric is uniformly comparable to the Euclidean one. Such a comparabil-
ity condition is also a common assumption in the papers dealing with subordinate
Brownian motions on fractals having the d-set structure, see [4], [8]. This argument
does not have an extension to the general nested fractals, for which the geodesic
metric is typically not well defined. To overcome this difficulty, we propose a new
approach based on an application of the graph metric of order M that works well
for all nested fractals. Our main contribution is the observation that the intrinsic
growth property of the graph metric stated in Lemma 3.1 leads to the sharp esti-
mates of densities gM (t, x, y). We also want to mention that the concluding part
of the proof of the upper bound in Lemma 3.5 follows the general ideas from the
proof of Lemma 2.5 in [10], while Lemma 3.3 is a new key observation.

2. PRELIMINARIES

2.1. Planar simple nested fractals. Consider a collection of similitudes Ψi :
R2 → R2 with a common scaling factor L > 1 and a common isometry part U,
i.e. Ψi(x) = (1/L)U(x) + νi, where νi ∈ R2, i ∈ {1, . . . , N}. We shall assume
ν1 = 0, which will allow us to writeK〈M〉 = LMK〈0〉 without using the translation
before or after scaling. There exists a unique nonempty compact set K〈0〉 (called
the fractal generated by the system (Ψi)

N
i=1) such that K〈0〉 =

⋃N
i=1Ψi(K〈0〉). As

L > 1, each similitude has exactly one fixed point.

DEFINITION 2.1 (Essential fixed point). A fixed point x ∈ K〈0〉 is an essential
fixed point if there exists another fixed point y ∈ K〈0〉 and two different similitudes
Ψi, Ψj such that Ψi(x) = Ψj(y).



426 M. Olszewski

The set of all essential fixed points of transformations Ψ1, . . . ,ΨN is denoted
by V

〈0〉
0 . Clearly, k := #V

〈0〉
0 ¬ N . For the Sierpiński gasket k = N , but there are

many examples with k < N (see Fig. 1).

DEFINITION 2.2 (Simple nested fractal). The fractal K〈0〉 generated by the
system (Ψi)

N
i=1 is called a simple nested fractal (SNF) if the following five condi-

tions are satisfied:
(1) #V

〈0〉
0 ­ 2.

(2) (Open set condition) There exists an open set U ⊂ R2 such that for i 6= j

we have Ψi(U) ∩Ψj(U) = ∅ and
⋃N

i=1Ψi(U) ⊆ U .

(3) (Nesting) Ψi(K〈0〉) ∩Ψj(K〈0〉) = Ψi(V
〈0〉
0 ) ∩Ψj(V

〈0〉
0 ) for i 6= j.

(4) (Symmetry) For x, y ∈ V
〈0〉
0 , denote by Sx,y the symmetry with respect to

the line bisecting the segment [x, y]. Then

∀i ∈ {1, . . . ,M} ∀x, y ∈ V
〈0〉
0 ∃j ∈ {1, . . . ,M} Sx,y

(
Ψi(V

〈0〉
0 )

)
= Ψj(V

〈0〉
0 ).

(5) (Connectivity) On the set V 〈0〉−1 :=
⋃

iΨi(V
〈0〉
0 ) we define a graph structure

E−1 as follows: (x, y) ∈ E−1 if and only if x, y ∈ Ψi(K〈0〉) for some i. Then the
graph (V

〈0〉
−1 , E−1) is required to be connected.

If K〈0〉 is a simple nested fractal, then we put

K〈M〉 = LMK〈0〉, M ∈ Z,(2.1)

and

K〈∞〉 =
∞⋃

M=0

K〈M〉.(2.2)

The set K〈∞〉 is the unbounded simple nested fractal (USNF).

DEFINITION 2.3. Let M ∈ Z. Then define:
(1) An M -complex: every set ∆M ⊂ K〈∞〉 of the form

(2.3) ∆M = K〈M〉 +
J∑

j=M+1

Ljνij

for some J ­M + 1, νij ∈ {ν1, . . . , νN}, is called an M -complex. The set of all
M -complexes in K〈∞〉 is denoted by TM .

(2) Vertices of an M -complex: the set V (∆M ) = LMV
〈0〉
0 +

∑J
j=M+1 L

jνij .
(3) Vertices of K〈M〉:

V
〈M〉
M = V (K〈M〉) = LMV

〈0〉
0 .
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(4) Vertices of all M -complexes inside an (M +m)-complex for m > 0:

V
〈M+m〉
M =

N⋃
i=1

V
〈M+m−1〉
M + LMνi.

(5) Vertices of all 0-complexes inside the unbounded nested fractal:

V
〈∞〉
0 =

∞⋃
M=0

V
〈M〉
0 .

(6) Vertices of M -complexes from the unbounded fractal:

V
〈∞〉
M = LMV

〈∞〉
0 .

(7) The unique M -complex containing x ∈ K〈∞〉\V 〈∞〉M is denoted by ∆M (x).

Figure 1. An example of a nested fractal: the Lindstrøm snowflake. It is constructed by
seven similitudes with L = 3. It has seven fixed points, but only six essential fixed points.

By df , dw and ds we denote the Hausdorff dimension, the walk dimension and
the spectral dimension of the SNF K〈0〉, respectively. It is known that the identity
df/dw = ds/2 holds.
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The M -graph metric on K〈∞〉 ×K〈∞〉 is defined as follows:
(2.4)

dM (x, y) :=



0 if x = y;

1 if there exists ∆M ∈ TM such that x, y ∈ ∆M ;

n > 1 if there does not exist ∆M ∈ TM such that x, y ∈ ∆M

and n is the lowest number for which there exist
∆

(1)
M ,∆

(2)
M , . . . ,∆

(n)
M ∈ TM such that x ∈ ∆

(1)
M ,

y ∈ ∆
(n)
M and ∆

(i)
M ∩∆

(i+1)
M 6= ∅ for 1 ¬ i ¬ n− 1.

Less formally, the M -graph metric means the smallest number of M -com-
plexes the process must walk through when passing from x to y.

2.2. Good labeling property and folding projections. Throughout this section
we assume that M ∈ Z is arbitrary but fixed. Note that every M -complex ∆M

is a regular polygon with k vertices (see [9], Proposition 2.1). In consequence,
there exist exactly k different rotations Ri around the barycenter ofK〈M〉, mapping
K〈M〉 onto K〈M〉 (for i = 1, 2, . . . , k the rotation Ri rotates by the angle 2πi/k).
PutRM = {R1, . . . , Rk}.

The concept of the good labeling property (GLP in short) has been introduced
in [9]. Given the set of labels A = {a1, . . . , ak}, the labeling function is a map
ℓM : V

〈∞〉
M → A. It provides a good labeling (of order M ) if every M -complex

has the complete set of labels mapped to its vertices and the vertices of any M -
complex are labeled in the same orientation. More precisely:

(1) For every M -complex ∆M the restriction of ℓM to V (∆M ) is a bijection
onto A.

(2) For every M -complex ∆M of the form

∆M = K〈M〉 +
J∑

j=M+1

Ljνij ,

with some J ­M + 1 and νij ∈ {ν1, . . . , νN} (cf. Definition 2.3 (1)), there exists
a rotation R∆M

∈ RM such that

ℓM (v) = ℓM

(
R∆M

(
v −

J∑
j=M+1

Ljνij
))

, v ∈ V (∆M ).(2.5)

The fractal K〈∞〉 is said to have the GLP if for some M ∈ Z there exists a
labeling function ℓM satisfying both the conditions above. Note that due to the
self-similarity of this set, having this property for some M gives one for every
M ∈ Z. The GLP takes a quite simple form in the case of the Sierpiński triangle
(cf. [20], [11]). However, in general, it is a rather delicate property. If lM is a good
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labeling function of order M on V
〈∞〉
M , then it is typically not true that restricting

lM to V
〈∞〉
M+1 gives the GLP of order M + 1 (see [9], Remark 3.1).

Now, for the unbounded fractal K〈∞〉 having the GLP, we define a projection
map

K〈∞〉 3 x 7−→ πM (x) ∈ K〈M〉

by the formula

(2.6) πM (x) = R∆M

(
x−

J∑
j=M+1

Ljνij
)
,

where ∆M = K〈M〉 +
∑J

j=M+1 L
jνij is an M -complex containing x, and R∆M

is the unique rotation determined by (2.5). Here, the two cases are possible:
(1) if x /∈ V

〈∞〉
M , then ∆M = ∆M (x) (i.e. ∆M can be chosen uniquely);

(2) if x ∈ V
〈∞〉
M , then ∆M is one of the M -complexes ∆(i)

M such that

{x} =
rx⋂
i=1

∆
(i)
M ,

where rx = rank(x) is the number of M -complexes meeting at x.
If x is a vertex from V

〈∞〉
M , possibly belonging to more than one M -complex,

then indeed we can choose any of those complexes in the definition above – thanks
to the GLP of K〈∞〉; the image does not depend on the particular choice of ∆(i)

M .
The projection πM is an essential tool to construct the reflected Brownian

motion on K〈M〉.

2.3. Reflected Brownian motion on simple nested fractals. We denote by
Z = (Zt,P

x)t­0, x∈K〈∞〉 the Brownian motion on the USNF K〈∞〉. In the case
of the Sierpiński gasket such a process has been rigorously constructed in [3]. For
general nested fractals, the Brownian motion has been first constructed on the unit
fractal K〈0〉 ([19], see also [18]) and then extended to K〈∞〉 by means of Dirich-
let forms ([6], see also [15], [22]). It is a strong Markov process with continuous
paths whose distributions are invariant under local isometries of K〈∞〉. It has tran-
sition probability densities g(t, x, y) with respect to the df -dimensional Hausdorff
measure µ on K〈∞〉, i.e.,

Px(Zt ∈ A) =
∫
A

g(t, x, y)µ(dy), t > 0, x ∈ K〈∞〉, A ⊂ B(K〈∞〉),

which are jointly continuous on (0,∞)×K〈∞〉 ×K〈∞〉 and have the scaling prop-
erty

g(t, x, y) = Ldf g(Ldwt, Lx, Ly), t > 0, x, y ∈ K〈∞〉.

Moreover, there are absolute constants c13, . . . , c16 > 0 such that the following
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sub-Gaussian estimates (see [13], Theorems 5.2 and 5.5) hold true:

(2.7) c13t
−df/dw exp

(
− c14

(
|x− y|dw

t

)1/(dJ−1))
¬ g(t, x, y)

¬ c15t
−df/dw exp

(
− c16

(
|x− y|dw

t

)1/(dJ−1))
, t > 0, x, y ∈ K〈∞〉.

The constant dJ > 1, called the chemical exponent of K〈∞〉, is a parameter de-
scribing the shortest path scaling of the set K〈∞〉. Typically, dJ 6= dw, but it is
known that for the Sierpiński gasket one has dJ = dw. The above estimates were
proved under the assumption that there exists n ∈ N such that for any M ∈ Z, if
x, y ∈ K〈∞〉 satisfy |x− y| ¬ LM , then dM (x, y) ¬ n (see [13], Section 5). It was
shown in [9] that in fact this assumption holds true for any planar simple nested
fractal. For a fair account of the theory of Brownian motion on simple nested frac-
tals we refer to [1] and the references therein.

The reflected Brownian motion on K〈M〉 was constructed in [9] as a canonical
projection of the free Brownian motion

ZM
t = πM (Zt).

Formally, it is the process ZM = (ZM
t ,Px

M )t­0, x∈K〈M〉 , where the measures Px
M

are determined by
(2.8)
Px

M (ZM
t1 ∈ A1, . . . , Z

M
tn ∈ An) = Px

(
Zt1 ∈ π−1M (A1), . . . , Ztn ∈ π−1M (An)

)
for every 0 ¬ t1 < t2 < . . . < tn, x ∈ K〈M〉 and A1, . . . , An ∈ B(K〈M〉). As
mentioned above, its transition probabilities are absolutely continuous with respect
to the measure µ (restricted to K〈M〉) with densities gM (t, x, y) given by

(2.9) gM (t, x, y) =


∑

y′∈π−1
M (y)

g(t, x, y′) if y ∈ K〈M〉\V 〈M〉M ,

∑
y′∈π−1

M (y)

g(t, x, y′) · rank(y′) if y ∈ V
〈M〉
M ,

where rank(y′) is the number of M -complexes meeting at the point y′. Moreover,
as proved in [9], Theorems 4.1 and 4.2, the function gM (t, x, y) is continuous in
(t, x, y) and symmetric and bounded in (x, y) for every fixed t > 0. This provides
us with further regularity properties of the process (ZM

t )t­0 such as the Feller and
the strong Feller property.

Our aim in the present paper is to find the sharp two-sided estimates for the
densities gM (t, x, y) and for gM (t, x, y)− g(t, x, y). This goal will be achieved in
the next section.
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3. ESTIMATES

We are now in a position to state our main results in this paper. For given c > 0
and for every t > 0, M ∈ Z and r ­ 0 we put

(3.1) fc(t, r) = t−df/dw exp

(
− c

(
rdw

t

)1/(dJ−1))
and

hc(t,M)=L−dfM
(

LM

t1/dw
∨ 1

)df−dw/(dJ−1)

exp

(
− c

(
LM

t1/dw
∨ 1

)dw/(dJ−1))
.

(3.2)

The first theorem gives the sharp two-sided estimates for gM (t, x, y).

THEOREM 3.1. Let K〈∞〉 be the USNF with the GLP. Then there exist con-
stants c1, . . . , c6 > 0 such that for every t > 0, M ∈ Z and x, y ∈ K〈M〉 we have

c1
(
fc2(t, |x− y|) ∨ hc3(t,M)

)
¬ gM (t, x, y)

¬ c4
(
fc5(t, |x− y|) ∨ hc6(t,M)

)
.

We also obtain sharp two-sided bounds for the difference gM (t, x, y)− g(t, x, y).

THEOREM 3.2. Let K〈∞〉 be the USNF with the GLP. Then there exist con-
stants c7, . . . , c12 > 0 such that for every t > 0, M ∈ Z and x, y ∈ K〈M〉 we have

c7

(
fc8

(
t, δM (x, y)

)
∨ hc9(t,M)

)
¬ gM (t, x, y)− g(t, x, y)

¬ c10

(
fc11

(
t, δM (x, y)

)
∨ hc12(t,M)

)
,

where δM (x, y) = minz∈V ∗M (|x− z|+ |z − y|) with

V ∗M :=
{
z ∈ V

〈M〉
M : there exists ∆M ∈ TM such that ∆M ∩ K〈M〉 = {z}

}
.

We give the proofs of the above theorems after a sequence of auxiliary results.
First we fix some useful notation. For M ∈ Z and y ∈ K〈M〉\V 〈M〉M we let

A(M,m, y) = {y′ ∈ π−1M (y) : y′ ∈ K〈M+m+1〉\K〈M+m〉}, m ­ 0,

and

B(M, 0, y) = {y′ ∈ π−1M (y) : y′ ∈ K〈M+1〉\K〈M〉,∆M (y′) ∩ K〈M〉 = ∅},

C(M, 0, y) = {y′ ∈ π−1M (y) : y′ ∈ K〈M+1〉\K〈M〉,∆M (y′) ∩ K〈M〉 6= ∅},
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so that
A(M, 0, y) = B(M, 0, y) ∪ C(M, 0, y).

Then we can decompose the fiber of y as follows:

π−1M (y) =
⋃

m­1
A(M,m, y) ∪B(M, 0, y) ∪ C(M, 0, y) ∪ {y},

and, consequently, for every x, y ∈ K〈M〉\V 〈M〉M , we get

(3.3) gM (t, x, y) =
∑
m­1

∑
y′∈A(M,m,y)

g(t, x, y′) +
∑

y′∈B(M,0,y)

g(t, x, y′)︸ ︷︷ ︸
=:g

(1)
M (t,x,y)

+
∑

y′∈C(M,0,y)

g(t, x, y′)︸ ︷︷ ︸
=:g

(2)
M (t,x,y)

+ g(t, x, y).

Note that B(M, 0, y) can be an empty set (the only planar example of K〈∞〉 with
this property is the Sierpiński gasket). Here we use the convention that the summa-
tion over an empty set always gives zero.

The following lemma will be used in proving our estimates for the function
g
(1)
M (t, x, y). It can be interpreted as the intrinsic growth property of the graph

metric with respect to the Euclidean metric.

LEMMA 3.1 ([9], Lemma A.2). For every M ∈ Z and every x, y ∈ K〈∞〉 we
have

(3.4) c17L
−M |x− y| ¬ dM (x, y) ¬ max{2, c18N−M |x− y|df },

where c17, c18 are independent of x, y and M .

The next two lemmas will be applied to get the upper bounds for the function
g
(2)
M (t, x, y) in the decomposition (3.3).

LEMMA 3.2. There exists a constant c19 > 0 with the following property. For
every x, y ∈ K〈∞〉 and m ∈ Z such that x ∈ ∆

(1)
m , y ∈ ∆

(2)
m and ∆

(1)
m ∩∆(2)

m = ∅
we have |x− y| ­ c19L

m.

P r o o f. The lemma follows from Corollary A.1 in [9] by scaling. �

LEMMA 3.3. There exists an absolute constant c20 > 0 with the following
property. If x, y ∈ K〈M〉 and y′ ∈ π−1M (y)\{y} is inside an M -complex ∆M such
that ∆M ∩ K〈M〉 = {z} for some z ∈ V

〈M〉
M , then

|x− y′| ­ c20(|x− z|+ |z − y|).

In particular, |x− y′| ­ c20|x− y|.
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P r o o f. Assume first that x, y ∈ K〈M〉\V 〈M〉M and let y′ ∈ π−1M (y) be such
that ∆M (y′) ∩ K〈M〉 = {z} with some z ∈ V

〈M〉
M .

Observe that for every m ¬M the vertex z lies at the intersection of two m-
complexes ∆(1)

m (z) and ∆
(2)
m (z) such that ∆(1)

m (z) ⊆ K〈M〉 and ∆
(2)
m (z) * K〈M〉.

Let now m ∈ Z be the smallest integer for which x, y ∈ ∆
(1)
m (z). Then we

have |x − z|, |y − z| ¬ Lmc′1, where c′1 is the diameter of any zero-complex. On
the other hand, as x /∈ ∆

(1)
m−1(z) or y /∈ ∆

(1)
m−1(z), we see that x and y′ are in dis-

joint (m− 1)-complexes. Those (m− 1)-complexes are included in two different
m-complexes and at most one of them is attached to z. Then, from Lemma 3.2 we
get |x− y′| ­ Lm−1c19 and, in consequence,

|x− z|+ |z − y| ¬ 2c′1L

c19
|x− y′|.

By continuity of the Euclidean distance, the same is true for every x, y ∈ K〈M〉.
The second assertion follows from the triangle inequality for such a distance. The
lemma holds with c20 = c19/(2c

′
1L). �

We now give the estimates for the integral, which will be useful in the proofs
of the upper and lower bound in Lemma 3.5.

LEMMA 3.4. For fixed η, β, γ > 0 there exist positive constants c21, c22 such
that for every a > 0

c21(a ∨ 1)β−γ+1e−η(a∨1)
γ ¬

∞∫
a

yβe−ηy
γ
dy ¬ c22(a ∨ 1)β−γ+1e−η(a∨1)

γ
.

P r o o f. Throughout this proof, constants are independent of a (may depend
on η, β, γ). Using the l’Hospital rule, one can see that

(3.5) lim
a→∞

∞∫
a

yβe−ηy
γ
dy

aβ−γ+1e−ηaγ
= c′1 > 0,

so there exists c′2 > 1 such that for a > c′2 we have

c′1
2
aβ−γ+1e−ηa

γ ¬
∞∫
a

yβe−ηy
γ
dy ¬ 3c′1

2
aβ−γ+1e−ηa

γ
.

On the other hand, for a ∈ [1, c′2] the functions in the numerator and denominator
of (3.5) are strictly positive and bounded, therefore there exist c′3, c

′
4 > 0 such that

for a ­ 1

c′3a
β−γ+1e−ηa

γ ¬
∞∫
a

yβe−ηy
γ
dy ¬ c′4a

β−γ+1e−ηa
γ
.
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Finally, as the integrand is bounded for y ­ 0, one can write

c′3(a ∨ 1)β−γ+1e−ηa
γ ¬

∞∫
a

yβe−ηy
γ
dy ¬ c′5(a ∨ 1)β−γ+1e−ηa

γ

for a > 0, which completes the proof. �

We now give the two-sided bounds for the function g
(1)
M (t, x, y), which are the

first crucial ingredient of the proofs of our main results. This is the case when y′

under the sums in (3.3) are far away from x.

LEMMA 3.5. For every t > 0, M ∈ Z and x, y ∈ K〈M〉\V 〈M〉M we have

c23hc24(t,M) ¬ g
(1)
M (t, x, y) ¬ c25hc26(t,M),(3.6)

with certain numerical constants c23, . . . , c26 > 0 (independent of M , t and x, y).

P r o o f. Let M ∈ Z, t > 0 and x, y ∈ K〈M〉\V 〈M〉M . We now prove the upper
bound and the lower bound separately.

T h e u p p e r b o u n d. Let us observe that for every fixed m ­ 1 and y′ ∈
A(M,m, y) we have dM+m−1 (x, y

′) > 2. Then, by applying the upper bound in
(3.4) for dM+m−1(x, y

′), we get

|x− y′|df ­ 2

c18
NM+m−1.

Moreover, the number of such points y′ is equal to the number of M -complexes
inside K〈M+m+1〉\K〈M+m〉, i.e. Nm(N − 1). Analogously, if y′ ∈ B(M, 0, y),
then dM−1 (x, y

′) > 2, which gives∣∣x− y′
∣∣df ­ 2

c18
NM−1.

There are less than N − 1 such points.
Then, by using the decomposition of g

(1)
M (t, x, y) in (3.3), the upper sub-

Gaussian estimate for g(t, x, y′) in (2.7) and the above observations, we get

(3.7) g
(1)
M (t, x, y)

¬c′1t−df/dw
∑
m­0

Nm(N−1) exp
(
− c′2

(
(2/c18)

dw/dfN (M+m−1)dw/df

t

)1/(dJ−1))

=c′1N
−M+1t−df/dw

∑
m­0

NM+m−1(N−1) exp
(
− c′3

(
N (M+m)dw/df

t

)1/(dJ−1))
,

with an appropriate absolute positive constant c′3.
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Since for any η, γ > 0 we have

∞∫
NM−1

e−ηξ
γ
dξ =

∞∑
m=0

NM+m∫
NM−1+m

e−ηξ
γ
dξ ­

∞∑
m=0

NM+m−1(N − 1)e−ηN
(M+m)γ

,

(3.7) can be estimated by an appropriate integral. We then get

g
(1)
M (t, x, y) ¬ c′4

LMdf tdf/dw

∞∫
NM−1

exp

(
− c′3

(
ξdw/df

t

)1/(dJ−1))
dξ

=
c′4

LMdf tdf/dw

∞∫
NM−1

exp

(
− c′3

(
ξ1/df

t1/dw

)dw/(dJ−1))
dξ,

which, by the substitution ξ1/df t−1/dw = ζ, is equal to

c′4df

LMdf

∞∫
N

(M−1)/df t−1/dw

ζdf−1 exp(−c′3ζdw/(dJ−1))dζ.

Now, using Lemma 3.4 and the fact that NM/df = LM , we can conclude the proof
of the upper bound in (3.6), getting

g
(1)
M (t, x, y)

¬ c′5L
−dfM

(
LM−1

t1/dw
∨ 1

)df−dw/(dJ−1)

exp

(
− c′3

(
LM−1

t1/dw
∨ 1

)dw/(dJ−1))

¬ c′6L
−dfM

(
LM

t1/dw
∨ 1

)df−dw/(dJ−1)

exp

(
− c′7

(
LM

t1/dw
∨ 1

)dw/(dJ−1))
,

which completes the proof of the upper bound.

T h e l o w e r b o u n d. First recall that B(M, 0, y) can be an empty set.
Therefore, we first write

g
(1)
M (t, x, y) ­

∑
m­1

∑
y′∈A(M,m,y)

g(t, x, y′).(3.8)

When m ­ 1 and y′ ∈ A(M,m, y), we have dM+m+1 (x, y
′) = 1. By applying

the lower estimate in (3.4) with n = M +m+ 1, we get

|x− y′| ¬ 1

c17
LM+m+1
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(recall also that the cardinality of A(M,m, y) is equal to Nm(N − 1)). Therefore,
by the lower sub-Gaussian bound of g(t, x, y′), the series on the right-hand side of
(3.8) is larger than or equal to

c′8t
−df/dw ∑

m­1
Nm(N − 1) exp

(
c′9

(
(1/c17)

dwL(M+m+1)dw

t

)1/(dJ−1))

= c′8N
−M t−df/dw

∑
m­1

NM+m(N − 1) exp

(
c′10

(
N (M+m)dw/df

t

)1/(dJ−1))
,

where c′8 and c′10 are absolute constants. Now, estimating the series by an appropri-
ate integral (as in the proof of the upper bound), we show that the above member
is greater than or equal to

c′11L
−Mdf t−df/dw

∞∫
NM+1

exp

(
− c′10

(
ξdw/df

t

)1/(dJ−1))
dξ

= c′11L
−Mdf t−df/dw

∞∫
NM+1

exp

(
− c′10

(
ξ1/df

t1/dw

)dw/(dJ−1))
dξ

= c′11dfL
−Mdf

∞∫
LM+1t−1/dw

ζdf−1 exp(−c′10ζdw/(dJ−1))dζ.

Using Lemma 3.4, we can now write

g
(1)
M (t, x, y)

­ c′11L
−dfM

(
LM+1

t1/dw
∨ 1

)df−dw/(dJ−1)
exp

(
− c′10

(
LM+1

t1/dw
∨ 1

)dw/(dJ−1))

­ c′12L
−dfM

(
LM

t1/dw
∨ 1

)df−dw/(dJ−1)

exp

(
− c′13

(
LM

t1/dw
∨ 1

)dw/(dJ−1))
.

This completes the proof of the lemma. �

We are now ready to give the proofs of our main theorems.

P r o o f o f T h e o r e m 3.1. Let M ∈ Z, t > 0 and assume first that x, y ∈
K〈M〉\V 〈M〉M . Recall that from (3.3) we have

gM (t, x, y) = g
(1)
M (t, x, y) + g

(2)
M (t, x, y) + g(t, x, y).
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By the sub-Gaussian upper estimate in (2.7) and Lemma 3.3, we have

0 ¬ g
(2)
M (t, x, y) ¬ c′1

∑
y′∈C(M,0,y)

t−df/dw exp

(
− c′2

(
|x− y′|dw

t

)1/(dJ−1))(3.9)

¬ c′1kt
−df/dw exp

(
− c′2

(
(c20|x− y|)dw

t

)1/(dJ−1))
= c′3t

−df/dw exp

(
− c′4

(
|x− y|dw

t

)1/(dJ−1))
.

If x, y ∈ K〈M〉\V 〈M〉M , then the claimed two-sided bounds in Theorem 3.1 follow
from a combination of the estimates of g

(1)
M in Lemma 3.5, the above estimates

of g(2)M and the sub-Gaussian two-sided estimates of g in (2.7). By continuity of
the function gM (t, x, y) (see [9], Theorem 4.1(1)), these bounds also extend to
arbitrary x, y ∈ K〈M〉. This completes the proof of the theorem. �

P r o o f o f T h e o r e m 3.2. Let M ∈ Z, t > 0 and let x, y ∈ K〈M〉\V 〈M〉M .
As above, we have

gM (t, x, y)− g(t, x, y) = g
(1)
M (t, x, y) + g

(2)
M (t, x, y)(3.10)

by (3.3), and from Lemma 3.5 we obtain

c23hc24(t,M) ¬ g
(1)
M (t, x, y) ¬ c25hc26(t,M).

It is then enough to estimate g
(2)
M (t, x, y). From (2.7) and Lemma 3.3 we see that

for y′ ∈ C(M,m, y)

g(t, x, y′) ¬ c′1fc′2(|x− z|+ |z − y|),

with z ∈ V
〈M〉
M such that ∆M (y′) ∩ K〈M〉 = {z} and with the absolute constants

c′1, c
′
2. On the other hand, |x− y′| ¬ |x− z|+ |z − y′| = |x− z|+ |z − y|, which

gives
g(t, x, y′) ­ c′3fc′4(|x− z|+ |z − y|).

Then, summing over y′ ∈ C(M,m, y), we obtain

g
(2)
M (t, x, y) =

∑
y′∈C(M,m,y)

g(t, x, y′) ¬ c′1
∑

z∈V ∗M

fc′2(t, |x− z|+ |z − y|)

¬ c′1kfc′2

(
t, δM (x, y)

)
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and

g
(2)
M (t, x, y) =

∑
y′∈C(M,m,y)

g(t, x, y′) ­ c′3
∑

z∈V ∗M

fc′4(t, |x− z|+ |z − y|)

­ c′3fc′4

(
t, δM (x, y)

)
,

where δM (x, y) = infz∈V ∗M (|x − z| + |z − y|). As the functions on both sides of
(3.10) are continuous in (x, y) on K〈M〉 × K〈M〉, the above bounds in fact extend
to all x, y ∈ K〈M〉. This completes the proof. �

In the sequel, we will write a(t, x, y,M) ≈ b(t, x, y,M) if there exist positive
constants c′1, c′2 independent of x, y, t,M such that

c′1a(t, x, y,M) ¬ b(t, x, y,M) ¬ c′2a(t, x, y,M).

We will now describe the behavior of gM (t, x, y) in various time-space regimes.
Recall that we have |x− y| ¬ LM diam(K〈0〉) for every x, y ∈ K〈M〉 with M ∈ Z.

COROLLARY 3.1. For every M ∈ Z and x, y ∈ K〈M〉 we have the following.
If t > LMdw , then

gM (t, x, y) ≈ L−Mdf ,

and if 0 < t ¬ LMdw , then

c27fc28(t, |x− y|) ¬ gM (t, x, y) ¬ c29fc30(t, |x− y|),(3.11)

with certain numerical constants c27, . . . , c30 > 0 independent of t, x, y and M .
In particular, for 0 < t ¬ LMdw such that t > |x − y|dw we have gM (t, x, y) ≈
t−df/dw .

P r o o f. The first assertion follows directly from the fact that for t > LMdw

we have

t−df/dw < L−Mdf and c′1
|x− y|
t1/dw

¬ LM

t1/dw
< 1.

Indeed, the last two inequalities give

fc′2(t, |x− y|) ≈ t−df/dw and hc′3(t,M) ≈ L−Mdf

and from the estimates in Theorem 3.1 we get gM (t, x, y) ≈ L−Mdf .
Consider now the case |x− y|dw < t ¬ LMdw . Then again |x− y|/t1/dw ¬ 1,

which yields
fc′4(t, |x− y|) ≈ t−df/dw .

Moreover,

0 ¬ hc′5(t,M) = t−df/dwa−1 exp(−c′5a),
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where a = (LM/t1/dw)dw/(dJ−1) ­ 1. As the function a 7→ a−1 exp (−c′5a) is
bounded for a ­ 1, we conclude that

fc′6(t, |x− y|) ∨ hc′5(t,M) ≈ t−df/dw .

This also implies (3.11).
Finally, if 0 < t ¬ LMdw and t ¬ |x − y|dw , then by |x − y| ¬ c′7L

M and
LM/t1/dw > 1, we see that

0 ¬ hc′8(t,M) = t−df/dw
(

LM

t1/dw

)−dw/(dJ−1)

exp

(
− c′8

(
LM

t1/dw

)dw/(dJ−1))
¬ t−df/dw exp

(
− c′9

(
|x− y|
t1/dw

)dw/(dJ−1))
= fc′9(t, |x− y|).

This again implies (3.11) and completes the proof. �

Note that a similar result can be given for the difference gM (t, x, y)−g(t, x, y).
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